Links for Keyword: Epilepsy

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 184

by Clare Wilson There is a new way to hack the brain. A technique that involves genetically engineering brain cells so that they fire in the presence of certain drugs has been used to treat an epilepsy-like condition in rats, and it could soon be trialled in humans. Chemogenetics builds on optogenetics, which involves engineering brain cells so they "fire" when lights are turned on. Selected neurons can then be activated with the flick of a switch. But this requires fibre optic cables to be implanted in the brain, which is impractical for treating human brain disorders. In chemogenetics, however, no cables are needed because neurons are altered to fire in the presence of a certain chemical rather than light. "It's got more potential in that you can give drugs to people more easily than you can get light into their brains," says Dimitri Kullmann of University College London. Stop the neurons Kullmann's team tested the approach by using a harmless virus to deliver a gene into the brains of rats. The gene encoded a protein that stops neurons from firing – but only in the presence of a chemical called clozapine N-oxide (CNO). Several weeks later, they injected the rats with chemicals that trigger brain seizures, to mimic epilepsy. If the rats were then given CNO, the severity of their seizures dropped within 10 minutes. This is the first time the technique has been used to treat a brain disorder, Kullmann says. "The system is neat," says Arnd Pralle of the University of Buffalo in New York state. But he points out that optogenetics allows faster control than this, because light can be turned on and off instantly. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 19668 - Posted: 05.28.2014

By CATHERINE SAINT LOUIS ALEXANDRIA, N.H. — For most of his life, Kevin Ramsey has lived with epileptic seizures that drugs cannot control. At least once a month, he would collapse, unconscious and shaking violently, sometimes injuring himself. Nighttime seizures left him exhausted at dawn, his tongue a bloody mess. After episodes at work, he struggled to stay employed. Driving became too risky. At 28, he sold his truck and moved into his mother’s spare bedroom. Cases of intractable epilepsy rarely have happy endings, but today Mr. Ramsey is seizure-free. A novel battery-powered device implanted in his skull, its wires threaded into his brain, tracks its electrical activity and quells impending seizures. At night, he holds a sort of wand to his head and downloads brain data from the device to a laptop for his doctors to review. “I’m still having seizures on the inside, but my stimulator is stopping all of them,” said Mr. Ramsey, 36, whose hands shake because of one of the three anti-seizure drugs he still must take. “I can do things on my own I couldn’t do before. I can go to the store on my own, and get my groceries. Before, I wouldn’t have been able to drive.” Just approved by the Food and Drug Administration, the long-awaited device, called the RNS System, aims to reduce seizures and to improve the lives of an estimated 400,000 Americans whose epilepsy cannot be treated with drugs or brain surgery. “This is the first in what I believe is a new generation of therapy for epilepsy,” said Dr. Dileep R. Nair, head of adult epilepsy at the Cleveland Clinic and an investigator in the pivotal trial for NeuroPace’s RNS. “It’s delivering local therapy. It’s not taking tissue out; the brain is left intact. And it’s unlike a drug, which is a shotgun approach.” © 2014 The New York Times Company

Related chapters from BP7e: Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 19407 - Posted: 03.25.2014

By NICHOLAS RICCARDI, Associated Press COLORADO SPRINGS, Colo. (AP) — The doctors were out of ideas to help 5-year-old Charlotte Figi. Suffering from a rare genetic disorder, she had as many as 300 grand mal seizures a week, used a wheelchair, went into repeated cardiac arrest and could barely speak. As a last resort, her mother began calling medical marijuana shops. Two years later, Charlotte is largely seizure-free and able to walk, talk and feed herself after taking oil infused with a special pot strain. Her recovery has inspired both a name for the strain of marijuana she takes that is bred not to make users high — Charlotte's Web — and an influx of families with seizure-stricken children to Colorado from states that ban the drug. "She can walk, talk; she ate chili in the car," her mother, Paige Figi, said as her dark-haired daughter strolled through a cavernous greenhouse full of marijuana plants that will later be broken down into their anti-seizure components and mixed with olive oil so patients can consume them. "So I'll fight for whomever wants this." Doctors warn there is no proof that Charlotte's Web is effective, or even safe. In the frenzy to find the drug, there have been reports of non-authorized suppliers offering bogus strains of Charlotte's Web. In one case, a doctor said, parents were told they could replicate the strain by cooking marijuana in butter. Their child went into heavy seizures. "We don't have any peer-reviewed, published literature to support it," Dr. Larry Wolk, the state health department's chief medical officer, said of Charlotte's Web. Still, more than 100 families have relocated since Charlotte's story first began spreading last summer, according to Figi and her husband. The relocated families have formed a close-knit group in Colorado Springs, the law-and-order town where the dispensary selling the drug is located. They meet for lunch, support sessions and hikes. © 2014 Hearst Communications, Inc.

