Most Recent Links

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 20305

By REUTERS NEW YORK — The mouse walked, the mouse stopped; the mouse ignored a bowl of food, then scampered back and gobbled it up, and it was all controlled by neuroscientists, researchers reported on Thursday. The study, describing a way to manipulate a lab animal's brain circuitry accurately enough to turn behaviors both on and off, is the first to be published under President Barack Obama's 2013 BRAIN Initiative, which aims to advance neuroscience and develop therapies for brain disorders. The point of the remote-control mouse is not to create an army of robo-rodents. Instead, neuroscientists hope to perfect a technique for identifying brain wiring underlying any behavior, and control that behavior by activating and deactivating neurons. If scientists are able do that for the circuitry involved in psychiatric or neurological disorders, it may lead to therapies. That approach reflects a shift away from linking such illnesses to "chemical imbalances" in the brain, instead tracing them to miswiring and misfiring in neuronal circuits. "This tool sharpens the cutting edge of research aimed at improving our understanding of brain circuit disorders, such as schizophrenia and addictive behaviors," said Dr. Francis Collins, director of the National Institutes of Health, which funded the $1 million study. The technique used to control neurons is called DREADDs (designer receptors exclusively activated by designer drugs). Brain neurons are genetically engineered to produce a custom-made - "designer" - receptor. When the receptor gathers in a manmade molecule that fits like a key in a lock, the neuron is activated. © 2015 The New York Times Company

Keyword: Brain imaging
Link ID: 20881 - Posted: 05.04.2015

|By Michele Solis An individual with obsessive-compulsive disorder (OCD) is overcome with an urge to engage in unproductive habits, such as excessive hand washing or lock checking. Though recognizing these behaviors as irrational, the person remains trapped in a cycle of life-disrupting compulsions. Previous studies found that OCD patients have abnormalities in two different brain systems—one that creates habits and one that plays a supervisory role. Yet whether the anomalies drive habit formation or are instead a consequence of doing an action over and over remained unclear. To resolve this question, a team at the University of Cambridge monitored brain activity while people were actually forming new habits. Lapses in supervision are to blame, the researchers reported in a study published online in December 2014 in the American Journal of Psychiatry. They scanned 37 people with OCD and 33 healthy control subjects while they learned to avoid a mild shock by pressing on a foot pedal. Pressing the pedal became a habit for everyone, but people with OCD continued to press even when the threat of shock was over. Those with OCD showed abnormal activity in the supervisory regions important for goal-directed behavior but not in those responsible for habit formation. The finding suggests that shoring up the goal-directed systems through cognitive training might help people with OCD. The growing understanding of OCD's roots in the brain may also help convince individuals to engage in standard habit-breaking treatments, which expose a person to a trigger but prevent his or her typical response. “It's hard for people to not perform an action that their whole body is telling them to do,” says first author Claire Gillan, now at New York University. “So if you have an awareness that the habit is just a biological slip, then it makes OCD a lot less scary and something you can eventually control.” © 2015 Scientific American

Keyword: OCD - Obsessive Compulsive Disorder; Learning & Memory
Link ID: 20880 - Posted: 05.04.2015

By Paca Thomas Wasabi and Sriracha each activate different receptors on the tongue, both of which warn your brain of the atomic reaction to come. These key flavor receptors, TRPA1 and TRPV1, have been the subject of recent research—but why all the scientific study of hot and spicy condiments? One word: pain. The video above explains how our tongues react to heat in our food, and how that often triggers the body’s own bespoke painkiller.

