Links for Keyword: Emotions

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 901

By Ariana Eunjung Cha LAS VEGAS — Jamie Tyler was stressed. He had just endured a half-hour slog through airport security and needed some relief. Many travelers in this situation might have headed for the nearest bar or popped an aspirin. But Tyler grabbed a triangular piece of gadgetry from his bag and held it to his forehead. As he closed his eyes, the device zapped him with low-voltage electrical currents. Within minutes, Tyler said, he was feeling serene enough to face the crowds once again. This is no science fiction. The Harvard-trained neurobiologist was taking advantage of one of his own inventions, a device called Thync, which promises to help users activate their body's “natural state of energy or calm” — for a retail price of a mere $199. Americans’ obsession with wellness is fueling a new category of consumer electronics, one that goes far beyond the ubiquitous Fitbits and UP activity wristbands that only passively monitor users' physical activity. The latest wearable tech, to put it in the simplest terms, is about hacking your brain. These gadgets claim to be able to make you have more willpower, think more creatively and even jump higher. One day, their makers say, the technology may even succeed in delivering on the holy grail of emotions: happiness. There’s real, peer-reviewed science behind the theory driving these devices. It involves stimulating key regions of the brain — with currents or magnetic fields — to affect emotions and physical well-being.

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 22053 - Posted: 03.31.2016

Nicola Davis If you get hot under the collar behind the wheel, it could be down to a brain parasite. According to new research, adults who have intermittent explosive disorder (IED) - a psychiatric condition in which violent outbursts of anger and cursing erupt in response to apparently trivial irritations - are more likely to have been infected with toxoplasma gondii. “The kind of triggers are usually social provocations,” said Dr Royce Lee, an author of the study from the University of Chicago. “In the workplace it could be some kind of interpersonal frustration, on the road it could be getting cut up.” A common parasite, toxoplasma gondii reproduces within cats and is spread in their faeces. It can enter humans through the food chain in raw or undercooked meat, contaminated water or unwashed vegetables that have come into contact with the parasite. It is thought that up to a third of the British population have been infected with toxoplasma gondii - a parasite that lurks in the tissues of the brain. While generally considered to be harmless, toxoplasmosis in pregnant women has been linked miscarriages, stillbirths and congenital defects in babies, and can cause serious problems in those with weakened immune systems. While infection with the parasite in humans is often symptomless, its effects have attracted much attention - studies in humans have suggested that infection could be linked to schizophrenia and even increase the likelihood of road traffic accidents, while research in rats has found that infection with the parasite can remove their fear of cats. © 2016 Guardian News and Media Limited

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 22026 - Posted: 03.24.2016

Laura Sanders In a pair of twin sisters, a rare disease had damaged the brain’s structures believed necessary to feel fear. But an injection of a drug could nevertheless make them anxious. The results of that experiment, described in the March 23 Journal of Neuroscience, add to evidence that the amygdalae, small, almond-shaped brain structures tucked deep in the brain, aren’t the only bits of the brain that make a person feel afraid. “Overall, this suggests multiple different routes in the brain to a common endpoint of the experience of fear,” says cognitive neuroscientist Stephan Hamann of Emory University in Atlanta. The twins, called B.G. and A.M., have Urbach-Wiethe disease, a genetic disorder that destroyed most of their amygdalae in late childhood. Despite this, the twins showed fear after inhaling air laden with extra carbon dioxide (an experience that can create the sensation of suffocating), an earlier study showed (SN: 3/23/13, p. 12). Because carbon dioxide affects a wide swath of the body and brain, scientists turned to a more specific cause of fear that stems from inside the body: a drug called isoproterenol, which can set the heart racing and make breathing hard. Sensing these bodily changes provoked by the drug can cause anxiety. “If you know what adrenaline feels like, you know what isoproterenol feels like,” says study coauthor Sahib Khalsa, a psychiatrist and neuroscientist at the Laureate Institute for Brain Research in Tulsa, Okla. © Society for Science & the Public 2000 - 2016.

