Links for Keyword: Emotions

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 825

By Alyssa Abkowitz If you’re wary of investing in a certain stock or exchange-traded fund, it could be because of the your brain’s physical composition. In a recent study, 61 participants from the Northeastern U.S. were asked to choose between monetary options that differed in the level of risk. Questions included: “Would you prefer a 50 percent chance of receiving $5 or would you rather take a 13 percent chance of winning $50?” and “Would you prefer $10 for sure or a 50 percent chance of receiving $50?” Researchers found that individuals with more gray matter in a specific part of their brains tend to tolerate more financial risks, says Agnieszka Tymula, an economist at the University of Sydney and co-author of the findings. Most of the participants answered questions while their brains were being scanned, while others received MRIs afterward (the timing doesn’t make a difference because the researchers were looking at brain structure, not brain function). The study involved measuring the volume of gray matter, or the outer layer of the brain, in the right posterior parietal region of the cortex. Thicker gray matter corresponded to riskier responses. Tymula worked with researchers from Yale University, University College London, New York University, and the University of Pennsylvania. Their findings, published in the Journal of Neuroscience this month, dovetail with previous work in which Tymula found that adults become more risk-averse as they age. Other neuroscience research shows that people’s cortexes become thinner as they get older, meaning there could be a link between a thinning cortex and risk aversion. ©2014 Bloomberg L.P

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 20117 - Posted: 09.25.2014

by Bob Holmes THERE'S something primal in a mother's response to a crying infant. So primal, in fact, that mother deer will rush protectively to the distress calls of other infant mammals, such as fur seals, marmots and even humans. This suggests such calls might share common elements – and perhaps that these animals experience similar emotions. Researchers – and, indeed, all pet owners – know that humans respond emotionally to the distress cries of their domestic animals, and there is some evidence that dogs also respond to human cries. However, most people have assumed this is a by-product of domestication. However, Susan Lingle, a biologist at the University of Winnipeg, Canada, noticed that the infants of many mammal species have similar distress calls: simple sounds with few changes in pitch. She decided to test whether cross-species responses occur more widely across the evolutionary tree. So, Lingle and her colleague Tobias Riede, now at Midwestern University in Glendale, Arizona, recorded the calls made by infants from a variety of mammal species when separated from their mother or otherwise threatened. They then played the recordings through hidden speakers to wild mule deer (Odocoileus hemionus) out on the Canadian prairies. They found that deer mothers quickly moved towards the recordings of infant deer, but also towards those of infant fur seals, dogs, cats and humans, all of which call at roughly the same pitch. Even the ultrasonic calls of infant bats attracted the deer mothers if Lingle used software to lower their pitch to match that of deer calls. In contrast, they found the deer did not respond to non-infant calls such as birdsong or the bark of a coyote (American Naturalist, DOI: 10.1086/677677). © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 9: Hearing, Vestibular Perception, Taste, and Smell
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 6: Hearing, Balance, Taste, and Smell
Link ID: 20095 - Posted: 09.19.2014

|By Daniel A. Yudkin If you’re reading this at a desk, do me a favor. Grab a pen or pencil and hold the end between your teeth so it doesn’t touch your lips. As you read on, stay that way—science suggests you’ll find this article more amusing if you do. Why? Notice that holding a pencil in this manner puts your face in the shape of a smile. And research in psychology says that the things we do—smiling at a joke, giving a gift to a friend, or even running from a bear—influence how we feel. This idea—that actions affect feelings—runs counter to how we generally think about our emotions. Ask average folks how emotions work—about the causal relationship between feelings and behavior—and they’ll say we smile because we’re happy, we run because we’re afraid. But work by such psychologists as Fritz Strack, Antonio Damasio, Joe LeDoux shows the truth is often the reverse: what we feel is actually the product, not the cause, of what we do. It’s called “somatic feedback.” Only after we act do we deduce, by seeing what we just did, how we feel. This bodes well, at first blush, for anyone trying to change their emotions for the better. All you’d need to do is act like the kind of person you want to be, and that’s who you’ll become. (Call it the Bobby McFerrin philosophy: “Aren’t happy? Don’t worry. Just smile!”) But new research, published in the Journal of Experimental Social Psychology by Aparna Labroo, Anirban Mukhopadhyay, and Ping Dong suggests there may be limits to our ability to proactively manage our own well-being. The team ran a series of studies examining whether more smiling led to more happiness. One asked people how much smiling they had done that day, and how happy they currently felt. Other studies manipulated the amount of smiling people actually did, either by showing them a series of funny pictures or by replicating a version of the pencil-holding experiment. As expected, across these experiments, the researchers found that the more people smiled, the happier they reported being. © 2014 Scientific American