Keyword: Chemical Senses (Smell & Taste)
Link ID: 20879 - Posted: 05.04.2015

by Jessica Hamzelou GOO, bah, waahhhh! Crying is an obvious sign something is up with your little darling but beyond that, their feelings are tricky to interpret – except at playtime. Trying to decipher the meaning behind the various cries, squeaks and babbles a baby utters will have consumed many a parent. Some researchers reckon babies are simply practising to learn to speak, while others think these noises have some underlying meaning. "Babies probably aren't aware of wanting to tell us something," says Jitka Lindová, an evolutionary psychologist at Charles University in Prague, Czech Republic. Instead, she says, infants are conveying their emotions. But can adults pick up on what those emotions are? Lindová and her colleagues put 333 adults to the test. First they made 20-second recordings of five- to 10-month-old babies while they were experiencing a range of emotions. For example, noises that meant a baby was experiencing pain were recorded while they received their standard vaccinations. The team also collected recordings when infants were hungry, separated from a parent, reunited, just fed, and while they were playing. The volunteers had to listen to a selection of the recordings then guess which situation each related to. The adults could almost always tell whether a baby was distressed in some way. This makes sense – a baby's survival may depend on an adult being able to tell whether a baby is unwell, in pain or in danger. © Copyright Reed Business Information Ltd.

Keyword: Language; Sexual Behavior
Link ID: 20878 - Posted: 05.04.2015

Paul Oswell “Cool” is a bit of a moving target. Sixty years ago it was James Dean, nonchalantly smoking a cigarette as he sat on a motorbike, glaring down 1950s conformity with brooding disapproval. Five years ago it was Zooey Deschanel holding a cupcake. In a phone interview with Steve Quartz, the co-author of the recently published Cool: How the Brain’s Hidden Quest for Cool Drives Our Economy and Shapes Our World, we skirted around a working definition. Defining cool turns out to be tricky even for someone who has just written an entire book examining the neurological processes behind it. Quartz’s most succinct definition was that cool is “the sweet spot between being innovative and unconventional, but not weird”. Quartz is the director of the Social Cognitive Neuroscience Laboratory at the California Institute of Technology. So when asked to describe what the lab does, he did not deliver a “cool” answer, but rather a precise one: it is, he said, “concerned with all the dimensions of decision making, from simple gambles and risk assessment right up to very complex reasoning and the nature of moral behaviour”. He wrote the book with his colleague Anette Asp, with whom he has long done research on “neuroeconomics” and “neuromarketing”. Those fields use imaging techniques to look at the ways our brains process the emotions and responses we have to brands and products. The results, as Quartz and Asp posit in the book, reflect primal instincts we have around ideas of status. Their technique gives results that are much more accurate about what the kids are into, these days, than traditional marketing focus groups have ever been able to give us. © 2015 Guardian News and Media Limited

Keyword: Emotions; Attention
Link ID: 20877 - Posted: 05.04.2015

By HOWARD MEGDAL Ali Krieger has a lot on her plate this year. As a defender for the United States women’s national team, she is weeks away from the start of her second World Cup. And as one of the most prominent members of the National Women’s Soccer League, she is helping build an audience for her team and the fledgling league. On April 10, though, those roles were jeopardized when Krieger, playing for the Washington Spirit in an N.W.S.L. game at Houston, sustained a concussion after rising for a header. “Right when it happened, I had no idea why I was lying on the ground and why people were standing over me,” Krieger said by telephone last week. “And people were talking to me — I couldn’t really open my eyes at first. I was like, ‘Is this a dream?’ ” Krieger said that she lost consciousness before hitting the ground and that when she woke up, even as she lay on the grass, she quickly tried to diagnose the injury. Krieger said she believed the concussion was minor — certainly less serious than one she sustained in 2013 that took her a couple of months to recover from. But injuries like hers and the ones sustained by several other players in high-profile cases have troubled concussion activists. They say that despite clear progress in the recognition and treatment of head injuries in soccer, it is often up to the injured athlete or that athlete’s coach to determine when an injury requires removal from play. In the worst cases, the time remaining in a match and the score play a role in the decision. The ESPN analyst Taylor Twellman, a former striker whose playing career was ended by head injuries, has been a vocal advocate on television and social media for better treatment of head injuries. But given the pressure to succeed at the game’s top levels, he said in an email, “I’m scared of what I still hear in 2015.” © 2015 The New York Times Company