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 22021 - Posted: 03.23.2016

By Christian Jarrett Most of us like to think that we’re independent-minded — we tell ourselves we like Adele’s latest album because it suits our taste, not because millions of other people bought it, or that we vote Democrat because we’re so enlightened, not because all our friends vote that way. The reality, of course, is that humans are swayed in all sorts of different ways — some of them quite subtle — by other people’s beliefs and expectations. Our preferences don’t form in a vacuum, but rather in something of a social pressure-cooker. This has been demonstrated over and over, perhaps most famously in the classic Asch conformity studies from the ‘50s. In those experiments, many participants went along with a blatantly wrong majority judgment about the lengths of different lines — simply, it seems, to fit in. (Although the finding is frequently exaggerated, the basic point about the power of social influence holds true.) But that doesn’t mean all humans are susceptible to peer pressure in the same way. You only have to look at your own friends and family to know that some people always seem to roll with the crowd, while others are much more independent-minded. What accounts for these differences? A new study in Frontiers in Human Neuroscience led by Dr. Juan Dominguez of Monash University in Melbourne, Australia, offers the first hint that part of the answer may come down to certain neural mechanisms. In short, the study suggests that people have a network in their brains that is attuned to disagreement with other people. When this network is activated, it makes us feel uncomfortable (we experience “cognitive dissonance,” to use the psychological jargon) and it’s avoiding this state that motivates us to switch our views as much as possible. It appears the network is more sensitive in some people than in others, and that this might account for varying degrees of pushover-ness. © 2016, New York Media LLC.

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 14: Attention and Consciousness
Link ID: 21948 - Posted: 03.03.2016

Interview by Tim Adams Professor John Cacioppo has been studying the effects and causes of loneliness for 21 years. He is the director of the University of Chicago’s Center for Cognitive and Social Neuroscience. His book Loneliness: Human Nature and the Need for Social Connection examines the pathology and public health implications of the subject. You have been studying social connection and loneliness for more than two decades. How did you come to it as a subject? It was not biographical, I don’t think. Back in the early 90s I had outlined the new field called social neuroscience, the study of the neural mechanisms within a defined social species. Social species are those that create stable bonds, which have societies and cultures. And neuroscience hadn’t really studied those things. Was it something that neuroscientists, with their emphasis on individual brains and cells, resisted? When I proposed it in 1992, I anticipated some kickback from colleagues, so in the original papers I proposed that “social neuroscience isn’t an oxymoron”, and I explained why. That was all well and good, but I quickly realised that theoretical arguments were not going to be enough on their own. I needed to have a convincing demonstration of social neuroscience. And you chose loneliness for that? Well, I was originally interested in social connections. I argued we are defined by social connections, so what happens in the brain when you absent those? I took one other step. I said that the brain is the organ for creating, monitoring, nurturing and retaining these social connections, so it didn’t matter whether you actually had these connections, what was important was whether you felt that you had them. © 2016 Guardian News and Media Limited

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 21940 - Posted: 03.01.2016

By Laurel Hamers As one person at the dinner table leans back, stretches, and opens their mouth in a gaping yawn, others will soon follow suit. Catching a yawn is more likely to occur between relatives than strangers, and scientists believe it’s sign of empathy. Plus, other social primates like chimps and bonobos do it, too. A new study suggests that women (traditionally branded the more empathetic sex) might be more susceptible to copycat yawning than men. Researchers surreptitiously analyzed more than 4000 real-world yawns on planes and trains, in restaurants, and in offices. They noted when someone yawned, and then whether a nearby acquaintance or friend did the same within a 3-minute period. Men and women spontaneously yawned with about the same frequency. But when someone else yawned first, women were more likely than men to follow suit. Women picked up yawns about 55% of the time, whereas men only did so 40% of the time. Women tend to score higher than men on tests of empathy, and traditional female social roles (like child-rearing) place a higher emphasis on those traits. That might make women more attuned to others’ yawns, the researchers suggest. Gender roles aren’t as rigid in our modern society—but the yawning gap appears to linger. © 2016 American Association for the Advancement of Science