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 20085 - Posted: 09.17.2014

By Smitha Mundasad Health reporter, BBC News Giving young people Botox treatment may restrict their emotional growth, experts warn. Writing in the Journal of Aesthetic Nursing, clinicians say there is a growing trend for under-25s to seek the wrinkle-smoothing injections. But the research suggests "frozen faces" could stop young people from learning how to express emotions fully. A leading body of UK plastic surgeons says injecting teenagers for cosmetic reasons is "morally wrong". Botox and other versions of the toxin work by temporarily paralysing muscles in the upper face to reduce wrinkling when people frown. Nurse practitioner Helen Collier, who carried out the research, says reality TV shows and celebrity culture are driving young people to idealise the "inexpressive frozen face." But she points to a well-known psychological theory, the facial feedback hypothesis, that suggests adolescents learn how best to relate to people by mimicking their facial expressions. She says: "As a human being our ability to demonstrate a wide range of emotions is very dependent on facial expressions. "Emotions such as empathy and sympathy help us to survive and grow into confident and communicative adults." But she warns that a "growing generation of blank-faced" young people could be harming their ability to correctly convey their feelings. "If you wipe those expressions out, this might stunt their emotional and social development," she says. The research calls for practitioners to use assessment tools to decide whether there are clear clinical reasons for Botox treatment. BBC © 2014

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 20070 - Posted: 09.13.2014

By Jonathan Webb Science reporter, BBC News Monkeys at the top and bottom of the social pecking order have physically different brains, research has found. A particular network of brain areas was bigger in dominant animals, while other regions were bigger in subordinates. The study suggests that primate brains, including ours, can be specialised for life at either end of the hierarchy. The differences might reflect inherited tendencies toward leading or following, or the brain adapting to an animal's role in life - or a little of both. Neuroscientists made the discovery, which appears in the journal Plos Biology, by comparing brain scans from 25 macaque monkeys that were already "on file" as part of ongoing research at the University of Oxford. "We were also looking at learning and memory and decision-making, and the changes that are going on in your brain when you're doing those things," explained Dr MaryAnn Noonan, the study's first author. The decision to look at the animals' social status produced an unexpectedly clear result, Dr Noonan said. "It was surprising. All our monkeys were of different ages and different genders - but with fMRI (functional magnetic resonance imaging) you can control for all of that. And we were consistently seeing these same networks coming out." BBC © 2014

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 20029 - Posted: 09.03.2014

Carl Zimmer An unassuming single-celled organism called Toxoplasma gondii is one of the most successful parasites on Earth, infecting an estimated 11 percent of Americans and perhaps half of all people worldwide. It’s just as prevalent in many other species of mammals and birds. In a recent study in Ohio, scientists found the parasite in three-quarters of the white-tailed deer they studied. One reason for Toxoplasma’s success is its ability to manipulate its hosts. The parasite can influence their behavior, so much so that hosts can put themselves at risk of death. Scientists first discovered this strange mind control in the 1990s, but it’s been hard to figure out how they manage it. Now a new study suggests that Toxoplasma can turn its host’s genes on and off — and it’s possible other parasites use this strategy, too. Toxoplasma manipulates its hosts to complete its life cycle. Although it can infect any mammal or bird, it can reproduce only inside of a cat. The parasites produce cysts that get passed out of the cat with its feces; once in the soil, the cysts infect new hosts. Toxoplasma returns to cats via their prey. But a host like a rat has evolved to avoid cats as much as possible, taking evasive action from the very moment it smells feline odor. Experiments on rats and mice have shown that Toxoplasma alters their response to cat smells. Many infected rodents lose their natural fear of the scent. Some even seem to be attracted to it. Manipulating the behavior of a host is a fairly common strategy among parasites, but it’s hard to fathom how they manage it. A rat’s response to cat odor, for example, emerges from complex networks of neurons that detect an odor, figure out its source and decide on the right response in a given moment. © 2014 The New York Times Company