Keyword: Brain Injury/Concussion
Link ID: 20876 - Posted: 05.04.2015

By Aleksandra Sagan, CBC News In a Dutch town about 20 kilometres outside of Amsterdam, a small community lives in what at first glance seems like a real-life version of The Truman Show. Hogewey has a grocery store, a theatre and a barber shop. The only twist is that many of its 152 residents live unaware that their orderly community is actually a nursing home for people with severe dementia. "We protect our residents from the unsafe world. They do not understand the world outside this because the outside world doesn't understand them," says Yvonne van Amerongen, an employee at Hogewey who also helped develop the concept. Hogewey was officially opened in 2007, but the idea has now caught the attention of health-care professionals in Ontario and Alberta. ​Rhonda Desroches, who helped create a smaller-scale Hogewey in Penetanguishene, Ont., says relatives of the residents are pleased with how happy their family members seem to be in the new facility. Dementia is a growing problem. According to the Alzheimer Society Canada, one out of 20 Canadians over 65 has Alzheimer's Disease, and that figure jumps to one in four for Canadians over 85. In 2012, the World Health Organization declared dementia a public health priority. Many dementia patients move into nursing homes, where they are monitored in a safe setting. But some medical professionals want to shift patients away from unfamiliar, clinical settings and into spaces that resemble more typical surroundings. Hogewey creates a familiar, "normal" environment that dementia patients understand, says van Amerongen. The citizens of Hogewey share a house with about six others, and are classified according to one of seven lifestyles. ©2015 CBC/Radio-Canada

Keyword: Alzheimers
Link ID: 20875 - Posted: 05.04.2015

by Helen Thomson Giving people the illusion of teleporting around a room has revealed how the brain constructs our sense of self. The findings may aid treatments for schizophrenia and asomatognosia – a rare condition characterised by a lack of awareness of a part of one's body. As we go about our daily lives, we experience our body as a physical entity with a specific location. For instance, when you sit at a desk you are aware of your body and its rough position with respect to objects around you. These experiences are thought to form a fundamental aspect of self-consciousness. Arvid Guterstam, a neuroscientist at the Karolinska Institute in Stockholm, Sweden, and his colleagues wondered how the brain produces these experiences. To find out, Guterstam's team had 15 people lie in an fMRI brain scanner while wearing a head-mounted display. This was connected to a camera on a dummy body lying elsewhere in the room, enabling the participants to see the room – and themselves inside the scanner - from the dummy's perspective. A member of the team then stroked the participant's body and the dummy's body at the same time. This induced the out-of-body experience of owning the dummy body and being at its location. The experiment was repeated with the dummy body positioned in different parts of the room, allowing the person to be perceptually teleported between the different locations, says Guterstam. All that was needed to break the illusion was to touch the participant's and the dummy's bodies at different times. © Copyright Reed Business Information Ltd.

Keyword: Pain & Touch; Attention
Link ID: 20874 - Posted: 05.02.2015

By Emily Underwood NASA hopes to send the first round-trip, manned spaceflight to Mars by the 2030s. If the mission succeeds, astronauts could spend several years potentially being bombarded with cosmic rays—high-energy particles launched across space by supernovae and other galactic explosions. Now, a study in mice suggests that these particles could alter the shape of neurons, impairing astronauts’ memories and other cognitive abilities. The concern about cosmic rays is a long-standing one, prompting NASA (and science fiction writers) to spend a lot of time discussing ways of protecting astronauts from them. (A buffer of water around the spacecraft’s hull is one popular idea.) But scientists don’t really know how much of a threat the radiation poses. It’s not feasible to study the effects of cosmic rays on real astronauts, such as those living in the International Space Station, because many variables, including the stress of living on a spaceship, can affect cognition, says Patric Stanton, a cell biologist at New York Medical College in Valhalla. It’s also impossible to control the level of radiation astronauts are exposed to, making it difficult to do rigorous experiments, he says. To overcome those challenges, several NASA-funded research groups are testing cosmic radiation on mice. In the new study, published today in Science Advances, Charles Limoli, a molecular biologist at the University of California, Irvine, and colleagues took male mice to a particle accelerator at the NASA Space Radiation Laboratory in Upton, New York. There, they catapulted oxygen and titanium ions down a 100-meter transport tunnel and into the restrained rodents’ brains at roughly two-thirds the speed of light. The dose of high-energy particles resembled the radiation likely to pass through the unprotected hull of a spaceship over the course of a mission to Mars, Limoli says. © 2015 American Association for the Advancement of Science