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 8: Hormones and Sex
Link ID: 21850 - Posted: 02.03.2016

Richard A. Friedman WHO among us hasn’t wanted to let go of anxiety or forget about fear? Phobias, panic attacks and disorders like post-traumatic stress are extremely common: 29 percent of American adults will suffer from anxiety at some point in their lives. Sitting at the heart of much anxiety and fear is emotional memory — all the associations that you have between various stimuli and experiences and your emotional response to them. Whether it’s the fear of being embarrassed while talking to strangers (typical of social phobia) or the dread of being attacked while walking down a dark street after you’ve been assaulted (a symptom of PTSD), you have learned that a previously harmless situation predicts something dangerous. It has been an article of faith in neuroscience and psychiatry that, once formed, emotional memories are permanent. Afraid of heights or spiders? The best we could do was to get you to tolerate them, but we could never really rid you of your initial fear. Or so the thinking has gone. The current standard of treatment for such phobias revolves around exposure therapy. This involves repeatedly presenting the feared object or frightening memory in a safe setting, so that the patient acquires a new safe memory that resides in his brain alongside the bad memory. As long as the new memory has the upper hand, his fear is suppressed. But if he is re-traumatized or re-exposed with sufficient intensity to the original experience, his old fear will awaken with a vengeance. This is one of the limitations of exposure therapy, along with the fact that it generally works in only about half of the PTSD patients who try it. Many also find it upsetting or intolerable to relive memories of assaults and other traumatizing experiences. © 2016 The New York Times Company

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 16: Psychopathology: Biological Basis of Behavior Disorders
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 12: Psychopathology: The Biology of Behavioral Disorders
Link ID: 21815 - Posted: 01.23.2016

By Melissa Dahl It’s the fifth inning and the Tampa Bay Rays are beating the Cleveland Indians 6–2 when Cleveland’s relief pitcher Nick Hagadone steps in. Alas, Hagadone does little to turn around the Indians’ luck that day, closing out the long inning with a score of 10–2. Hagadone, apparently frustrated by his own lackluster performance, heads to the clubhouse and, on the way there, punches a door with his left fist — the fist that is, unfortunately, connected to his pitching arm. That momentary impulse would cost him dearly. Hagadone required surgery and eight months’ recovery time — and, to add insult to a literal injury, his team also relegated him to the minor leagues, a move that shrank his annual salary by more than 80 percent. When asked about what could possibly explain an action like this in a usually easy-going guy, the Indians’ team psychologist, Charlie Maher, could only offer variations on this: “He just snapped.” Unless you are also a relief pitcher in the major leagues, you will likely never be in exactly this situation. But how many times have you reacted aggressively, even violently, in a way that felt almost out of your control? You hurl your smartphone across the room, or you unleash a stream of expletives in a manner that would seem to a calmer, rational mind to be disproportionate to the situation at hand. “I just snapped” is how we explain it to ourselves and others, and then we move on. The phrase has become such a cliché that it’s easy to forget that it doesn’t really explain much of anything. What’s behind this impulsive, immediately regrettable behavior? R. Douglas Fields, a senior investigator at the National Institutes of Health, sought out an explanation in his new book, Why We Snap: Understanding the Rage Circuit in Your Brain, which includes the Hagadone story recounted above. © 2016, New York Media LLC

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 14: Attention and Consciousness
Link ID: 21809 - Posted: 01.21.2016