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 20017 - Posted: 08.30.2014

By ANNA NORTH “You can learn a lot from what you see on a screen,” said Yalda T. Uhls. However, she told Op-Talk, “It’s not going to give you context. It’s not going to give you the big picture.” Ms. Uhls, a researcher at the Children’s Digital Media Center in Los Angeles, was part of a team that looked at what happened when kids were separated from their screens — phones, iPads, laptops and the like — for several days. Their findings may have implications for adults’ relationship to technology, too. For a paper published in the journal Computers in Human Behavior, the researchers studied 51 sixth-graders who attended a five-day camp where no electronic devices were allowed. Before and after the camp, they tested the kids’ emotion-recognition skills using photos of facial expressions and sound-free video clips designed to measure their reading of nonverbal cues. The kids did significantly better on both tests after five screen-free days; a group of sixth-graders from the same school who didn’t go to camp showed less or no improvement. Ms. Uhls, who also works for the nonprofit Common Sense Media, told Op-Talk that a number of factors might have been at play in the campers’ improvement. For instance, their time in nature might have played a role. But to her, the most likely explanation was the sheer increase in face-to-face interaction: “The issue really is not that staring at screens is going to make you bad at recognizing emotions,” she said. “It’s more that if you’re looking at screens you’re not looking at the world, and you’re not looking at people.” Many adults have sought out the same Internet-free experience the kids had, though they usually don’t go to camp to get it. The novelist Neil Gaiman took a “sabbatical from social media” in 2013, “so I can concentrate on my day job: making things up.” © 2014 The New York Times Company

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 20006 - Posted: 08.28.2014

By DOUGLAS QUENQUA A tiny part of the brain keeps track of painful experiences and helps determine how we will react to them in the future, scientists say. The findings could be a boon to depression treatments. The habenula (pronounced ha-BEN-you-la), a part of the brain less than half the size of a pea, has been shown in animal studies to activate during painful or unpleasant episodes. Using M.R.I.s to produce powerful brain scans, researchers at University College London tracked the habenulas in subjects who were hooked up to electric shock machines. The subjects were presented with a series of photographs, some of which were followed by increasingly strong shocks. Soon, when the subjects were shown pictures associated with shocks, their habenulas would light up. “The habenula seems to track the associations with electric shocks becoming stronger and stronger,” said Jonathan Roiser, a neuroscientist at the college and an author of the study, published in The Proceedings of the National Academy of Sciences. The habenula appeared to have an effect on motivation, too. The subjects had been asked to occasionally press a button, just to show they were awake. They were much slower to do so when their habenula was active. In fact, the more slowly they responded, the more reliably their habenulas tracked associations with shocks. In animals, the habenula has been shown to suppress production of dopamine, a chemical that drives motivation. Perhaps, the researchers say, an overactive habenula can cause the feelings of impending doom and low motivation common in people with depression. © 2014 The New York Times Company

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 13: Memory, Learning, and Development
Link ID: 19918 - Posted: 08.05.2014

|By Fikri Birey What’s the difference between you and a rat? The list is unsurprisingly long but now, we can cross a universal human experience — feelings of regret — off of it. A new study shows for the first time that rats regret bad decisions and learn from them. In addition to existentialist suggestions of a rat’s regret — and what that takes away from, or adds to, being “human” — the study is highly relevant to basic brain research. Researchers demonstrated that we can tap into complex internal states of rodents if we hone in on the right behavior and the right neurons. There is a significant literature on what brain regions are representative of certain states, like reward predictions and value calculations, but the study, powered by a novel behavioral test, is able to put together such discrete behavioral correlates into a “rat” definition of regret. Finding better animal models of human behavior constitute a long-standing challenge in neuroscience: It has been difficult to authentically recapitulate mental states in animal models of neuropsychiatric disorders: For example, an attempt to model depression in rodents can often go no further than relatively coarse approximations of the core symptoms like guilt or sadness, which often translates to behaviors like social avoidance or anhedonia in rodents. The inability to efficiently approach the questions of mental abnormalities is a major problem. Depression is currently ranked as the leading cause of disability globally, and it’s estimated that by 2020, depression will lead 1.5 million people to end their lives by suicide. Now, thanks to a simple yet well-conceived series of experiments by Steiner and Redish, a compound behavior like regret is fully open to investigation. The investigators use a spatial decision-making set-up called “Restaurant Row”: an arena with four zones where four different flavors of food (banana, cherry, chocolate or unflavored) are introduced in sequence. © 2014 Scientific American

