Links for Keyword: Drug Abuse

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 21 - 40 of 1429

By Anahad O'Connor Like most of my work, this article would not have been possible without coffee. I’m never fully awake until I have had my morning cup of espresso. It makes me productive, energized and what I can only describe as mildly euphoric. But as one of the millions of caffeine-loving Americans who can measure out my life with coffee spoons, (to paraphrase T.S. Eliot), I have often wondered: How does my coffee habit impact my health? The health community can’t quite agree on whether coffee is more potion or poison. The American Heart Association says the research on whether coffee causes heart disease is conflicting. The World Health Organization, which for years classified coffee as “possibly” carcinogenic, recently reversed itself, saying the evidence for a coffee-cancer link is “inadequate.” National dietary guidelines say that moderate coffee consumption may actually be good for you – even reducing chronic disease. Why is there so much conflicting evidence about coffee? The answer may be in our genes. About a decade ago, Ahmed El-Sohemy, a professor in the department of nutritional sciences at the University of Toronto, noticed the conflicting research on coffee and the widespread variation in how people respond to it. Some people avoid it because just one cup makes them jittery and anxious. Others can drink four cups of coffee and barely keep their eyes open. Some people thrive on it. Dr. El-Sohemy suspected that the relationship between coffee and heart disease might also vary from one individual to the next. And he zeroed in on one gene in particular, CYP1A2, which controls an enzyme – also called CYP1A2 – that determines how quickly our bodies break down caffeine. One variant of the gene causes the liver to metabolize caffeine very quickly. People who inherit two copies of the “fast” variant – one from each parent – are generally referred to as fast metabolizers. Their bodies metabolize caffeine about four times more quickly than people who inherit one or more copies of the slow variant of the gene. These people are called slow metabolizers. © 2016 The New York Times Company

Related chapters from BP7e: Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology; Chapter 13: Memory, Learning, and Development
Link ID: 22434 - Posted: 07.13.2016

Tough love, interventions and 12-step programs are some of the most common methods of treating drug addiction, but journalist Maia Szalavitz says they're often counterproductive. "We have this idea that if we are just cruel enough and mean enough and tough enough to people with addiction, that they will suddenly wake up and stop, and that is not the case," she tells Fresh Air's Terry Gross. Szalavitz is the author of Unbroken Brain, a book that challenges traditional notions of addiction and treatment. Her work is based on research and experience; she was addicted to cocaine and heroin from the age of 17 until she was 23. Szalavitz is a proponent of "harm reduction" programs that take a nonpunitive approach to helping addicts and "treat people with addiction like human beings." In her own case, she says that getting "some kind of hope that I could change" enabled her to get the help she needed. On her criticism of 12-step programs I think that 12-step programs are fabulous self help. I think they can be absolutely wonderful as support groups. My issue with 12-step programs is that 80 percent of addiction treatment in this country consists primarily of indoctrinating people into 12-step programs, and no other medical care in the United States is like that. The data shows that cognitive behavioral therapy and motivational enhancement therapy are equally effective, and they have none of the issues around surrendering to a higher power, or prayer or confession. © 2016 npr

Related chapters from BP7e: Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Related chapters from MM:Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Link ID: 22408 - Posted: 07.08.2016

Shefali Luthra Prescription drug prices continue to climb, putting the pinch on consumers. Some older Americans appear to be seeking an alternative to mainstream medicines that has become easier to get legally in many parts of the country. Just ask Cheech and Chong. Research published Wednesday found that states that legalized medical marijuana — which is sometimes recommended for symptoms like chronic pain, anxiety or depression — saw declines in the number of Medicare prescriptions for drugs used to treat those conditions and a dip in spending by Medicare Part D, which covers the cost on prescription medications. Because the prescriptions for drugs like opioid painkillers and antidepressants — and associated Medicare spending on those drugs — fell in states where marijuana could feasibly be used as a replacement, the researchers said it appears likely legalization led to a drop in prescriptions. That point, they said, is strengthened because prescriptions didn't drop for medicines such as blood-thinners, for which marijuana isn't an alternative. The study, which appears in Health Affairs, examined data from Medicare Part D from 2010 to 2013. It is the first study to examine whether legalization of marijuana changes doctors' clinical practice and whether it could curb public health costs. The findings add context to the debate as more lawmakers express interest in medical marijuana. This year, Ohio and Pennsylvania passed laws allowing the drug for therapeutic purposes, making it legal in 25 states, plus Washington, D.C. The approach could also come to a vote in Florida and Missouri this November. A federal agency is considering reclassifying medical marijuana under national drug policy to make it more readily available. © 2016 npr