By David Shultz It’s a familiar image: a group monkeys assembled in a line, picking carefully through each other’s hair, eating any treasures they might find. The grooming ritual so common in many primate species serves to both keep the monkeys healthy as well as reinforce social structures and bonds. But according to new research on vervet monkeys (Chlorocebus pygerythrus, seen above), the behavior may also improve a pelt’s insulation by fluffing it up like a duvet, scientists report in the American Journal of Primatology. To test the difference between groomed or ungroomed fur, the team manually combed vervet monkey pelts either with or against the grain for 50 strokes. The fluffed up “backcombed” pelts simulated a recently groomed monkey, whereas the flattened pelts simulated an ungroomed state. Using a spectrophotometer, the researchers then measured how much light was reflected by each pelt and calculated the pelt’s total insulation. They found that a thicker, fluffier coat could improve a monkey’s insulation by up to 50%, keeping the animal warmer in the cold and cooler in the heat. Thus, grooming may help the vervets maintain a constant body temperature with less effort, freeing up more energy for sex, foraging, and participating in monkey society. In the face of climate change, the authors note, such flexibility could soon become enormously important. © 2016 American Association for the Advancement of Science.

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 21805 - Posted: 01.21.2016

By Virginia Morell Dog owners often say they “know” that their dog understands what they’re feeling. Now, scientists have the evidence to back this up. Researchers tested 17 adult dogs of various breeds to see whether they could recognize emotional expressions in the faces and voices of humans and other dogs—an ability that’s considered a higher cognitive talent because two different senses are involved. Each dog took part in two test sessions with 10 trials. One by one, they stood facing two screens on which the researchers projected photos of unfamiliar but happy/playful human or dog faces versus the same faces with angry/aggressive expressions (as in the photo above). At the same time, the scientists played a single vocalization—either a dog bark, or an unfamiliar human speaking in Portuguese, a language none of the dogs had previously heard, or a neutral sound. The dogs looked much longer at a face (dog or human) when the expression matched the tone of the voice, a measure that’s also been used to assess various cognitive abilities of other mammals, the scientists report online today in Biology Letters. The dogs were best at this when looking at a fellow dog, which supports another study showing that dogs preferred looking at images of other dogs rather than those of humans. It’s the first time that a species, other than humans, has been shown to be capable of interpreting the vocal and facial expressions of an entirely different species of animal—a talent that surely helps Fido survive in its ecological niche: the jungle of the human home. © 2016 American Association for the Advancement of Science.

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 21779 - Posted: 01.13.2016

By Tania Rabesandratana Here’s one trick to make yourself feel happier: Listen to your own voice—digitally manipulated to make it sound cheery. That’s one potential application of a new study, in which researchers modified the speech of volunteers as they read a short story by Japanese writer Haruki Murakami. The team then altered the voice’s pitch, among other features, to make it sound happy, sad, or fearful. (Compare this normal voice with the same voice modified to sound afraid.) Listening to their own modified voices in real time through a headset, only 16 of 109 participants detected some kind of manipulation. The rest took the voice’s emotion as their own, feeling sad or happy themselves. (The result was less clear for fear.) The researchers suggest that emotions expressed through our voices are part of an ancient, unconscious primate communication system, whereas we have more conscious control over the words we utter. The voice manipulation software is available online, so anyone can experiment with it. The scientists speculate that emotion manipulation could help treat psychiatric disorders like depression. It could also change the mood of online meetings or gaming, they say, or even lend more emotional impact to singing performances. © 2016 American Association for the Advancement of Science

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 19: Language and Hemispheric Asymmetry
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 15: Brain Asymmetry, Spatial Cognition, and Language
Link ID: 21774 - Posted: 01.12.2016