Keyword: Miscellaneous
Link ID: 20873 - Posted: 05.02.2015

by Jacob Aron Now that's an in-flight meal. To snatch a mealworm in mid-air, the bat in this video performs impressive aerial acrobatics aided by a unique cluster of touch sensors on its wings. Bats are known to use echolocation to identify their dinner, steering towards prey by listening for reflected sounds. It turns out that their sense of touch plays a key role as well. Ellen Lumpkin of Columbia University, New York, and her colleagues have discovered that bats have a special arrangement of hairs and touch-sensitive receptors across their wings that detect changes in airflow to help stabilise flight. The team also found that sensory neurons arranged in a pattern on bat wings (pictured) send signals to the lower spinal cord, which is unusual for a mammal. This part of the spinal cord usually receives messages from an animal's torso. The bizarre circuitry reflects the embryonic origins of bat wings, which form when their front limbs, torso and hind limbs fuse together. Journal reference: Cell Reports, DOI: 10.1016/j.celrep.2015.04.001 © Copyright Reed Business Information Ltd

Keyword: Pain & Touch
Link ID: 20872 - Posted: 05.02.2015

Monya Baker An ambitious effort to replicate 100 research findings in psychology ended last week — and the data look worrying. Results posted online on 24 April, which have not yet been peer-reviewed, suggest that key findings from only 39 of the published studies could be reproduced. But the situation is more nuanced than the top-line numbers suggest (See graphic, 'Reliability test'). Of the 61 non-replicated studies, scientists classed 24 as producing findings at least “moderately similar” to those of the original experiments, even though they did not meet pre-established criteria, such as statistical significance, that would count as a successful replication. The results should convince everyone that psychology has a replicability problem, says Hal Pashler, a cognitive psychologist at the University of California, San Diego, and an author of one of the papers whose findings were successfully repeated. “A lot of working scientists assume that if it’s published, it’s right,” he says. “This makes it hard to dismiss that there are still a lot of false positives in the literature.” But Daniele Fanelli, who studies bias and scientific misconduct at Stanford University in California, says the results suggest that the reproducibility of findings in psychology does not necessarily lag behind that in other sciences. There is plenty of room for improvement, he adds, but earlier studies have suggested that reproducibility rates in cancer biology and drug discovery could be even lower1, 2. “From my expectations, these are not bad at all,” Fanelli says. “Though I have spoken to psychologists who are quite disappointed.” © 2015 Nature Publishing Group,