Related chapters from BP7e: Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Related chapters from MM:Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Link ID: 22406 - Posted: 07.07.2016

Susan Gaidos By age 25, Patrick Schnur had cycled through a series of treatment programs, trying different medications to kick his heroin habit. But the drugs posed problems too: Vivitrol injections were painful and created intense heroin cravings as the drug wore off. Suboxone left him drowsy, depressed and unable to study or go running like he wanted to. Determined to resume the life he had before his addiction, Schnur decided to hunker down and get clean on his own. In December 2015, he had been sober for two years and had just finished his first semester of college, with a 4.0 grade point average. Yet, just before the holidays, he gave in to the cravings. Settling into his dorm room he stuck a needle in his vein. It was his last shot. Scientists are searching for a different kind of shot to prevent such tragedies: a vaccine to counter addiction to heroin and other opioids, such as the prescription painkiller fentanyl and similar knockoff drugs. In some ways, the vaccines work like traditional vaccines for infectious diseases such as measles, priming the immune system to attack foreign molecules. But instead of targeting viruses, the vaccines zero in on addictive chemicals, training the immune system to usher the drugs out of the body before they can reach the brain. Such a vaccine may have helped Schnur, a onetime computer whiz who grew up in the Midwest, far removed from the hard edges of the drug world. His overdose death reflects a growing heroin epidemic and alarming trend. In the 1960s, heroin was seen as a hard-core street drug abused mostly in inner cities. Now heroin is a problem in many suburban and rural towns across America, where it is used primarily by young, white adults — male and female, according to research published by psychiatrist Theodore Cicero of Washington University in St. Louis and colleagues in 2014 in JAMA Psychiatry. © Society for Science & the Public 2000 - 201

Related chapters from BP7e: Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology; Chapter 11: Emotions, Aggression, and Stress
Link ID: 22376 - Posted: 06.29.2016

By BENEDICT CAREY New York University’s medical school has quietly shut down eight studies at its prominent psychiatric research center and parted ways with a top researcher after discovering a series of violations in a study of an experimental, mind-altering drug. A subsequent federal investigation found lax oversight of study participants, most of whom had serious mental issues. The Food and Drug Administration investigators also found that records had been falsified and researchers had failed to keep accurate case histories. In one of the shuttered studies, people with a diagnosis of post-traumatic stress caused by childhood abuse took a relatively untested drug intended to mimic the effects of marijuana, to see if it relieved symptoms. “I think their intent was good, and they were considerate to me,” said one of those subjects, Diane Ruffcorn, 40, of Seattle, who said she was sexually abused as a child. “But what concerned me, I was given this drug, and all these tests, and then it was goodbye, I was on my own. There was no follow-up.” It’s a critical time for two important but still controversial areas of psychiatry: the search for a blood test or other biological sign of post-traumatic stress disorder, which has so far come up empty, and the use of recreational drugs like ecstasy and marijuana to treat it. At least one trial of marijuana, and one using ecstasy, are in the works for traumatized veterans, and some psychiatrists and many patients see this work as having enormous promise to reshape and improve treatment for trauma. But obtaining approval to use the drugs in experiments is still politically sensitive. Doctors who have done studies with these drugs say that their uncertain effects on traumatic memory make close supervision during treatment essential. © 2016 The New York Times Company

Related chapters from BP7e: Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology; Chapter 16: Psychopathology: Biological Basis of Behavior Disorders
Related chapters from MM:Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology; Chapter 12: Psychopathology: The Biology of Behavioral Disorders
Link ID: 22371 - Posted: 06.28.2016

by German Lopez and Javier Zarracina After years of struggling with treatments for his worsening cancer, Roy was miserable — anxious, depressed, hopeless. Traditional cancer treatments had left him debilitated, and it was unclear whether they would save his life. But then Roy secured a spot in a clinical trial to test an exotic drug. The drug was not meant to cure his cancer; it was meant to cure his terror. And it worked. A few hours after taking a little pill, Roy declared to researchers, "Cancer is not important, the important stuff is love." His concerns about his imminent death had suddenly vanished — and the effects lasted for at least months, according to researchers. It was not a traditional antidepressant, like Zoloft, or anti-anxiety medication, like Xanax, that led Roy to reevaluate his life. It was a drug that has been illegal for decades but is now at the center of a renaissance in research: psilocybin, from hallucinogenic magic mushrooms. Psychologists and psychiatrists have been studying hallucinogens for decades — as treatment for things like alcoholism and depression, and to stimulate creativity. But support for studies dried up in the 1970s, after the federal government listed many psychedelics as Schedule 1 drugs. But now researchers are giving the drugs another look. © 2016 Vox Media, Inc.

