Chapter 1. Biological Psychology: Scope and Outlook

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.

Links 1 - 20 of 978

Sara Reardon Panzee the chimpanzee was a skilled communicator that could tell untrained humans where to find hidden food by using gestures and vocalizations. Austin the chimp was particularly adept with a computer, and scientists have been scanning its genome for clues to its unusual cognitive abilities. Both apes lived at a language-research centre at Georgia State University in Atlanta, and both died several years ago — but they will live on in an online database of brain scans and behavioural data from nearly 250 chimpanzees. Researchers hope to combine this trove, now in development, with a biobank of chimpanzee brains to enable scientists anywhere in the world to study the animals’ neurobiology. This push to repurpose old data is especially timely now that the US National Institutes of Health (NIH) has decided to retire its remaining research chimpanzees. The agency decommissioned more than 300 animals in 2013, but kept 50 available for research in case of a public-health emergency. Following an 18 November decision, this remaining population will also be sent to sanctuaries in the coming years. The NIH also hopes to retire another 82 chimps that it supports but does not own, says director Francis Collins. “We were on a trajectory toward zero, and today’s the day we’re at zero,” says Jeffrey Kahn, a bioethicist at Johns Hopkins University in Baltimore, Maryland, who led a 2011 study on the NIH chimp colony for the Institute of Medicine. © 2015 Nature Publishing Group

Keyword: Animal Rights; Brain imaging
Link ID: 21660 - Posted: 11.25.2015

by Sarah Zielinski Call someone a “bird brain” and they are sure to be offended. After all, it’s just another way of calling someone “stupid.” But it’s probably time to retire the insult because scientists are finding more and more evidence that birds can be pretty smart. Consider these five species: We may call pigeons “flying rats” for their penchant for hanging out in cities and grabbing an easy meal. (Long before there was “pizza rat,” you know there had to be “pizza pigeons” flying around New York City.) But there may be more going on in their brains than just where to find a quick bite. Richard Levenson of the University of California, Davis Medical Center and colleagues trained pigeons to recognize images of human breast cancers. In tests, the birds proved capable of sorting images of benign and malignant tumors. In fact, they were just as good as humans, the researchers report November 18 in PLOS ONE. In keeping with the pigeons’ reputation, though, food was the reward for their performance. No one would suspect the planet’s second-best toolmakers would be small black birds flying through mountain forests on an island chain east of Australia. But New Caledonian crows have proven themselves not only keen toolmakers but also pretty good problem-solvers, passing some tests that even dogs (and pigeons) fail. For example, when scientists present an animal with a bit of meat on a long string dangling down, many animals don’t ever figure out how to get the meat. Pull it up with one yank, and the meat is still out of reach. Some animals will figure out how to get it through trial and error, but a wild New Caledonian crow solved the problem — pull, step on string, pull some more — on its first try. © Society for Science & the Public 2000 - 2015

Keyword: Intelligence; Evolution
Link ID: 21655 - Posted: 11.24.2015

By James Gallagher Health editor, BBC News website A mass vaccination programme against meningitis A in Africa has been a "stunning success", say experts. More than 220 million people were immunised across 16 countries in the continent's meningitis belt. In 2013 there were just four cases across the entire region, which once faced thousands of deaths each year. However, there are fresh warnings from the World Health Organization that "huge epidemics" could return unless a new vaccination programme is started. The meningitis belt stretches across sub-Saharan Africa from Gambia in the west to Ethiopia in the east. In the worst epidemic recorded, in 1996-97, the disease swept across the belt infecting more than a quarter of a million people and led to 25,000 deaths. Unlike other vaccines, the MenAfriVac was designed specifically for Africa and in 2010 a mass vaccination campaign was started. "The disease has virtually disappeared from this part of the world," said Dr Marie-Pierre Preziosi from the World Health Organization. The mass immunisation programme was aimed at people under 30. However, routine vaccination will be needed to ensure that newborns are not vulnerable to the disease. Projections, published in the journal Clinical Infectious Diseases, showed the disease could easily return. Dr Preziosi told the BBC News website: "What could happen is a huge epidemic that could sweep the entire area, that could target hundreds of thousands of people with 5-10% deaths at least. © 2015 BBC