Keyword: Attention
Link ID: 20871 - Posted: 05.02.2015

by Simon Oxenham As regular readers will be well aware, much of what I've covered on this blog has been about the use and abuse of the prefix "neuro" to mislead. You don't have to look far to see that most people seem to be pretty disconnected from the science of the brain. This becomes a problem once you realize how this allows us to be misled. Take, for example, the adverts for "brain training" games that stalk you on the internet with claims that don't even remotely hold water; or the fact that a laughable technique called "Brain Gym" that involves making children perform pointless exercises and is based on no evidence whatsoever continues to be widespread in schools across the world at a cost of hundreds of thousands of dollars, and has been used by as many as 39 percent of teachers in the UK. Drop a few brain-related words and it seems even teachers can lose the capacity for critical thought en masse. In 2008, a paper titled "The Seductive Allure of Neuroscience Explanations," struck a chord with me when it made the case that we can be suckered into judging bad psychological explanations as better than they really are if they are served with a side order of irrelevant neuroscience. Another paper published the same year suggested that just showing an image of the brain alongside articles describing fictitious neuroscience research (for example claiming that watching TV improves mathematical ability) resulted in people rating the standard of reasoning in the articles as higher. In 2013 however, a paper was published that remains a strong contender for the award of best-named paper of all time: "The Seductive Allure of Seductive Allure." The paper pointed out flaws in both of the 2008 papers: The neuroscience explanations were longer and arguably added to the psychological explanations. It could be the case that more complicated-sounding, or seemingly better-explained explanations are simply more persuasive. © Copyright 2015, The Big Think, Inc.

Keyword: Brain imaging
Link ID: 20870 - Posted: 05.02.2015

By Kenneth Miller At first, no one noticed that Joe Borelli was losing his mind — no one, that is, but Borelli himself. The trim, dark-haired radiologist was 43 years old. He ran two practices, was an assistant professor at the Medical University of South Carolina and played a ferocious game of tennis. Yet he began to have trouble recalling friends’ names, forgot to run important errands and got lost driving in his own neighborhood. He’d doze off over paperwork and awaken with drool dampening his lab coat. Borelli feared he had a neurodegenerative disease, perhaps early onset Alzheimer’s. But as a physician, he knew that memory loss coupled with fatigue could also indicate obstructive sleep apnea (OSA), a disorder in which sagging tissue periodically blocks the upper airway during slumber. The sufferer stops breathing for seconds or minutes, until the brain’s alarm centers rouse him enough to tighten throat muscles. Although the cycle may repeat hundreds of times a night, the patient is usually unaware of any disturbance. Borelli checked in to a sleep clinic for tests, which came out negative. He went to a neurologist, who found nothing wrong. At another sleep clinic, Borelli was diagnosed with borderline OSA; the doctor prescribed a CPAP (continuous positive airway pressure) machine, designed to keep his airway open by gently inflating it. But he still awoke feeling exhausted, and he quit using the device after a couple of months. Borelli’s fingers soon grew so clumsy that he couldn’t button his shirt cuffs.

Keyword: Sleep
Link ID: 20869 - Posted: 05.02.2015

Nala Rogers People who are ill often complain of changes in their sense of taste. Now, researchers report that this sensory shift may be caused by a protein that triggers inflammation. Mice that cannot produce the protein, called tumour necrosis factor-α (TNF-α), are less sensitive to bitter flavours than normal mice, according to a study published on 21 April in Brain, Behavior, and Immunity1. People with infections, autoimmune disease or other inflammatory conditions have higher levels of TNF-α than healthy people, and the protein has been shown to reduce food intake2. To investigate the influence of TNF-α on taste, researchers at the Monell Chemical Senses Center in Philadelphia, Pennsylvania, used engineered mice that could not produce the protein. The researchers offered the engineered mice and normal mice water that contained different types and concentrations of flavours. The mice that could not produce TNF-α had normal reactions to sweet, sour, salty and umami flavours, but were less sensitive to bitter ones. “Normal mice will pick up [that taste] at a much lower concentration. They will know this is bitter; they will not like it,” says Hong Wang, a molecular biologist at Monell and an author of the study. “But if the TNF-α gene is not there, then the mice will only start to avoid the bitter solution at higher concentrations.” © 2015 Nature Publishing Group