Related chapters from BP7e: Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology; Chapter 16: Psychopathology: Biological Basis of Behavior Disorders
Related chapters from MM:Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology; Chapter 12: Psychopathology: The Biology of Behavioral Disorders
Link ID: 22370 - Posted: 06.28.2016

By MAIA SZALAVITZ I SHOT heroin and cocaine while attending Columbia in the 1980s, sometimes injecting many times a day and leaving scars that are still visible. I kept using, even after I was suspended from school, after I overdosed and even after I was arrested for dealing, despite knowing that this could reduce my chances of staying out of prison. My parents were devastated: They couldn’t understand what had happened to their “gifted” child who had always excelled academically. They kept hoping I would just somehow stop, even though every time I tried to quit, I relapsed within months. There are, speaking broadly, two schools of thought on addiction: The first was that my brain had been chemically “hijacked” by drugs, leaving me no control over a chronic, progressive disease. The second was simply that I was a selfish criminal, with little regard for others, as much of the public still seems to believe. (When it’s our own loved ones who become addicted, we tend to favor the first explanation; when it’s someone else’s, we favor the second.) We are long overdue for a new perspective — both because our understanding of the neuroscience underlying addiction has changed and because so many existing treatments simply don’t work. Addiction is indeed a brain problem, but it’s not a degenerative pathology like Alzheimer’s disease or cancer, nor is it evidence of a criminal mind. Instead, it’s a learning disorder, a difference in the wiring of the brain that affects the way we process information about motivation, reward and punishment. And, as with many learning disorders, addictive behavior is shaped by genetic and environmental influences over the course of development. Scientists have documented the connection between learning processes and addiction for decades. Now, through both animal research and imaging studies, neuroscientists are starting to recognize which brain regions are involved in addiction and how. © 2016 The New York Times Company

Related chapters from BP7e: Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Related chapters from MM:Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Link ID: 22365 - Posted: 06.27.2016

By DONALD G. McNEIL Jr. Global health authorities are trying to get more countries to mandate the use of the “world’s ugliest color” on cigarette packaging to discourage smoking. In 2012, GfK Bluemoon, a market research company under contract to the Australian government, announced that nearly 1,000 smokers had voted that a drab greenish brown known as opaque couché, number 448c in the Pantone color matching system, was the world’s most repulsive color. It was described as looking like death, filth, lung tar or baby excrement. Color aficionados later noted that it was also similar to the hue of the dress worn by the Mona Lisa. Photo Cigarettes on sale in Sydney, New South Wales. Credit Ryan Pierse/Getty Images Australia then mandated “plain packaging” for cigarettes that was actually anything but plain. The opaque couché-colored boxes have vivid pictures of rotted teeth, tongues with tumors and dangerously tiny newborns, along with warnings about smoking’s dangers printed in type larger than the brand names. Australia has been very successful in getting smokers to quit, so health officials in Britain, France and Ireland have announced plans to imitate the packaging. Last month, the European Court of Justice rebuffed legal challenges, by tobacco companies, to the use of shocking images, and India’s Supreme Court ruled in favor of letting them cover 85 percent of packs. A recent study in JAMA Internal Medicine found that these pictures prompt more smokers to at least try to quit, but the American tobacco industry has blocked all attempts to put them on cigarette packs sold in the United States. © 2016 The New York Times Company

Related chapters from BP7e: Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Related chapters from MM:Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Link ID: 22344 - Posted: 06.22.2016