Related chapters from BP7e: Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Related chapters from MM:Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Link ID: 19269 - Posted: 02.19.2014

By CATHERINE SAINT LOUIS Does chocolate really hurt dogs? It can, depending on their weight and how much they eat, so be vigilant this Valentine’s Day. Stimulants in chocolate can lead to vomiting, diarrhea, agitation and life-threatening elevated heart rates or seizures. “Dogs have no off button,” said Dr. Tina Wismer, the medical director of the ASPCA Animal Poison Control Center. “If you or I ate 10 percent of our body weight in chocolate, we’d have the same problems. A 10-pound dog can easily eat a pound of chocolate.” The darker the chocolate, the more toxic it is. For a 20-pound dog, 9 ounces of milk chocolate can cause seizures, but it takes only 1.5 ounces of baker’s chocolate, she said. Signs of chocolate poisoning usually appear six to 12 hours after ingestion, according to The Merck Veterinary Manual. “Seizures due to toxicity don’t stop unless you treat them,” Dr. Wismer said. So head to the emergency clinic or veterinarian if you come home to find your dog vomiting repeatedly and extremely agitated, and certainly if the pet is unconscious and its limbs are shaking. By contrast, dogs who vomit once and fall sleep can be watched at home, she said. Unlike cats, dogs like sweets. So it’s best to keep chocolate stored away and off countertops, which are no match for a motivated climber. © 2014 The New York Times Company

Related chapters from BP7e: Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 19256 - Posted: 02.17.2014

According to new research on epilepsy, zebrafish have certainly earned their stripes. Results of a study in Nature Communications suggest that zebrafish carrying a specific mutation may help researchers discover treatments for Dravet syndrome (DS), a severe form of pediatric epilepsy that results in drug-resistant seizures and developmental delays. Scott C. Baraban, Ph.D., and his colleagues at the University of California, San Francisco (UCSF), carefully assessed whether the mutated zebrafish could serve as a model for DS, and then developed a new screening method to quickly identify potential treatments for DS using these fish. This study was supported by the National Institute of Neurological Disorders and Stroke (NINDS), part of the National Institutes of Health and builds on pioneering epilepsy zebrafish models first described by the Baraban laboratory in 2005. Dravet syndrome is commonly caused by a mutation in the Scn1a gene, which encodes for Nav1.1, a specific sodium ion channel found in the brain. Sodium ion channels are critical for communication between brain cells and proper brain functioning. The researchers found that the zebrafish that were engineered to have the Scn1a mutation that causes DS in humans exhibited some of the same characteristics, such as spontaneous seizures, commonly seen in children with DS. Unprovoked seizure activity in the mutant fish resulted in hyperactivity and whole-body convulsions associated with very fast swimming. These types of behaviors are not seen in normal healthy zebrafish.

Related chapters from BP7e: Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 18603 - Posted: 09.04.2013

JoNel Aleccia TODAY When doctors told Pete and Michelle Gallagher that they wanted to remove half of their 3-year-old son’s brain, the Attica, Ohio, parents were horrified. But a new study shows the extreme procedure may offer some kids their best shot at a normal life. “We panicked,” said Pete Gallagher, recalling their reaction seven years ago. The couple also knew that the dramatic surgery known as a hemispherectomy might be the only workable option to stop the severe seizures, more than a dozen a day, that were robbing Aiden of his ability to function – and to learn. “He had forgotten his alphabet. He had forgotten how to count. It was all slipping,” the father said. Today, Aiden is a healthy, red-haired fifth-grader who goes to regular school and loves to play baseball and basketball. He hasn’t had a seizure since the rare operation, making the boy a poster child for new research that finds the procedure offers real-world success for children suffering from devastating epilepsy. “The brain has an amazing capacity to work around the function that it has lost,” said Dr. Ajay Gupta, head of pediatric epilepsy at the Cleveland Clinic. In the first large-scale study to look at the everyday capabilities of kids who undergo hemispherectomy, Gupta and his colleagues reviewed 186 operations performed at their center between 1997 and 2009 and took a close look at 115 patients. They confirmed what doctors knew, but had little practical data to support: That removing the diseased hemisphere of a seizure-prone brain allows sufferers to learn and grow and, in some cases, lead normal lives.