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 16: Psychopathology: Biological Basis of Behavior Disorders
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 12: Psychopathology: Biological Basis of Behavioral Disorders
Link ID: 19898 - Posted: 07.30.2014

By STEPHANIE FAIRYINGTON A few months ago, I was on a Manhattan-bound D train heading to work when a man with a chunky, noisy newspaper got on and sat next to me. As I watched him softly turn the pages of his paper, a chill spread like carbonated bubbles through the back of my head, instantly relaxing me and bringing me to the verge of sweet slumber. It wasn’t the first time I’d felt this sensation at the sound of rustling paper — I’ve experienced it as far back as I can remember. But it suddenly occurred to me that, as a lifelong insomniac, I might be able to put it to use by reproducing the experience digitally whenever sleep refused to come. Under the sheets of my bed that night, I plugged in some earphones, opened the YouTube app on my phone and searched for “Sound of pages.” What I discovered stunned me. There were nearly 2.6 million videos depicting a phenomenon called autonomous sensory meridian response, or A.S.M.R., designed to evoke a tingling sensation that travels over the scalp or other parts of the body in response to auditory, olfactory or visual forms of stimulation. The sound of rustling pages, it turns out, is just one of many A.S.M.R. triggers. The most popular stimuli include whispering; tapping or scratching; performing repetitive, mundane tasks like folding towels or sorting baseball cards; and role-playing, where the videographer, usually a breathy woman, softly talks into the camera and pretends to give a haircut, for example, or an eye examination. The videos span 30 minutes on average, but some last more than an hour. For those not wired for A.S.M.R. — and even for those who, like me, apparently are — the videos and the cast of characters who produce them — sometimes called “ASMRtists” or “tingle-smiths” — can seem weird, creepy or just plain boring. (Try pitching the pleasures of watching a nerdy German guy slowly and silently assemble a computer for 30 minutes.) © 2014 The New York Times Company

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 9: Hearing, Vestibular Perception, Taste, and Smell
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 6: Hearing, Balance, Taste, and Smell
Link ID: 19894 - Posted: 07.29.2014

By MICHAEL INZLICHT and SUKHVINDER OBHI I FEEL your pain. These words are famously associated with Bill Clinton, who as a politician seemed to ooze empathy. A skeptic might wonder, though, whether he truly was personally distressed by the suffering of average Americans. Can people in high positions of power — presidents, bosses, celebrities, even dominant spouses — easily empathize with those beneath them? Psychological research suggests the answer is no. Studies have repeatedly shown that participants who are in high positions of power (or who are temporarily induced to feel powerful) are less able to adopt the visual, cognitive or emotional perspective of other people, compared to participants who are powerless (or are made to feel so). For example, Michael Kraus, a psychologist now at the University of Illinois at Urbana-Champaign, and two colleagues found that among full-time employees of a public university, those who were higher in social class (as determined by level of education) were less able to accurately identify emotions in photographs of human faces than were co-workers who were lower in social class. (While social class and social power are admittedly not the same, they are strongly related.) Why does power leave people seemingly coldhearted? Some, like the Princeton psychologist Susan Fiske, have suggested that powerful people don’t attend well to others around them because they don’t need them in order to access important resources; as powerful people, they already have plentiful access to those. We suggest a different, albeit complementary, reason from cognitive neuroscience. On the basis of a study we recently published with the researcher Jeremy Hogeveen, in the Journal of Experimental Psychology: General, we contend that when people experience power, their brains fundamentally change how sensitive they are to the actions of others. © 2014 The New York Times Company

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 14: Attention and Consciousness
Link ID: 19882 - Posted: 07.26.2014