Laurel Hamers People hooked on cocaine are more likely to stick to other habits, too. They’re also less sensitive to negative feedback that tends to push nonaddicts away from harmful habitual behaviors, new research published in the June 17 Science suggests. The findings might help explain why cocaine addicts will do nearly anything to keep using the drug, despite awareness of its negative consequences. Instead, treatments that encourage new, healthier habits in place of drug use might click better. Similar results have been demonstrated with mice and rats, but the effect hadn’t been well-established in humans. There’s no pharmacological treatment approved by the U.S. Food and Drug Administration that targets cocaine addiction as there is for opioid addiction. So the best treatment currently focuses on changing patients’ behavior — and it’s not easy. “It’s such a devastating situation for families,” says Karen Ersche, a psychologist at the University of Cambridge who led the study. Drug users “know they’ll lose their job. They’ll tell you they want to change, but still they carry on using the drug. It seems incomprehensible.” Habits can be helpful because they free up brainpower for other things. A new driver has to think through every push of the pedal and flick of the turn signal, while an experienced one can perform these actions almost effortlessly, allowing them to also carry on a conversation. But people can also snap out of that automation when necessary, slamming on the brakes when a deer darts across the road. It’s harder for someone addicted to cocaine to get off autopilot. © Society for Science & the Public 2000 - 2016.

Related chapters from BP7e: Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Related chapters from MM:Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Link ID: 22340 - Posted: 06.20.2016

By Jane E. Brody Smokers who think they are escaping the lung-damaging effects of inhaled tobacco smoke may have to think again, according to the findings of two major new studies, one of which the author originally titled “Myth of the Healthy Smoker.” Chronic obstructive pulmonary disease, or C.O.P.D., may be among the best known dangers of smoking, and current and former smokers can be checked for that with a test called spirometry that measures how much air they can inhale and how much and how quickly they can exhale. Unfortunately, this simple test is often skipped during routine medical checkups of people with a history of smoking. But more important, even when spirometry is done, the new studies prove that the test often fails to detect serious lung abnormalities that cause chronic cough and sputum production and compromise a person’s breathing, energy level, risk of serious infections and quality of life. “Current or former smokers without airflow obstruction may assume that they are disease-free,” but that’s not necessarily the case, one of the research teams pointed out. These researchers projected that there are 35 million current or former smokers older than 55 in the United States with unrecognized smoking-caused lung disease or impairments. Many, if not most, of these people could get worse with time, even if they have quit smoking. They are also unlikely to be referred for pulmonary rehabilitation, a treatment that can head off encroaching disability. Perhaps most important, those currently smoking may be inclined to think they’ve dodged the bullet and so can continue to smoke with impunity. Doctors, who are often reluctant to urge patients with symptoms to quit smoking, may be even less likely to recommend smoking cessation to those with normal spirometry results. Referring to C.O.P.D., one of the researchers, Dr. Elizabeth A. Regan, said, “Smoking is really taking a terrible toll on our society.” Dr. Regan, a clinical researcher at National Jewish Health in Denver, is the lead author of one of the new studies, published last year in JAMA Internal Medicine. “We live happily in the world thinking that only a small percentage of people who smoke get this devastating disease,” she said. “However, the lungs of millions of people in the United States are negatively impacted by smoking, and our methods for identifying their lung disease are relatively insensitive.” © 2016 The New York Times Company

Related chapters from BP7e: Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Related chapters from MM:Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Link ID: 22339 - Posted: 06.20.2016

[Agata Blaszczak-Boxe, Contributing Writer] People who use marijuana for many years respond differently to natural rewards than people who don't use the drug, according to a new study. Researchers found that people who had used marijuana for 12 years, on average, showed greater activity in the brain's reward system when they looked at pictures of objects used for smoking marijuana than when they looked at pictures of a natural reward — their favorite fruits. "This study shows that marijuana disrupts the natural reward circuitry of the brain, making marijuana highly salient to those who use it heavily," study author Dr. Francesca Filbey, an associate professor of behavioral and brain science at the University of Texas at Dallas, said in a statement. "In essence, these brain alterations could be a marker of transition from recreational marijuana use to problematic use." [11 Odd Facts About Marijuana] In the study, researchers looked at 59 marijuana users who had used marijuana daily for the past 60 days, and had used the drug on at least 5,000 occasions during their lives. The researchers wanted to see whether the brains of these long-term marijuana users would respond differently to picures of objects related to marijuana use than they did to natural rewards, such as their favorite fruits, compared with people who did not use marijuana.