Keyword: Miscellaneous
Link ID: 21624 - Posted: 11.11.2015

Richard A. Friedman YOU can increase the size of your muscles by pumping iron and improve your stamina with aerobic training. Can you get smarter by exercising — or altering — your brain? Stories from Our Advertisers This is hardly an idle question considering that cognitive decline is a nearly universal feature of aging. Starting at age 55, our hippocampus, a brain region critical to memory, shrinks 1 to 2 percent every year, to say nothing of the fact that one in nine people age 65 and older has Alzheimer’s disease. The number afflicted is expected to grow rapidly as the baby boom generation ages. Given these grim statistics, it’s no wonder that Americans are a captive market for anything, from supposed smart drugs and supplements to brain training, that promises to boost normal mental functioning or to stem its all-too-common decline. The very notion of cognitive enhancement is seductive and plausible. After all, the brain is capable of change and learning at all ages. Our brain has remarkable neuroplasticity; that is, it can remodel and change itself in response to various experiences and injuries. So can it be trained to enhance its own cognitive prowess? The multibillion-dollar brain training industry certainly thinks so and claims that you can increase your memory, attention and reasoning just by playing various mental games. In other words, use your brain in the right way and you’ll get smarter. A few years back, a joint study by BBC and Cambridge University neuroscientists put brain training to the test. Their question was this: Do brain gymnastics actually make you smarter, or do they just make you better at doing a specific task? For example, playing the math puzzle KenKen will obviously make you better at KenKen. But does the effect transfer to another task you haven’t practiced, like a crossword puzzle? © 2015 The New York Times Company

Keyword: Learning & Memory; Intelligence
Link ID: 21567 - Posted: 10.26.2015

Jon Hamilton For a few days this week, a convention center in Chicago became the global epicenter of brain science. Nearly 30,000 scientists swarmed through the vast hallways of the McCormick Place convention center as part of the annual Society for Neuroscience meeting. Among them were Nobel Prize winners, the director of the National Institutes of Health, and scores of researchers regarded as the international rock stars of neuroscience. "It's amazing. I'm a bit overwhelmed," said Kara Furman, a graduate student from Yale who was attending her first Society for Neuroscience meeting. Furman was just one of several hundred neuroscientists I found standing in lines outside the center one afternoon, waiting for shuttle buses. She was pondering a presentation from a few hours earlier that she found "pretty mind-blowing." What was it about? "Using MRI techniques to access dopamine release at the molecular level," she told me, deadpan. Welcome to the five-day annual event that's become known simply as "The Neuro Meeting." It's where brain scientists from around the world come to present their own work and discover the "mind-blowing" research others are doing. And there are thousands of presentations to choose from. "I prepared an itinerary based on my interests and that ran into 20 pages," said Srinivas Bharath from the National Institute of Mental Health and Neurosciences in Bangalore, India. © 2015 npr

Keyword: Miscellaneous
Link ID: 21553 - Posted: 10.23.2015

By Melissa Dahl Next time you feel you are in danger of losing an argument, make some obscure reference to the brain. Any nod to neuroscience will do, even if it doesn’t actually illuminate the problem at hand or prove anything that halfway resembles a point. People tend to find explanations that include references to the brain very convincing, even if those references are mostly nonsense, according to the latest episode of "Psych Crunch," a podcast hosted by psychologist (and Science of Us contributor) Christian Jarrett. Jarrett interviews Sara Hodges, a research psychologist at the University of Oregon and the co-author of a study published this May on the appeal of “superfluous neuroscience information.” In it, Hodges and her colleagues presented students with a variety of explanations for various psychological phenomena. Some of these explanations were not really explanations at all, but rather just a restatement of the facts already presented. The students considered explanations for various quirks of human behavior from the fields of social science, biological science, and neuroscience, and rated how convincing they found each explanation. “The social sciences would refer to something about how people were raised, and the hard-science explanation referred to changes in DNA, the structure of DNA,” Hodges explained to Jarrett. The neuroscience explanation, on the other hand, would pretty much just name an area of the brain thought to be associated with the behavior at hand and leave matters at that, without really explaining anything. Even still, Hodges said, the “neuroscience explanations always came out on top — better than no explanation, better than social science, better than the hard science.” © 2015, New York Media LLC