By JAMES GORMAN Any dog owner would testify that dogs are just as prone to jealousy as humans. But can one really compare Othello’s agony to Roscoe’s pique? The answer, according to Christine Harris, a psychologist at the University of California, San Diego, is that if you are petting another dog, Roscoe is going to show something that Dr. Harris thinks is a form of jealousy, even if not as complex and twisted as the adult human form. Other scientists agree there is something going on, but not all are convinced it is jealousy. And Roscoe and the rest of his tribe were, without exception, unavailable for comment. Dr. Harris had been studying human jealousy for years when she took this question on, inspired partly by the antics of her parents’ Border collies. When she petted them, “one would take his head and knock the other’s head away,” she said. It certainly looked like jealousy. But having studied humans, she was aware of different schools of thought about jealousy. Some scientists argue that jealousy requires complex thinking about self and others, which seems beyond dogs’ abilities. Others think that although our descriptions of jealousy are complex, the emotion itself may not be that complex. Dog emotions, as owners perceive them, have been studied before. In one case, Alexandra Horowitz, a cognitive scientist who is an adjunct associate professor at Barnard College and the author of “Inside of a Dog,” found that the so-called guilty look that dogs exhibit seemed to be more related to fear of punishment. Dr. Harris ventured into the tricky turf of dog emotion by devising a test based on work done with infants. © 2014 The New York Times Company

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 19876 - Posted: 07.24.2014

By EMILY ANTHES It was love at first pet when Laurel Braitman and her husband adopted a 4-year-old Bernese mountain dog, a 120-pound bundle of fur named Oliver. The first few months were blissful. But over time, Oliver’s troubled mind slowly began to reveal itself. He snapped at invisible flies. He licked his tail until it was wounded and raw. He fell to pieces when he spied a suitcase. And once, while home alone, he ripped a hole in a screen and jumped out of a fourth-floor window. To everyone’s astonishment, he survived. Oliver’s anguish devastated Dr. Braitman, a historian of science, but it also awakened her curiosity and sent her on an investigation deep into the minds of animals. The result is the lovely, big-hearted book “Animal Madness,” in which Dr. Braitman makes a compelling case that nonhuman creatures can also be afflicted with mental illness and that their suffering is not so different from our own. In the 17th century, Descartes described animals as automatons, a view that held sway for centuries. Today, however, a large and growing body of research makes it clear that animals have never been unthinking machines. We now know that species from magpies to elephants can recognize themselves in the mirror, which some scientists consider a sign of self-awareness. Rats emit a form of laughter when they’re tickled. And dolphins, parrots and dogs show clear signs of distress when their companions die. Together, these and many other findings demonstrate what any devoted pet owner has probably already concluded: that animals have complex minds and rich emotional lives. Unfortunately, as Dr. Braitman notes, “every animal with a mind has the capacity to lose hold of it from time to time.” © 2014 The New York Times Company

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 16: Psychopathology: Biological Basis of Behavior Disorders
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 12: Psychopathology: Biological Basis of Behavioral Disorders
Link ID: 19801 - Posted: 07.08.2014

By Tanya Lewis and Live Science They say laughter is the best medicine. But what if laughter is the disease? For a 6-year-old girl in Bolivia who suffered from uncontrollable and inappropriate bouts of giggles, laughter was a symptom of a serious brain problem. But doctors initially diagnosed the child with “misbehavior.” “She was considered spoiled, crazy — even devil-possessed,” José Liders Burgos Zuleta of the Advanced Medical Image Centre in La Paz said in a statement. [ But Burgos Zuleta discovered that the true cause of the girl’s laughing seizures, medically called gelastic seizures, was a brain tumor. After the girl underwent a brain scan, the doctors discovered a hamartoma, a small, benign tumor that was pressing against her brain’s temporal lobe. Surgeons removed the tumor, the doctors said. She stopped having the uncontrollable attacks of laughter and now laughs only normally, they said. Gelastic seizures are a relatively rare form of epilepsy, said Solomon Moshé, a pediatric neurologist at Albert Einstein College of Medicine in New York. “It’s not necessarily ‘ha-ha-ha’ laughing,” Moshé said. “There’s no happiness in this. Some of the kids may be very scared,” he added. The seizures are most often caused by tumors in the hypothalamus, although they can also come from tumors in other parts of brain, Moshé said. Although laughter is the main symptom, patients may also have outbursts of crying.