Related chapters from BP7e: Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Related chapters from MM:Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Link ID: 22317 - Posted: 06.14.2016

By Mark Gollom, Anti-smoking advocates who support the Liberal government's proposal to require plain packaging on tobacco products argue that Australia's implementation of similar regulations has had a significant effect on smoking rates in that country. "Australia has seen the biggest decline in smoking prevalence that they've ever recorded after plain packing [was introduced]," said David Hammond, an associate professor of public health and health systems at the University of Waterloo. "All the data we have suggest that plain packing has reduced smoking in Australia." Rob Cunningham, senior policy analyst for the Canadian Cancer Society, agrees and says research supports the effectiveness of plain packaging. "If it wasn't effective, the tobacco companies wouldn't be so strongly opposed," he said. "And it's precisely because it's going to have an effect on sales that they are going to lobby hard against it, threaten legal cases." But not everyone believes that Australia's policy of imposing bland tobacco branding has done much to deter smoking, which has been steadily declining for decades, according to Julian Morris, vice-president of research at the libertarian think tank the Reason Foundation. "The decline in smoking seems to have been continuous and not dramatically effected, one way or the other, by the introduction of plain packaging," he said. ©2016 CBC/Radio-Canada.

Related chapters from BP7e: Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Related chapters from MM:Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Link ID: 22274 - Posted: 06.02.2016

Martha Bebinger Labels for the first long-acting opioid addiction treatment device are rolling off printing machines Friday. Trainings begin Saturday for doctors who want to learn to insert four matchstick-size rods under the skin. They contain the drug buprenorphine, which staves off opioid cravings. The implant, called Probuphine, was approved by the Food and Drug Administration on Thursday, and is expected to be available to patients by the end of June. "This is just the starting point for us to continue to fight for the cause of patients with opioid addiction," said Behshad Sheldon, CEO of Braeburn Pharmaceuticals, which manufactures Probuphine. But debate continues about how effective the implant will be and whether insurers will cover it. Nora Volkow, head of the National Institute on Drug Abuse, calls Probuphine a game changer, saying it will help addiction patients stay on their meds while their brain circuits recover from the ravages of drug use. And addiction experts say it will be much harder for patients prescribed the implant to sell their medication on the street, which can be a problem with addiction patients prescribed pills. "I think it's fantastic news," said Dr. Sarah Wakeman, medical director of the Substance Use Disorder Initiative at Massachusetts General Hospital. "We need as many tools in the toolbox as possible to deal with the opioid epidemic." © 2016 npr

Related chapters from BP7e: Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Related chapters from MM:Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Link ID: 22256 - Posted: 05.28.2016

Ronald Crystal The goal of antiaddiction vaccines is to prevent addictive molecules from reaching the brain, where they produce their effects and can create chemical dependencies. Vaccines can accomplish this task, in theory, by generating antibodies—proteins produced by the immune system—that bind to addictive particles and essentially stop them in their tracks. But challenges remain. Among them, addictive molecules are often too small to be spotted by the human immune system. Thus, they can circulate in the body undetected. Researchers have developed two basic strategies for overcoming this problem. One invokes so-called active immunity by tethering an addictive molecule to a larger molecule, such as the proteins that encase a common cold virus. This viral shell does not make people sick but does prompt the immune system to produce high levels of antibodies against it and whatever is attached to it. In our laboratory, we have tested this method in animal models and successfully blocked chemical forms of cocaine or nicotine from reaching the brain. Another approach researchers are testing generates what is known as passive immunity against addictive molecules in the body. They have cultured monoclonal antibodies that can bind selectively to addictive molecules. The hurdle with this particular method is that monoclonal antibodies are expensive to produce and need to be administrated frequently to be effective. © 2016 Scientific American

Related chapters from BP7e: Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology; Chapter 11: Emotions, Aggression, and Stress
Link ID: 22254 - Posted: 05.26.2016

By Lucas Powers, CBC News You're standing on the side of the road, with traffic whizzing past. The police officer who pulled you over suspects you may have smoked the reefer before departing for McDonald's. But she's in a bit of a quagmire, because, really, there's no reliable way to know for sure. Are you high? If you are high, how high are you, really? Or really did you just want those little cheeseburgers (no ketchup and extra pickles)? So she does the most logical thing: a field sobriety test. Tried and true. Walk the line. Touch the tip your nose. Can't do it? That's... suspicious. Maybe a night in the clink? Some Canadian cops also have roadside saliva swabs that can be used to test for the presence of drugs, but they are useless, legally speaking (for now.) Now, had you been quaffing ales before the drive, a breathalyzer — controversial as they can be in terms of accuracy and reliability — would have cleared up the situation pretty quickly. Of course, no such roadside device exists for cannabis and its psychotropic ingredient THC. There's growing evidence that cannabis can impair driving by slowing reaction times and encouraging perplexing moves by drivers, like slowing way down and being reluctant to change lanes. Doctors at Toronto's Centre for Addiction and Mental Health are doing the world's biggest-ever clinical study, asking exactly what causes this behaviour, and how dangerous it is. Either way, an innovation war worth billions to the victor has been declared over developing a cannabis breathalyzer. ©2016 CBC/Radio-Canada.