Keyword: Chemical Senses (Smell & Taste); Neuroimmunology
Link ID: 20868 - Posted: 04.30.2015

|By Brian Bienkowski and Environmental Health News Male minnows exposed to a widely used diabetes drug ubiquitous in wastewater effluent had feminized reproductive parts and were smaller and less fertile, according to a new study. It is the first study to examine the drug metformin’s impact on fish endocrine systems and suggests that non-hormone pharmaceuticals pervasive in wastewater may cause reproductive and development problems in exposed fish. Metformin is largely used to combat insulin resistance associated with type-2 diabetes, which accounts for about 90 percent of all diagnosed U.S. adult diabetes cases. Researchers from the University of Wisconsin-Milwaukee exposed young fathead minnows to water containing levels of metformin commonly found in wastewater effluent. Eighty-four percent of 31 metformin-exposed male fish exhibited feminized reproductive organs. “Normally in females you see eggs developed in ova, in males, you see a different structure – producing tiny sperm instead of an egg structure,” said Rebecca Klaper, an associate professor at the University of Wisconsin-Milwaukee and senior author of the study. “We saw development of larger egg structures within the [male’s] testis.” © 2015 Scientific American

Keyword: Sexual Behavior
Link ID: 20867 - Posted: 04.30.2015

Neuroscientists have discovered brain circuitry for encoding positive and negative learned associations in mice. After finding that two circuits showed opposite activity following fear and reward learning, the researchers proved that this divergent activity causes either avoidance or reward-driven behaviors. Funded by the National Institutes of Health, they used cutting-edge optical-genetic tools to pinpoint these mechanisms critical to survival, which are also implicated in mental illness. “This study exemplifies the power of new molecular tools that can push and pull on the same circuit to see what drives behavior,” explained Thomas R. Insel, M.D., director of NIH’s National Institute of Mental Health (NIMH). “Improved understanding of how such emotional memory works holds promise for solving mysteries of brain circuit disorders in which these mechanisms are disrupted.” NIMH grantee Kay Tye, Ph.D. External Web Site Policy, Praneeth Namburi and Anna Beyeler, Ph.D., of the Massachusetts Institute of Technology (MIT), Cambridge, and colleagues, report their findings April 29, 2015 in the journal Nature. Prior to the new study, scientists suspected involvement of the circuits ultimately implicated, but were stumped by a seeming paradox. A crossroads of convergent circuits in an emotion hub deep in the brain, thebasolateral amygdala, seem to be involved in both fear and reward learning, but how one brain region could orchestrate such opposing behaviors – approach and avoidance – remained an enigma. How might signals find the appropriate path to follow at this fork in the road?

Keyword: Learning & Memory; Emotions
Link ID: 20866 - Posted: 04.30.2015

by Jessica Hamzelou You open your front door to find your boss – who is also a cat. The bizarre can seem completely normal when you're dreamingMovie Camera, perhaps because parts of your brain give up trying to figure out what's going on. Armando D'Agostino of the University of Milan in Italy thinks that the strangeness of dreams resembles psychosis, because individuals are disconnected from reality and have disrupted thought processes that lead to wrong conclusions. Hoping to learn more about psychotic thoughts, D'Agostino and his colleagues investigated how our brains respond to the bizarre elements of dreams. Because it is all but impossible to work out what a person is dreaming about while they're asleep, D'Agostino's team asked 12 people to keep diaries in which they were to write detailed accounts of seven dreams. When volunteers could remember one, they were also told to record what they had done that day and come up with an unrelated fantasy story to accompany an image they had been given. Using a "bizarreness" scoring system, the researchers found that dreams were significantly weirder than the waking fantasies the volunteers composed. "It seems counterintuitive, but there was almost no bizarreness in fantasies," says D'Agostino. "There are logical constraints on waking fantasies and they are never as bizarre as a dream." © Copyright Reed Business Information Ltd