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 19765 - Posted: 06.24.2014

By Lara Salahi A team of researchers at Massachusetts General Hospital have embarked on a new project to create an implantable device in the brain that would read and alter the emotions of someone with a mental illness. The team is working in collaboration with researchers at the University of California, San Francisco, on a new program funded by the Department of Defense’s Defense Advanced Research Projects Agency (DARPA). The researchers are working to create an implantable device that can sense abnormal activity in the brain using algorithms, and then deliver electrical impulses to certain parts of the brain that would suppress the abnormal signals. “Imagine if I have an addiction to alcohol and I have a craving,” Jose Carmena, a researcher at the University of California, Berkeley, who is involved in the project, told MIT Technology Review. “We could detect that feeling and then stimulate inside the brain to stop it from happening.” Mental illness and suicide rates among the US military have spiked over the past decade, the National Institute of Mental Healthreports. The current research is part of DARPA’s emerging neurotechnology therapy program which investigates new approaches to treat neuropsychological illnesses among military servicemembers and veterans. Their goal is to treat at least seven psychiatric conditions, including depression, post-traumatic stress disorder, addiction, and fibromyalgia.

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 16: Psychopathology: Biological Basis of Behavior Disorders
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 12: Psychopathology: Biological Basis of Behavioral Disorders
Link ID: 19683 - Posted: 06.03.2014

By JAMES GORMAN If an exercise wheel sits in a forest, will mice run on it? Every once in a while, science asks a simple question and gets a straightforward answer. In this case, yes, they will. And not only mice, but also rats, shrews, frogs and slugs. True, the frogs did not exactly run, and the slugs probably ended up on the wheel by accident, but the mice clearly enjoyed it. That, scientists said, means that wheel-running is not a neurotic behavior found only in caged mice. They like the wheel. Two researchers in the Netherlands did an experiment that it seems nobody had tried before. They placed exercise wheels outdoors in a yard garden and in an area of dunes, and monitored the wheels with motion detectors and automatic cameras. They were inspired by questions from animal welfare committees at universities about whether mice were really enjoying wheel-running, an activity used in all sorts of studies, or were instead like bears pacing in a cage, stressed and neurotic. Would they run on a wheel if they were free? Now there is no doubt. Mice came to the wheels like human beings to a health club holding a spring membership sale. They made the wheels spin. They hopped on, hopped off and hopped back on. “When I saw the first mice, I was extremely happy,” said Johanna H. Meijer at Leiden University Medical Center in the Netherlands. “I had to laugh about the results, but at the same time, I take it very seriously. It’s funny, and it’s important at the same time.” Dr. Meijer’s day job is as a “brain electrophysiologist” studying biological rhythms in mice. She relished the chance to get out of the laboratory and study wild animals, and in a way that no one else had. © 2014 The New York Times Company

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 5: The Sensorimotor System
Link ID: 19641 - Posted: 05.20.2014

The Presidential Commission for the Study of Bioethical Issues today released its first set of recommendations for integrating ethics into neuroscience research in the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative. Last July, President Barack Obama charged the commission with identifying key ethical questions that may arise through the BRAIN Initiative and wider neuroscience research. The report is “a dream come true,” says Judy Illes, a neuroethicist at the University of British Columbia in Vancouver, Canada, who was a guest presenter to the commission. Brain research raises unique ethical issues because it “strikes at the very core of who we are,” said political scientist and philosopher Amy Gutmann of the University of Pennsylvania, who chairs the commission, in a call with reporters yesterday. Specific areas of concern identified in the report include questions of brain privacy raised by advances in neuroimaging research; whether research participants and patients with dementia can give informed consent to participate in experimental trials; and research into cognitive enhancement, which raises “issues of distributive justice and fairness,” Gutmann says. Parsing hope from hype is key to ethical neuroscience research and its application, Gutmann notes. Citing the troubled ethical history of psychosurgery in the United States, in which more than 40,000 people were lobotomized based on shaky evidence that the procedure could treat psychiatric illnesses such as schizophrenia and depression, Gutmann cautions that a similar ethical derailment is possible in contemporary neuroscience research. A misstep with invasive experimental treatments such as deep brain stimulation surgery would not only be tragic for patients, but have “devastating consequences” for scientific progress, she says. © 2014 American Association for the Advancement of Science