By JOSEPH LEDOUX IN this age of terror, we struggle to figure out how to protect ourselves — especially, of late, from active shooters. One suggestion, promoted by the Federal Bureau of Investigation and Department of Homeland Security, and now widely disseminated, is “run, hide, fight.” The idea is: Run if you can; hide if you can’t run; and fight if all else fails. This three-step program appeals to common sense, but whether it makes scientific sense is another question. Underlying the idea of “run, hide, fight” is the presumption that volitional choices are readily available in situations of danger. But the fact is, when you are in danger, whether it is a bicyclist speeding at you or a shooter locked and loaded, you may well find yourself frozen, unable to act and think clearly. Freezing is not a choice. It is a built-in impulse controlled by ancient circuits in the brain involving the amygdala and its neural partners, and is automatically set into motion by external threats. By contrast, the kinds of intentional actions implied by “run, hide, fight” require newer circuits in the neocortex. Contemporary science has refined the old “fight or flight” concept — the idea that those are the two hard-wired options when in mortal danger — to the updated “freeze, flee, fight.” While “freeze, flee, fight” is superficially similar to “run, hide, fight,” the two expressions make fundamentally different assumptions about how and why we do what we do, when in danger. Why do we freeze? It’s part of a predatory defense system that is wired to keep the organism alive. Not only do we do it, but so do other mammals and other vertebrates. Even invertebrates — like flies — freeze. If you are freezing, you are less likely to be detected if the predator is far away, and if the predator is close by, you can postpone the attack (movement by the prey is a trigger for attack). © 2015 The New York Times Company

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 14: Attention and Consciousness
Link ID: 21714 - Posted: 12.19.2015

By Geoffrey S. Holtzman In November 1834, a 9-year-old boy named Major Mitchell was tried in Maine on one charge of maiming and one charge of felonious assault with intent to maim. He had lured an 8-year-old classmate into a field, beaten him with sticks, attempted to drown him in a stream, and castrated him with a piece of tin. Yet what makes this case so remarkable is neither the age of the defendant nor the violence of his crime, but the nature of his trial. Mitchell’s case marks the first time in U.S. history that a defendant’s attorney sought leniency from a jury on account of there being something wrong with the defendant’s brain. More recently, there has been an explosion in the number of criminals who have sought leniency on similar grounds. While the evidence presented by Mitchell’s defense was long ago debunked as pseudoscience (and was rightly dismissed by the judge), the case for exculpating Major Mitchell may actually be stronger today than it was 181 years ago. In a curious historical coincidence, recent advances in neuroscience suggest that there really might have been something wrong with Major Mitchell’s brain and that neurological deficits really could have contributed to his violent behavior. The case provides a unique window through which to view the relationship between 19th-century phrenology—the pseudoscientific study of the skull as an index of mental faculties—and 21st-century neuroscience. As you might expect, there is a world of difference between the two, but maintaining that difference depends crucially on the responsible use of neuroscience. Major Mitchell’s story cautions against overlooking neuroscience’s limitations, as well as its ability to be exploited for suspect purposes. © 2015 The Slate Group LLC.

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 14: Attention and Consciousness
Link ID: 21706 - Posted: 12.16.2015

Call it the optimism fallacy. It’s widely thought that staying happy and stress-free helps keep you healthy. But a massive study on the link between mood and mortality suggests that happiness actually has no effect on death rates. Other research that has found the opposite must have been mixing up cause and effect, says epidemiologist Richard Peto of the University of Oxford. “It’s likely that being ill makes you unhappy, rather than the other way round.” The power of positive thinking has passed into folklore, helping to fuel a large self-help industry – not to mention people who like to post “inspirational” quotes on social media. Some cancer bloggers complain that common advice to “fight” their illness by staying cheerful can be unhelpful. “Forcing optimism may have its own negative consequences,” says Gayle Sulik, who writes the “Pink Ribbon Blues” blog. “The emotional work to display optimism when a person does not feel it may add to stress.” To find out if there is indeed a link, Peto’s team conducted surveys with more than 700,000 UK women. At the start, they were asked questions about their health and how happy and relaxed they felt. A year later, the questionnaire was resent to a random sample of the women. Their responses suggested that most still felt the same as they did the year before. Ten years later, after allowing for any initial disparities in health, there turned out to be no difference in death rates between those who saw their glass as half-full or half-empty. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 16: Psychopathology: Biological Basis of Behavior Disorders
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 12: Psychopathology: The Biology of Behavioral Disorders
Link ID: 21693 - Posted: 12.12.2015