Keyword: Sleep
Link ID: 20865 - Posted: 04.30.2015

by Laura Sanders Here I am, fresh off of my second maternity leave ready to serve up lots of juicy fresh science about babies. And I would love to do that, if only I were sleeping more at night. With her intoxicating baby aroma, squishy face and sweet little coos, our newest little daughter is irresistible by day. Night is another story altogether. And it’s a sad one. Our tale begins and ends with her cries wrenching me from a dead sleep over and over again. Sometimes I lie in bed for a split second, deluding myself into thinking that maybe this time she’ll go back to sleep. That pause is long enough for me to notice all the ways her cries affect me: Pounding heart, sweaty hands and feet, and most importantly, a single-minded, maniacal focus on that sound. Evolution didn’t give babies many ways to communicate, but the method they have, crying, sure gets the job done. So I read with interest an April 23 study in Nature that explains one way in which baby cries sledgehammer a mother’s brain. Upon hearing a lost pup’s cries, mother mice promptly go and fetch the wayward pup by the scruff of its neck. But this behavior has to be learned — a first-time mom isn’t as attuned to the sounds of her pups’ cries. As she gets the hang of that whole mothering thing, the momma mouse’s brain gets better at picking the sound of a distant crying pup out of the background din. These pup cries bore their way into the mother’s brain in an interesting way, the researchers found. © Society for Science & the Public 2000 - 2015.

Keyword: Development of the Brain; Emotions
Link ID: 20864 - Posted: 04.30.2015

By Rachel E. Gross “By being a guy’s best first move … Axe is designed to keep guys a step ahead in the dating game,” boasts Unilever, the company that sells Axe products. Of course, if you don’t happen to be a gullible 13-year-old boy, you probably don’t believe that body spray or deodorant is a magic elixir with the power to turn nice girls naughty. But what if it were possible to change a person’s mood with just a scent? The idea may not be that far-fetched, according to a new study in the journal Psychological Science—reporting work that was funded by Unilever. The study found that it might be possible to subconsciously trigger a state of happiness using the scent of—deep breath now—human sweat. People send all kinds of secret messages through their secretions. When smelling chemicals in male sweat, women become more alert, and they can even tell whether that sweat was made by a guy who was particularly turned on. (Cautions the New York Times: “No man should imagine that based on these conclusions he can improve his sex life by refraining from bathing.”) But until now, most sweat studies have focused on sexual arousal or negative emotions like fear. For obvious reasons, these emotions are crucial to survival and evolutionary success. If your friend spots a puma, it may be helpful for you to be able to sniff out instant cues to be on the alert or flee for cover. Being able to transmit positive emotions may also have a profound social impact, says Gün Semin, a psychologist at Utrecht University in the Netherlands and lead researcher on the study. After all, “the pursuit of happiness is not an individual enterprise,” as he and his fellow researchers write rather eloquently in the new study. So Semin’s team decided to test whether people could communicate happiness via sweat.

Keyword: Chemical Senses (Smell & Taste); Emotions
Link ID: 20863 - Posted: 04.30.2015

Scott Hensley When patients brought to the ER have uncontrolled blood pressure, neglected asthma or diabetes that hasn't been dealt with, doctors often start treatment right then and there. But what happens when the patient turns out to be addicted to opioids, such as oxycodone or heroin? In case of an overdose, the medical team can take action to rescue the patient. The underlying addiction is something else, though. Like asthma or diabetes, opioid addiction is a chronic condition. Could starting treatment for addiction in the ER get someone on right road faster? Doctors at Yale University thought it was possible. "You can normalize this chronic disease like any other chronic disease," says Dr. Gail D'Onofrio, chief of emergency medicine at Yale's med school. A kit with naloxone, also known by its brand name Narcan, is displayed at the South Jersey AIDS Alliance in Atlantic City. Naloxone counters an overdose with heroin or certain prescription painkillers by blocking the receptors these opioids bind to in the brain. She and her colleagues at Yale-New Haven Hospital in Connecticut tested whether prescribing medicine to ease withdrawal symptoms in combination with a brief counseling intervention and a focused referral for help would improve the chances a person would get into addiction treatment. It worked pretty well, according to results of a study published Tuesday in JAMA, the journal of the American Medical Association. © 2015 NPR

Keyword: Drug Abuse
Link ID: 20862 - Posted: 04.30.2015