Keyword: Miscellaneous
Link ID: 21552 - Posted: 10.23.2015

by Ben Cipollini Thanks to Ms. Amazing, it’s now cliche to say, but hey… I really love SfN. For the uninitiated SfN is a thirty thousand person international conference for neuroscience–a conference so large, only a few cities in the US can handle it. Yes, that’s a giant C-SPAN2 bus that's dwarfed by this small section of the “Great Room”. For many, SfN evokes fear and dread; it’s truly overwhelming in its size, breadth, and depth. For me, it was love at first “OM*G!!!”. Don’t believe me, scientists? Let’s review the data: I loathe running, but I actually do it at SfN. One needs wheels to get from talks to posters to talks again. We filled the New Orleans convention center in 2012; it’s so long you you can actually get directions from one end of it to the other on Google Maps. Yes, that map does say “1.0 kilometers”. I hate crowds, but I will fight through the poster session crowds like a salmon heading upstream to spawn, just to get to one more poster before the end of the session. SfN may have more human traffic jams than China has vehicle jams during Golden week… but that won’t stop me from finding out how callosal connections have properties similar to those of long-range lateral connections, or to understand how hemispherectomy affects functional organization. You’d better too; you never know when one of your research heroes might be presenting the poster, or you’ll find yourself standing in front of a poster that winds up in Science just a few months later.

Keyword: Miscellaneous
Link ID: 21522 - Posted: 10.17.2015

By AUSTIN RAMZY HONG KONG — Australian officials have responded to criticism from animal rights activists and celebrities, including the former actress Brigitte Bardot and the singer Morrissey, that a government plan to protect threatened species by killing millions of feral cats is unnecessarily cruel. Gregory Andrews, Australia’s threatened species commissioner, has written open letters to Ms. Bardot and Morrissey saying that feral cats prey on more than 100 of the country’s threatened species and that they were a “major contributor” to the extinction of at least 27 mammal species in the country over the past 200 years. He called some of the extinct species, such as the lesser bilby, desert bandicoot, crescent nailtail wallaby and big-eared hopping mouse, “delightful creatures, rich in importance in Australian indigenous culture, and formerly playing important roles in the ecology of our country. We don’t want to lose any more species like these.” The Australian Department of the Environment says that feral cats are the biggest threat to the country’s mammals, ahead of foxes and habitat loss. The government plan would use poison and traps to kill the cats. In announcing the plan in July, Greg Hunt, the environment minister, said that he wanted two million feral cats culled by 2020. Australia has an estimated 20 million feral cats, which are an invasive species brought by European settlers. Calls to exterminate the cats have been floated before, including one in the 1990s that called for killing all feral cats by 2020. © 2015 The New York Times Company

Keyword: Animal Rights
Link ID: 21512 - Posted: 10.15.2015

By Martin Enserink Researchers who conduct animal studies often don't use simple safeguards against biases that have become standard in human clinical trials—or at least they don't report doing so in their scientific papers, making it impossible for readers to ascertain the quality of the work, an analysis of more than 2500 journal articles shows. Such biases, conscious or unconscious, can make candidate medical treatments look better than they actually are, the authors of the analysis warn, and lead to eye-catching results that can't be replicated in larger or more rigorous animal studies—or in human trials. Neurologist Malcolm MacLeod of the Centre for Clinical Brain Sciences at the University of Edinburgh and his colleagues combed through papers reporting the efficacy of drugs in eight animal disease models and checked whether the authors reported four measures that are widely acknowledged to reduce the risk of bias. First, if there was an experimental group and a control group, were animals randomly assigned to either one? (This makes it impossible for scientists to, say, assign the healthiest mice or rats to a treatment group, which could make a drug look better than it is.) Second, were the researchers who assessed the outcomes of a trial—for instance, the effect of a treatment on an animal's health—blinded to which animal underwent what procedure? Third, did the researchers calculate in advance the sample size needed to show that they didn't just accumulate data until they found something significant? And finally, did they make a statement about their conflicts of interest? © 2015 American Association for the Advancement of Science