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 19: Language and Hemispheric Asymmetry
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 15: Language and Our Divided Brain
Link ID: 18554 - Posted: 08.24.2013

Silk has walked straight off the runway and into the lab. According to a new study published in the Journal of Clinical Investigation, silk implants placed in the brain of laboratory animals and designed to release a specific chemical, adenosine, may help stop the progression of epilepsy. The research was supported by the National Institute of Neurological Disorders and Stroke (NINDS) and the National Institute of Biomedical Imaging and Bioengineering (NIBIB), which are part of the National Institutes of Health. The epilepsies are a group of neurological disorders associated with recurring seizures that tend to become more frequent and severe over time. Adenosine decreases neuronal excitability and helps stop seizures. Earlier studies have suggested abnormally low levels of adenosine may be linked to epilepsy. Rebecca L. Williams-Karnesky, Ph.D. and her colleagues from Legacy Research Institute, Portland, Ore., Oregon Health and Sciences University (OHSU), Portland, and Tufts University, Boston, looked at long-term effects of an adenosine-releasing silk-implant therapy in rats and examined the role of adenosine in causing epigenetic changes that may be associated with the development of epilepsy. The investigators argue that adenosine’s beneficial effects are due to epigenetic modifications (chemical reactions that change the way genes are turned on or off without altering the DNA code, the letters that make up our genetic background). Specifically, these changes happen when a molecule known as a methyl group blocks a portion of DNA, affecting which genes are accessible and can be turned on. If methyl groups have been taken away (demethylated), genes are more likely to turn on.

Related chapters from BP7e: Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Related chapters from MM:Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Link ID: 18409 - Posted: 07.27.2013

by Anil Ananthaswamy Name: Sandra Condition: Ecstatic epilepsy "It's like when you have an orgasm. You don't get to the orgasm in one step. You go progressively. [My seizure] was the same kind of thing." Sandra thinks she had her earliest epileptic seizures when she was just 4 years old. But they were no ordinary seizures. Hers gave her an intense feeling of bliss. Blissful is not how most of us think of epilepsy. Fabienne Picard at the University Hospital Geneva, in Switzerland, says Sandra experienced a form of partial seizure – one localised to a specific region of the brain – known as an ecstatic seizure. These were immortalised in literature by the Russian novelist Fyodor Dostoevsky, who also had them. Dostoevsky described his seizures in a letter to a friend: "I feel entirely in harmony with myself and the whole world, and this feeling is so strong and so delightful that for a few seconds of such bliss one would gladly give up 10 years of one's life, if not one's whole life." To explain how she felt during her seizures, Sandra makes an analogy with a highly pleasurable event. "It's like when you have an orgasm," she says. "You don't get to the orgasm in one step. You go progressively. [The seizure] was the same kind of thing." However, "it was not a sexual feeling", she says. "It was more psychological." © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 18298 - Posted: 06.22.2013

by Sara Reardon People with epilepsy have to learn to cope with the unpredictable nature of seizures – but that could soon be a thing of the past. A new brain implant can warn of seizures minutes before they strike, enabling them to get out of situations that could present a safety risk. Epileptic seizures are triggered by erratic brain activity. The seizures last for seconds or minutes, and their unpredictability makes them hazardous and disruptive for people with epilepsy, says Mark Cook of the University of Melbourne in Australia. Like earthquakes, "you can't stop them, but if you knew when one was going to happen, you could prepare", he says. With funding from NeuroVista, a medical device company in Seattle, Cook and his colleagues have developed a brain implant to do just that. The device consists of a small patch of electrodes that measure brain wave activity. Warning light Over time, the device's software learns which patterns of brainwave activity indicate that a seizure is about to happen. When it detects such a pattern, the implant then transmits a signal through a wire to a receiver implanted under the wearer's collarbone. This unit alerts the wearer by wirelessly activating a handheld gadget with coloured lights – a red warning light, for example, signals that a seizure is imminent. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 18107 - Posted: 05.02.2013