THINK twice before you tell that fib. By watching courtroom videos, a computer has learned to predict if someone is telling the truth or a lie. A machine learning algorithm trained on the faces of defendants in recordings of real trials, including that of Andrea Sneiderman (above) who was convicted of lying, correctly identified truth-tellers about 75 per cent of the time. Humans managed just 59.5 per cent. The best interrogators can reach 65 per cent. “We’re actually pretty bad lie detectors,” says Rada Mihalcea at the University of Michigan in Ann Arbor. Mihalcea and her colleagues took 121 videos from sources such as the Innocence Project, a non-profit group in Texas dedicated to exonerating people with wrongful convictions. This is superior to simulated conversation because the speakers are more invested in what they are saying. Transcriptions of the videos that included the speaker’s gestures and expressions were fed into a machine learning algorithm, along with the trial’s outcome. To hone it further, the team plans to feed in even more data. Such a system could one day spot liars in real-time in court or at airport customs, says Mihalcea, who will present the work at the International Conference on Multimodal Interaction this month in Seattle, Washington. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 21610 - Posted: 11.06.2015

Nancy Shute In September, we reported on a charming little study that found people who feel blue after watching sad videos have a harder time perceiving colors on the blue-yellow axis. Now the researchers may be feeling blue themselves. On Thursday they retracted their study, saying that errors in how they structured the experiment skewed the results. Shortly after the study was published online, commenters started looking skeptically at the results. And because the researchers had posted their data online, those commenters were able to run the numbers themselves. They didn't like what they found. As one blogger wrote: "A major problem is that the authors are claiming that they've found an interaction between video condition and color axis, but they haven't actually tested this interaction, they've just done a pair of independent t-tests and found different results." As the indefatigable crew at the Retraction Watch blog points out, it's not the first time scientists have messed this up. "This exact experimental oversight occurs all too often, according to a 2011 paper in Nature Neuroscience, which found that the same number of papers performed the procedure incorrectly as did it correctly." And there were other problems, too, such as not testing participants' color perception before the study. © 2015 npr

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 10: Vision: From Eye to Brain
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 7: Vision: From Eye to Brain
Link ID: 21609 - Posted: 11.06.2015

What if belief in God and prejudice against immigrants could be altered by magnetic energy? That’s the question researchers sought to explore in a study published Wednesday in the journal Social Cognitive and Affective Neuroscience. The “magnetic energy” comes in the form of transcranial magnetic stimulation (TMS), a noninvasive procedure that uses a metal coil to send pulses to the brain. By activating certain regions of the brain, doctors have used it for things like measuring the damage of a stroke or—increasingly—treating depression. These researchers sought to do the opposite—to temporarily disable one part of the brain (the part that responds to threats) and measure its effect on beliefs and prejudices connected to them. To do this, researchers from Britain’s University of York teamed up with UCLA to find 39 politically moderate college undergraduates who were divided into two groups. The first was given a “love-level sham” dose of TMS that had no effect on their brains. The second got a hit of magnetic energy strong enough to temporarily shut down their posterior medial frontal cortex. The pMFC, as this area near the forehead is known, is the part of the brain that identifies problems and—after measuring the level of threat—generates a response to them. Testing the effect of shutting down the part of the brain that forms judgments based on threats required first presenting threats. After receiving their respective doses of TMS, participants were asked to respond to questions about their own death. Previous studies have shown the threat of death is capable of directly affecting a person’s belief in religion. Therefore, shutting down the part of the brain that registers this threat—they theorized—would reduce the need to believe in God.