Keyword: Animal Rights; Attention
Link ID: 21507 - Posted: 10.14.2015

Carl Zimmer In recent years, a peculiar sort of public performance has taken place periodically on the sidewalks of Seattle. It begins with a woman named Kaeli N. Swift sprinkling peanuts and cheese puffs on the ground. Crows swoop in to feed on the snacks. While Ms. Swift observes the birds from a distance, notebook in hand, another person walks up to the birds, wearing a latex mask and a sign that reads “UW CROW STUDY.” In the accomplice’s hands is a taxidermied crow, presented like a tray of hors d’oeuvres. This performance is not surreal street theater, but an experiment designed to explore a deep biological question: What do crows understand about death? Ms. Swift has been running this experiment as part of her doctoral research at the University of Washington, under the guidance of John M. Marzluff, a biologist. Dr. Marzluff and other experts on crow behavior have long been intrigued by the way the birds seem to congregate noisily around dead comrades. Dr. Marzluff has witnessed these gatherings many times himself, and has heard similar stories from other people. “Whenever I give a talk about crows, there’s always someone who says, ‘Well, what about this?’ ” he said. Dr. Marzluff and Ms. Swift decided to bring some scientific rigor to these stories. They wanted to determine whether a dead crow really does trigger a distinctive response from living crows and, if so, what the purpose of the large, noisy gatherings might be. To run the experiment, Ms. Swift began by delivering food to a particular spot each day, so that the crows learned to congregate there to eat. Then one of her volunteers would approach the feast with a dead crow, and Ms. Swift observed how the birds reacted. © 2015 The New York Times Company

Keyword: Intelligence; Evolution
Link ID: 21473 - Posted: 10.03.2015

Sara Reardon The brain’s wiring patterns can shed light on a person’s positive and negative traits, researchers report in Nature Neuroscience1. The finding, published on 28 September, is the first from the Human Connectome Project (HCP), an international effort to map active connections between neurons in different parts of the brain. The HCP, which launched in 2010 at a cost of US$40 million, seeks to scan the brain networks, or connectomes, of 1,200 adults. Among its goals is to chart the networks that are active when the brain is idle; these are thought to keep the different parts of the brain connected in case they need to perform a task. In April, a branch of the project led by one of the HCP's co-chairs, biomedical engineer Stephen Smith at the University of Oxford, UK, released a database of resting-state connectomes from about 460 people between 22 and 35 years old. Each brain scan is supplemented by information on approximately 280 traits, such as the person's age, whether they have a history of drug use, their socioeconomic status and personality traits, and their performance on various intelligence tests. Smith and his colleagues ran a massive computer analysis to look at how these traits varied among the volunteers, and how the traits correlated with different brain connectivity patterns. The team was surprised to find a single, stark difference in the way brains were connected. People with more 'positive' variables, such as more education, better physical endurance and above-average performance on memory tests, shared the same patterns. Their brains seemed to be more strongly connected than those of people with 'negative' traits such as smoking, aggressive behaviour or a family history of alcohol abuse. © 2015 Nature Publishing Group,

Keyword: Brain imaging; Intelligence
Link ID: 21457 - Posted: 09.29.2015

By David Grimm The journal Nature is revising its policy on publishing animal experiments after a study it ran in 2011 received criticism because the authors allowed tumors to grow excessively large in mice. The paper reported that a compound isolated from a pepper plant killed cancer cells without harming healthy cells. Yesterday, the journal published a correction to the study (the paper’s second), which noted that “some tumors on some of the animals exceeded the maximum size … permitted by the Institutional Animal Care and Use Committee.” The tumors were only supposed to grow to a maximum of 1.5 cubic centimeters, but some reached 7 cubic centimeters, according to David Vaux, a cell biologist at the Walter and Eliza Hall Institute of Medical Research in Melbourne, Australia, who first raised concerns about the paper in 2012. (Vaux spoke to Retraction Watch, which first reported the correction.) In an editorial published yesterday, Nature calls the large tumors “a breach of experimental protocol,” one that could have caused the mice to “have experienced more pain and suffering than originally allowed for.” The journal also noted the lapse could have implications beyond the one study, saying that “cases such as this could provoke a justifiable backlash against animal research.” Nature says it will now require authors to include the maximum tumor size allowed by its institutional animal-use committee, and to state that this size was not exceeded during the experiments. The journal does say, however, that it is not retracting the paper, and that the study remains “valid and useful.”