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 19613 - Posted: 05.15.2014

—By Indre Viskontas and Chris Mooney When the audio of Los Angeles Clippers owner Donald Sterling telling a female friend not to "bring black people" to his team's games hit the internet, the condemnations were immediate. It was clear to all that Sterling was a racist, and the punishment was swift: The NBA banned him for life. It was, you might say, a pretty straightforward case. When you take a look at the emerging science of what motivates people to behave in a racist or prejudiced way, though, matters quickly grow complicated. In fact, if there's one cornerstone finding when it comes to the psychological underpinnings of prejudice, it's that out-and-out or "explicit" racists—like Sterling—are just one part of the story. Perhaps far more common are cases of so-called "implicit" prejudice, where people harbor subconscious biases, of which they may not even be aware, but that come out in controlled psychology experiments. Much of the time, these are not the sort of people whom we would normally think of as racists. "They might say they think it's wrong to be prejudiced," explains New York University neuroscientist David Amodio, an expert on the psychology of intergroup bias. Amodio says that white participants in his studies "might write down on a questionnaire that they are positive in their attitudes towards black people…but when you give them a behavioral measure, of how they respond to pictures of black people, compared with white people, that's when we start to see the effects come out." You can listen to our interview with Amodio on the Inquiring Minds podcast below: Welcome to the world of implicit racial biases, which research suggests are all around us, and which can be very difficult for even the most well-intentioned person to control. ©2014 Mother Jones

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 14: Attention and Consciousness
Link ID: 19592 - Posted: 05.10.2014

By Scott Barry Kaufman The latest neuroscience of aesthetics suggests that the experience of visual, musical, and moral beauty all recruit the same part of the “emotional brain”: field A1 of the medial orbitofrontal cortex (mOFC). But what about mathematics? Plato believed that mathematical beauty was the highest form of beauty since it is derived from the intellect alone and is concerned with universal truths. Similarly, the art critic Clive Bell noted: “Art transports us from the world of man’s activity to a world of aesthetic exaltation. For a moment we are shut off from human interests; our anticipations and memories are arrested; we are lifted above the stream of life. The pure mathematician rapt in his studies knows a state of mind which I take to be similar, if not identical. He feels an emotion for his speculations which arises from no perceived relation between them and the lives of men, but springs, inhuman or super-human, from the heart of an abstract science. I wonder, sometimes, whether the appreciators of art and of mathematical solutions are not even more closely allied.” A new study suggests that Bell might be right. Semir Zeki and colleagues recruited 16 mathematicians at the postgraduate or postdoctoral level as well as 12 non-mathematicians. All participants viewed a series of mathematical equations in the fMRI scanner and were asked to rate the beauty of the equations as well as their understanding of each equation. After they were out of the scanner, they filled out a questionnaire in which they reported their level of understanding of each equation as well as their emotional experience viewing the equations. © 2014 Scientific American

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 14: Attention and Consciousness
Link ID: 19586 - Posted: 05.08.2014

By Christian Jarrett I must have been about seven years old, a junior in my prep school. I was standing in the dining hall surrounded by over a hundred senior boys and schoolmasters, all looking at me, some with pity, others with disdain. It was unheard of for a junior boy to be present in the dining room by the time the seniors had filed in. “What on earth do you think you’re doing Jarrett?” asked the headmaster with mock outrage. I was there because, by refusing to finish my rhubarb crumble, I’d broken a cardinal school rule. All pupils were to eat all they were given. But after vomiting up some of my rhubarb – a flesh-like fruit that still disgusts me to this day – I simply refused to eat on. Keeping me behind in the dining room as the seniors arrived was my punishment. I wanted to explain this to the assembled crowd. Yet speech completely failed me and I began to sob openly and uncontrollably, my humiliation sealed. This was an intense emotional experience for me, and as you can probably tell, the memory remains sore to this day. But is humiliation any more intense than the other negative emotions, such as anger or shame? If it were, how would psychologists and neuroscientists demonstrate that this was the case? You might imagine that the most effective method would be to ask people to rate and describe different emotional experiences – after all, to say that an emotion is intense is really to say something about how it feels, and how it affects you. Yet in a paper published earlier this year, a pair of psychologists – Marte Otten and Kai Jonas – have taken a different approach. Inspired by claims that humiliation is an unusually intense emotion, responsible even for war and strife in the world, the researchers have turned to brain-based evidence. They claim to have provided the “first empirical, neurocognitive evidence for long-standing claims in the humiliation literature that humiliation is a particularly intense emotion.” WIRED.com © 2014 Condé Nast.

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 19578 - Posted: 05.06.2014