Related chapters from BP7e: Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Related chapters from MM:Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Link ID: 22236 - Posted: 05.23.2016

Andrea Hsu Scientists and doctors say the case is clear: The best way to tackle the country's opioid epidemic is to get more people on medications that have been proven in studies to reduce relapses and, ultimately, overdoses. Yet, only a fraction of the more than 4 million people believed to abuse prescription painkillers or heroin in the U.S. are being given what's called medication-assisted treatment. One reason is the limited availability of the treatment. But it's also the case that stigma around the addiction drugs has inhibited their use. Methadone and buprenorphine, two of the drugs used for treatment, are themselves opioids. A phrase you often hear about medication-assisted treatment is that it's merely replacing one drug with another. While doctors and scientists strongly disagree with that characterization, it's a view that's widespread in recovery circles. Now, the White House is pushing to change the landscape for people seeking help. In his 2017 budget, President Obama has asked Congress for $1.1 billion in new funding to address the opioid epidemic, with almost all of it geared toward expanding access to medication-assisted treatment. The White House is also highlighting success stories. At the National Prescription Drug Abuse and Heroin Summit held in Atlanta in March, President Obama appeared on stage with Crystal Oertle, a 35-year-old mother of two from Ohio. Oertle spoke of her spiral into addiction, which began with prescription painkillers and progressed to heroin. She tried unsuccessfully to quit on her own several times, before being prescribed buprenorphine a year ago. © 2016 npr

Related chapters from BP7e: Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Related chapters from MM:Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Link ID: 22226 - Posted: 05.18.2016

By JONAH BROMWICH It’s relatively easy to determine when someone is too drunk to drive. If a driver’s blood-alcohol level is 0.08 percent or higher, that person is considered legally impaired. But a study says that measuring the effects of marijuana on drivers is far trickier, and that blood tests are an unreliable indication of impairment by cannabis. As more states consider legalizing the substance, that presents a challenge to legislators seeking to create laws on driving while impaired by marijuana. The study, commissioned by the AAA Foundation for Traffic Safety, found that laws in six states that legally assess impairment by measuring how much THC (the active ingredient in marijuana) is in a person’s blood are not supported by science. “There is no concentration of the drug that allows us to reliably predict that someone is impaired behind the wheel in the way that we can with alcohol,” said Jake Nelson, AAA’s director of traffic safety advocacy and research. Lawmakers in those states looked to policies on drunken driving for cues on how to legislate against driving while high. But the body absorbs alcohol and cannabis in different ways, the study said. While drunkenness directly correlates to alcohol in the bloodstream, cannabis impairment takes place only when THC makes its way into the fatty tissue of the brain. Regular marijuana users, including those who take the drug medicinally, often show no signs of impairment after using, according to Jolene Forman, a staff lawyer for the Drug Policy Alliance, a drug-reform advocacy group. She also said that marijuana can stay in the blood for hours, days and even weeks after its effects wear off. © 2016 The New York Times Company

Related chapters from BP7e: Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Related chapters from MM:Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Link ID: 22214 - Posted: 05.14.2016