Keyword: Animal Rights
Link ID: 21418 - Posted: 09.20.2015

James Gorman If spiders had nightmares, the larvae of ichneumonid wasps would have to star in them. The wasp lays an egg on the back of an orb weaver spider, where it grows fat and bossy, and occupies itself with turning the spider into a zombie. As Keizo Takasuka and his colleagues point out in The Journal of Experimental Biology, this is a classic case of “host manipulation.” Using more colorful language, he described the larva turning the spider into a “drugged navvy.” The larva forces the spider to turn its efforts away from maintaining a sticky, spiral web to catch prey, and to devote itself to building a safe and sturdy web to serve as a home for the larva’s cocoon, in which it will transform itself into a wasp. This process was well known, but Dr. Takasuka and Kaoru Maeto at Kobe University, working with other Japanese researchers, wanted to explore how the wasp overlords controlled their spiders. They suspected that the larvae were co-opting a natural behavior of the spiders. Turning on a behavior already in the spiders’ repertoire would be much easier than controlling every step of modifying a sticky web. So they compared the cocoon web to one that the spiders themselves build to rest in when they are molting. It’s called a resting web. The similarities were striking. In both the resting and cocoon webs, the sticky, spiraling threads that make the webs of orb weavers so appealing were gone. Instead, the spokes of the web remained, decorated with fibrous spider silk that the researchers found reflected ultraviolet light. That would be a highly useful quality to warn away birds and some large insects from flying into the web because those creatures can see in the ultraviolet spectrum. The strength of the two silk webs was also similar. © 2015 The New York Times Company

Keyword: Miscellaneous; Evolution
Link ID: 21403 - Posted: 09.14.2015

By GREGORY COWLES Oliver Sacks, the neurologist and acclaimed author who explored some of the brain’s strangest pathways in best-selling case histories like “The Man Who Mistook His Wife for a Hat,” using his patients’ disorders as starting points for eloquent meditations on consciousness and the human condition, died on Sunday at his home in Manhattan. He was 82. The cause was cancer, said Kate Edgar, his longtime personal assistant. Dr. Sacks announced in February, in an Op-Ed essay in The New York Times, that an earlier melanoma in his eye had spread to his liver and that he was in the late stages of terminal cancer. As a medical doctor and a writer, Dr. Sacks achieved a level of popular renown rare among scientists. More than a million copies of his books are in print in the United States, his work was adapted for film and stage, and he received about 10,000 letters a year. (“I invariably reply to people under 10, over 90 or in prison,” he once said.) Dr. Sacks variously described his books and essays as case histories, pathographies, clinical tales or “neurological novels.” His subjects included Madeleine J., a blind woman who perceived her hands only as useless “lumps of dough”; Jimmie G., a submarine radio operator whose amnesia stranded him for more than three decades in 1945; and Dr. P. — the man who mistook his wife for a hat — whose brain lost the ability to decipher what his eyes were seeing. Describing his patients’ struggles and sometimes uncanny gifts, Dr. Sacks helped introduce syndromes like Tourette’s or Asperger’s to a general audience. But he illuminated their characters as much as their conditions; he humanized and demystified them. © 2015 The New York Times Company