by Anil Ananthaswamy, A YOUNG man lies unconscious on the table, his head clamped firmly in place. His eyes are closed. The hair over his left temple has been shaved. I'm in the operating room at University Hospital Zurich in Switzerland with neurologist Thomas Grunwald, who has diagnosed 22-year-old Jeremy Künzler with drug-resistant temporal lobe epilepsy. His symptoms during fits suggest that the seizures begin in the left temporal lobe. Often, this condition can only be treated by surgically removing the errant brain tissue. Unfortunately, brain scans have revealed nothing that would point to the source of Künzler's seizures – no obvious tumour, scar or lesion. In ordinary circumstances, Künzler would have to undergo exploratory brain surgery. But instead of this drastic operation, Grunwald is pioneering a technique to pinpoint the problem area. He has asked neurosurgeon Niklaus Krayenbühl to implant electrodes inside Künzler's skull: a grid electrode over his left temporal lobe, and two strip electrodes beneath the left and right lobes, used to monitor activity bilaterally in the hippocampi and amygdalae. Once they are in place, Grunwald will record brain signals in real time during seizures and use the information to try to identify the epileptogenic tissue. It's my first time inside an operating room. I'm anxious, as I have been told not to touch a thing for fear of contamination, especially the giant surgical microscope covered in clear, sterile plastic. "The nurses are very strict," says Grunwald. "If you touch this, even with your head, they get really angry." © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 17953 - Posted: 03.27.2013

The number of children being diagnosed with epilepsy has dropped dramatically in the UK over the past decade, figures show. A study of GP-recorded diagnoses show the incidence has fallen by as much as half. Researchers said fewer children were being misdiagnosed, but there had also been a real decrease in some causes of the condition. Other European countries and the US had reported similar declines, they added. Epilepsy is caused when the brain's normal electrical activity result in seizures. Data from more than 344,000 children showed that the annual incidence of epilepsy has fallen by 4-9% year on year between 1994 and 2008. Overall the number of children born between 2003-2005 with epilepsy was 33% lower then those born in 1994-96. When researchers looked in more detail and included a wider range of possible indicators of an epilepsy diagnosis the incidence dropped by 47%. Correct diagnosis Better use of specialist services and increased caution over diagnosing the condition explains some, but not all, of the decline in the condition, the researchers reported in Archives of Diseases in Childhood. Introduction of vaccines against meningitis and a drop in the number of children with traumatic brain injuries, both of which can cause epilepsy, has probably also contributed to falling cases, they added. BBC © 2013

Related chapters from BP7e: Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 13: Memory, Learning, and Development
Link ID: 17751 - Posted: 02.04.2013

The number of seizure patients in a northern Japanese fishing community devastated by the March 11, 2011 tsunami spiked in the weeks following the disaster, according to a Japanese study. The study, published in the journal Epilepsia, looked at 440 patient records from Kesennuma City Hospital, in a city that was devastated by the massive tsunami touched off by the 9.0 magnitude earthquake. Thirteen patients were admitted with seizures in the eight weeks after the disaster, but only one had been admitted in the two months before March 11. Previous research has linked stressful life-threatening disasters with an increased risk of seizures, but most case reports lacked clinical data with multiple patients. "We suggest that stress associated with life-threatening situations may enhance seizure generation," wrote lead author Ichiyo Shibahara, a staff neurosurgeon at Sendai Medical Center in northern Japan. But he added that stress itself is not a universal risk factor for seizures. "Most of the seizure patients had some sort of neurological disease before the earthquake," he said. His team examined medical records from patients admitted to the neurosurgery ward in the eight weeks before and after the March 11 disaster and compared them to the same time period each year between 2008 and 2010. In 2008, there were 11 seizure patients admitted between January 14 and May 15. In 2009, there were seven and in 2010, just four. © 2013 NBCNews.com

Related chapters from BP7e: Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 11: Emotions, Aggression, and Stress
Link ID: 17705 - Posted: 01.22.2013

A strong family history of seizures could increase the chances of having severe migraines, says a study in Epilepsia journal. Scientists from Columbia University, New York, analysed 500 families containing two or more close relatives with epilepsy. Their findings could mean that genes exist that cause both epilepsy and migraine. Epilepsy Action said it could lead to targeted treatments. Previous studies have shown that people with epilepsy are substantially more likely than the general population to have migraine headaches, but it was not clear whether that was due to a shared genetic cause. The researchers found that people with three or more close relatives with a seizure disorder were more than twice as likely to experience 'migraine with aura' than patients from families with fewer individuals with seizures. Migraine with aura is a severe headache preceded by symptoms such as seeing flashing lights, temporary visual loss, speech problems or numbness of the face. Dr Melodie Winawer, lead author of the study from Columbia University Medical Centre, said the findings had implications for epilepsy patients. "Our study demonstrates a strong genetic basis for migraine and epilepsy, because the rate of migraine is increased only in people who have close (rather than distant) relatives with epilepsy." BBC © 2013