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 21525 - Posted: 10.17.2015

HOW would you punish a murderer? Your answer will depend on how active a certain part of your brain happens to be. Joshua Buckholtz at the University of Harvard and his colleagues gave 66 volunteers scenarios involving a fictitious criminal called John. Some of his crimes were planned. In others, he was experiencing psychosis or distress – for example, his daughter’s life under threat. The volunteers had to decide how responsible John was for each crime and the severity of his punishment on a scale of 0 to 9. Before hearing the stories, some of the volunteers received magnetic stimulation to a brain region involved in decision-making, called the dorsolateral prefrontal cortex (DLPFC), which dampened its activity. The others were given a sham treatment. Inhibiting the DLPFC didn’t affect how responsible the volunteers thought John was for the crimes, or the punishment he should receive when he was not culpable for his actions. But they meted out a much less severe punishment than the control group when John had planned his crime (Neuron, doi.org/7rh). “By altering one process in the brain, we can alter our judgements,” says Christian Ruff at the Swiss Federal Institute of Technology in Zurich. In the justice system, the judgment stage to determine guilt is separated from sentencing, says James Tabery at the University of Utah. “It turns out that our brains work in a similar fashion.” © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 14: Attention and Consciousness
Link ID: 21440 - Posted: 09.24.2015

By Jessica Schmerler Selfies, headshots, mug shots — photos of oneself convey more these days than snapshots ever did back in the Kodak era. Most digitally minded people continually post and update pictures of themselves at professional, social media and dating sites such as LinkedIn, Facebook, Match.com and Tinder. For better or worse, viewers then tend to make snap judgments about someone’s personality or character from a single shot. As such, it can be a stressful task to select the photo that conveys the best impression of ourselves. For those of us seeking to appear friendly and trustworthy to others, a new study underscores an old, chipper piece of advice: Put on a happy face. A newly published series of experiments by cognitive neuroscientists at New York University is reinforcing the relevance of facial expressions to perceptions of characteristics such as trustworthiness and friendliness. More importantly, the research also revealed the unexpected finding that perceptions of abilities such as physical strength are not dependent on facial expressions but rather on facial bone structure. The team’s first experiment featured photographs of 10 different people presenting five different facial expressions each. Study subjects rated how friendly, trustworthy or strong the person in each photo appeared. A separate group of subjects scored each face on an emotional scale from “very angry” to “very happy.” And three experts not involved in either of the previous two ratings to avoid confounding results calculated the facial width-to-height ratio for each face. An analysis revealed that participants generally ranked people with a happy expression as friendly and trustworthy but not those with angry expressions. Surprisingly, participants did not rank faces as indicative of physical strength based on facial expression but graded faces that were very broad as that of a strong individual. © 2015 Scientific American

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 21436 - Posted: 09.24.2015

Rachel Ehrenberg If not for a broken piece of lab equipment and a college crush, Steve Ramirez might never have gone into neuroscience. As an undergraduate at Boston University his interests were all over the place: He was taking a humanities course and classes in philosophy and biochemistry while working several hours a week in a biology lab. When the lab’s centrifuge, a device that spins liquids, broke, Ramirez had to use one in another lab. “I was trying to make small talk with this girl who was using the centrifuge, ‘What’s your major?’ kind of thing,” Ramirez recalls. Hearing of his myriad interests, the student suggested that Ramirez talk with neuroscientist Paul Lipton. That led to a conversation with Howard Eichenbaum, a leading memory researcher. Eichenbaum told him that everything Ramirez was interested in was about the brain. “Everything from the pyramids to putting a man on the moon, it’s all the product of the human brain, which is kind of crazy when you think about it,” Ramirez says. Studying “the most interdisciplinary organ in existence,” as Ramirez calls it, was a natural fit. While working in Eichenbaum’s lab, Ramirez got turned on to how the brain forms memories. Those explorations led to a Ph.D. program at MIT in the lab of Nobel laureate Susumu Tonegawa, where Ramirez focused on the individual brain cells that hold specific memories. © Society for Science & the Public 2000 - 2015.

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 13: Memory, Learning, and Development
Link ID: 21433 - Posted: 09.23.2015