Keyword: Miscellaneous
Link ID: 21361 - Posted: 08.31.2015

By BENEDICT CAREY The past several years have been bruising ones for the credibility of the social sciences. A star social psychologist was caught fabricating data, leading to more than 50 retracted papers. A top journal published a study supporting the existence of ESP that was widely criticized. The journal Science pulled a political science paper on the effect of gay canvassers on voters’ behavior because of concerns about faked data. Now, a painstaking yearslong effort to reproduce 100 studies published in three leading psychology journals has found that more than half of the findings did not hold up when retested. The analysis was done by research psychologists, many of whom volunteered their time to double-check what they considered important work. Their conclusions, reported Thursday in the journal Science, have confirmed the worst fears of scientists who have long worried that the field needed a strong correction. The vetted studies were considered part of the core knowledge by which scientists understand the dynamics of personality, relationships, learning and memory. Therapists and educators rely on such findings to help guide decisions, and the fact that so many of the studies were called into question could sow doubt in the scientific underpinnings of their work. “I think we knew or suspected that the literature had problems, but to see it so clearly, on such a large scale — it’s unprecedented,” said Jelte Wicherts, an associate professor in the department of methodology and statistics at Tilburg University in the Netherlands. More than 60 of the studies did not hold up. Among them was one on free will. It found that participants who read a passage arguing that their behavior is predetermined were more likely than those who had not read the passage to cheat on a subsequent test. © 2015 The New York Times Company

Keyword: Miscellaneous
Link ID: 21355 - Posted: 08.28.2015

By JESSE McKINLEY ALBANY — In a case watched by animal rights activists and courtroom curiosity seekers, a State Supreme Court judge in Manhattan on Thursday denied a request to free a pair of chimpanzees, Hercules and Leo, being held at a state university on Long Island. The unorthodox petition — which sought a writ of habeas corpus, an age-old method of challenging unlawful imprisonment — was the latest attempt by the nonprofit Nonhuman Rights Project to establish that apes are “legal persons.” The group argues that chimps are self-aware and autonomous, a contention it has supported by submitting affidavits attesting to the animals’ intelligence, language skills and personalities, among other traits, in several cases filed in New York on behalf of various imprisoned primates. In what the group hoped was a positive sign, Justice Barbara Jaffe of State Supreme Court in April ordered a hearing on whether Hercules and Leo, 8-year-old apes living as research subjects at the State University of New York at Stony Brook, could be released and transferred to an animal sanctuary in Florida. Arguments were heard in late May. But while Justice Jaffe took the case seriously — her 33-page decision cited the long history of habeas corpus and included references to discrimination against women and African-American slaves — she could not quite see Hercules and Leo as people in the eyes of the law. “For the purpose of establishing rights, the law presently categorizes entities in a simple, binary, ‘all or nothing,’ fashion,” the justice wrote, noting: “Persons have rights, duties, and obligations. Things do not.” “Animals, including chimpanzees and other highly intelligent mammals, are considered property under the law,” she continued. “They are accorded no legal rights,” beyond being free from mistreatment or abuse. © 2015 The New York Times Company

Keyword: Animal Rights
Link ID: 21241 - Posted: 07.31.2015

Alexandra Sims Intelligent people are not only smarter than the average person - it seems they could also live longer as well. A study by the London School of Economics found that smarter siblings are more likely to outlive their less clever brothers and sisters, with genetics accounting for 95 per cent of the connection between intelligence and life span. The scientists examined the differences in longevity between identical twins, who share all of their genes and non-identical twins, who on average share half of their genes. Writing in the International Journal of Epidemiology, scientists noted the difference in intellect between the twins and the age at which they died. Focusing on three different twin studies from Sweden, Denmark and the United States the researchers examined sets of twins for whom both intelligence and age of death had been recorded in pairs where at least one of the twins had died. In both types of twins it was found that the smarter of the two lived longer, but this effect was far more prominent in non-identical twins. Rosalind Arden, a research associate at the LSE, told The Times that "the association between top jobs and longer lifespans is more a result of genes than having a big desk.” She added though that the research does not mean parents can "deduce your child’s likely lifespan from how he or she does in their exams this summer”.