By Lisa Damour Parents of teenagers face a confounding crosscurrent. While the legalization of marijuana in several American states now bolsters the common belief among adolescents that the drug is safe for recreational use, research documenting marijuana’s diffuse and possibly permanent harm to the teenage brain continues to pile up. Normally developing teenagers question authority and are likely to be skeptical of adults bearing bad news about a widely used party drug. So how do we have successful conversations about the hazards of marijuana use? An open-ended exchange that credits the adolescent’s own observations may do more good than a single sit-down or lecture. Beyond that, we might consider how the facts are often received by adolescents. With all the talk about cannabis legalization, parents may feel compelled to remind their teenagers that recreational marijuana is still banned for most American adults and for anyone under 21. Adolescents who use marijuana risk immediate legal consequences and, in districts with zero-tolerance policies, may be barred from organized school activities, suspended or expelled. They may also face long-term penalties affecting some jobs, internships, colleges and travel visas. But the repercussions of being caught with marijuana don’t faze all teenagers. Most adolescents can name celebrities, famous athletes and classmates who use marijuana regularly, even flagrantly, without running into trouble. Teenagers tend to bristle at rules that seem arbitrary, such as the state-by-state regulations for marijuana and the fact that alcohol, which has a lot in common with pot, is legal. Further, adolescents can be understandably cynical about laws that aren’t applied evenly to everyone: While African-Americans and whites use the drug at similar rates, African-Americans are nearly four times as likely to be arrested for marijuana possession. However real and lasting the penalties for pot use may be, parents often run into resistance when trying to make this case to teenagers. © 2016 The New York Times Company

Related chapters from BP7e: Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology; Chapter 16: Psychopathology: Biological Basis of Behavior Disorders
Related chapters from MM:Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology; Chapter 12: Psychopathology: The Biology of Behavioral Disorders
Link ID: 22207 - Posted: 05.12.2016

By Maia Szalavitz Both the FDA and the CDC have recently taken steps to address an epidemic of opioid overdose and addiction, which is now killing some 29,000 Americans each year. But these regulatory efforts will fail unless we acknowledge that the problem is actually driven by illicit—not medical—drug use. You’ve probably read that 80 percent of heroin users started with prescription medications—and you may have seen billboards that compare giving pain medication to children to giving them heroin. You have probably also heard and seen media stories of people with addiction who blame their problem on medical use. But the simple reality is this: According to the large, annually repeated and representative National Survey on Drug Use and Health, 75 percent of all opioid misuse starts with people using medication that wasn’t prescribed for them—obtained from a friend, family member or dealer. And 90 percent of all addictions—no matter what the drug—start in the adolescent and young adult years. Typically, young people who misuse prescription opioids are heavy users of alcohol and other drugs. This type of drug use, not medical treatment with opioids, is by far the greatest risk factor for opioid addiction, according to a study by Richard Miech of the University of Michigan and his colleagues. For this research, the authors analyzed data from the nationally representative Monitoring the Future survey, which includes thousands of students. While medical use of opioids among students who were strongly opposed to alcohol and other drugs did raise later risk for misuse, the overall risk for this group remained small and their actual misuse occurred less than five times a year. In other words, it wasn’t actually addiction. Given that these teens had generally rejected experimenting with drugs, an increased risk of misuse associated with medical care makes sense since they’d otherwise have no source of exposure. © 2016 Scientific American

Related chapters from BP7e: Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Related chapters from MM:Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Link ID: 22202 - Posted: 05.11.2016

Aaron E. Carroll People get hooked on cigarettes, and enjoy them for that matter, because of the nicotine buzz. The nicotine doesn’t give them cancer and lung disease, though. It’s the tar and other chemicals that do the real harm. A robust debate is going on among public health officials over whether electronic cigarettes, or e-cigarettes, can alleviate the harms of smoking tobacco, or whether they should be treated as negatively as conventional cigarettes. In other countries, such as Britain, officials are more in favor of e-cigarettes, encouraging smokers to switch from conventional to electronic. Last week, the Food and Drug Administration issued new rules on e-cigarettes, banning their sale to anyone under 18 and requiring that adults under the age of 26 show a photo identification to buy them. Electronic cigarettes carry the promise of delivering the nicotine without the dangerous additives. The use of e-cigarettes by youth has increased sharply in recent years. In 2011, about 1.5 percent of high school students reported using them in the last month. In 2014, more than 12 percent of students did. That means that nearly 2.5 million American middle and high school students used them in the past month. The problem is that nicotine is generally considered less safe for children and adolescents than for adults. Poisoning is possible. It’s thought that nicotine may interfere with brain development. Most worrisome, it’s believed that becoming addicted to nicotine in any form makes smoking more likely later in life. E-cigarettes are perceived to be less harmful than conventional cigarettes, and they are thought to be useful aids to quitting. These perceptions, however, are not always fully grounded in evidence. © 2016 The New York Times Company

Related chapters from BP7e: Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Related chapters from MM:Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Link ID: 22201 - Posted: 05.11.2016