Keyword: Intelligence; Genes & Behavior
Link ID: 21222 - Posted: 07.27.2015

Emily M. Keeler How smart are you? Would you be smarter if you ate more blueberries, played better video games, learned another language, or read the novels of Proust? What about if you did more crosswords? Took some pills? Electrically stimulated your brain? Or are you smart enough as is? Patricia Marx is, of course, pretty smart already. She’s a Guggenheim fellow, and a New Yorker Staff writer. She’s also funny as hell. Marx was the first woman elected to the Harvard Lampoon, and is a former writer for Saturday Night Live. Her new book, Let’s Be Less Stupid, takes readers on a chatty nosedive into her own neurological functioning, in the hopes that maybe, just maybe, we’ll all become a little smarter along the way. The book is the most recent entrant in the burgeoning field of pop-neuroscience, but with a liberal helping of humour. For four months, Marx did everything she could to add a few points to her IQ, including becoming adept with Luminosity, a video game app intended to improve cognitive function, and learning a little Cherokee in the hopes of multilingualism giving her brain a competitive advantage against the inevitable decline. When I called Marx to chat about her brain, she said she was sure her four months of compulsively chasing brain health hadn’t done her much good; in fact, she sheepishly admitted she’d already forgotten most of what she’d learned about the incredibly complex organ folded up inside our skulls. © 2015 National Post

Keyword: Miscellaneous
Link ID: 21169 - Posted: 07.15.2015

By David Grimm The number of federally regulated animals used in U.S. biomedical research dropped last year to its lowest level since data collection began in 1972, according to new statistics posted by the U.S. Department of Agriculture (USDA). Approximately 834,000 rabbits, nonhuman primates, and other regulated animals were used in research last year, compared with more than 1.5 million in the early 1970s. The use of these animals has been on a downward trend since 1993, with a 6% decrease from 2013 to 2014. Since USDA first started posting its numbers on its website in 2008, total use has dropped 17%. The figures do not include most mice, rats, birds, and fish, which make up 98% of lab animals but are not covered under the 1966 Animal Welfare Act (AWA). “It’s a continuation of a long-running trend that’s showing no sign of slowing down—in fact it’s speeding up,” says Tom Holder, the director of Speaking of Research, a U.K.-based organization that supports the use of animals in research. Animal rights activists are “very pleased,” says Alka Chandna, the senior laboratory oversight specialist at People for the Ethical Treatment of Animals (PETA), which opposes the use of animals in research. The use of nearly every kind of AWA-covered animal dropped from 2013 to 2014. Twelve percent fewer dogs were used from 2013 to 2014 (16% fewer since 2008), 11% fewer rabbits (36% fewer since 2008), 11% fewer Guinea pigs (26% fewer since 2008), and 10% fewer nonhuman primates (19% fewer since 2008). The only animals to see an increase were “all other covered species,” which includes ferrets, squirrels, and some rodents (such as sand rats and deer mice) that are not excluded from the AWA. © 2015 American Association for the Advancement of Science

Keyword: Animal Rights
Link ID: 21153 - Posted: 07.11.2015

Computers built to mimic the brain can now recognise images, speech and even create art, and it’s all because they are learning from data we churn out online Do androids dream of electric squid? (Image: Reservoir Lab at Ghent University) I AM watching it have a very odd dream – psychedelic visions of brain tissue folds, interspersed with chunks of coral reef. The dreamer in question is an artificial intelligence, one that live-streams from a computer on the ground floor of the Technicum building in Ghent University, Belgium. This vision has been conjured up after a viewer in the chat sidebar suggests "brain coral" as a topic. It's a fun distraction – and thousands of people have logged on to watch. But beyond that, the bot is a visual demonstration of a technology that is finally coming of age: neural networks. The bot is called 317070, a name it shares with the Twitter handle of its creator, Ghent graduate student Jonas Degrave. It is based on a neural network that can recognise objects in images, except that Degrave runs it in reverse. Given static noise, it tweaks its output until it creates images that tally with what viewers are requesting online. The bot's live-stream page says it is "hallucinating", although Degrave says "imagining" is a little more accurate. Degrave's experiment plays off recent Google research which aimed to tackle one of the core issues with neural networks: that no one knows how neural networks come up with their answers. The images the network creates to satisfy simple instructions can give us some insights. © Copyright Reed Business Information Ltd

Keyword: Robotics
Link ID: 21149 - Posted: 07.09.2015