Related chapters from BP7e: Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 8: General Principles of Sensory Processing, Touch, and Pain
Related chapters from MM:Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 5: The Sensorimotor System
Link ID: 17657 - Posted: 01.07.2013

A substance made by the body when it uses fat as fuel could provide a new way of treating epilepsy, experts hope. Researchers in London who have been carrying out preliminary tests of the fatty acid treatment, report their findings in Neuropharmacology journal. They came up with the idea because of a special diet used by some children with severe, drug resistant epilepsy to help manage their condition. The ketogenic diet is high in fat and low in carbohydrate. The high fat, low carbohydrate diet is thought to mimic aspects of starvation by forcing the body to burn fats rather than carbohydrates. Although often effective, the diet has attracted criticism, as side-effects can be significant and potentially lead to constipation, hypoglycaemia, retarded growth and bone fractures. By pinpointing fatty acids in the ketogenic diet that are effective in controlling epilepsy, researchers hope they can develop a pill for children and adults that could provide similar epilepsy control without the side-effects. In early trials, the scientists, from Royal Holloway and University College London, say they have identified fatty acids that look like good candidates for the job. They found that not only did some of the fatty acids outperform a regular epilepsy medication called valproate in controlling seizures in animals, they also had fewer side-effects. BBC © 2012

Related chapters from BP7e: Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 17533 - Posted: 11.24.2012

By James Gallagher Health and science reporter, BBC News Adding "calm down" genes to hyperactive brain cells has completely cured rats of epilepsy for the first time, say UK researchers. They believe their approach could help people who cannot control their seizures with drugs. The study, published in the journal Science Translation Medicine, used a virus to insert the new genes into a small number of neurons. About 50 million people have epilepsy worldwide. However, drugs do not work for up to 30% of them. The alternatives include surgery to remove the part of the brain that triggers a fit or to use electrical stimulation. The brain is alive with electrical communication with individual neurons primed to fire off new messages. However, if a group of neurons become too excited they can throw the whole system into chaos leading to an epileptic seizure. Researchers at University College London have developed two ways of manipulating the behaviour of individual cells inside the brain in order to prevent those seizures. Both use viruses injected into the brain to add tiny sections of DNA to the genetic code of just a few thousand neurons. One method boosts the brain cells' natural levels of inhibition in order to calm them down. This treatment is a form of gene therapy, a field which is often criticised for failing to deliver on decades of promise. BBC © 2012

Related chapters from BP7e: Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 17482 - Posted: 11.13.2012

Seizures during childhood fever are usually benign, but when prolonged, they can foreshadow an increased risk of epilepsy later in life. Now a study funded by the National Institutes of Health suggests that brain imaging and recordings of brain activity could help identify the children at highest risk. The study reveals that within days of a prolonged fever-related seizure, some children have signs of acute brain injury, abnormal brain anatomy, altered brain activity, or a combination. "Our goal has been to develop biomarkers that will tell us whether or not a particular child is at risk for epilepsy. This could in turn help us develop strategies to prevent the disorder," said study investigator Shlomo Shinnar, M.D., Ph.D. Dr. Shinnar is a professor of neurology, pediatrics and epidemiology and the Hyman Climenko Professor of Neuroscience Research at Montefiore Medical Center, Albert Einstein College of Medicine, New York City. Seizures that occur during the course of a high fever, known as febrile seizures, affect 3 to 4 percent of all children. Most such children recover rapidly and do not suffer long-term health consequences. However, having one or more prolonged febrile seizures in childhood is known to increase the risk of subsequent epilepsy. Some experts estimate that the risk of later epilepsy is 30-40 percent following febrile status epilepticus (FSE), a seizure or series of seizures that can last from 30 minutes to several hours. "While the majority of children fully recover from febrile status epilepticus, some will go on to develop epilepsy. We have no way of knowing yet who they will be," Dr. Shinnar said.

Related chapters from BP7e: Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 13: Memory, Learning, and Development
Link ID: 17469 - Posted: 11.08.2012

by Douglas Heaven The versatile cannabis plant may have a new use: it could be used to control epileptic seizures with fewer side effects than currently prescribed anti-convulsants. Ben Whalley at the University of Reading, UK, and colleagues worked with GW Pharmaceuticals in Wiltshire, UK, to investigate the anti-convulsant properties of cannabidivarin (CBDV), a little-studied chemical found in cannabis and some other plants. There is "big, historical, anecdotal evidence" that cannabinoids can be used to control human seizures, says Whalley, but the "side-effect baggage" means there have been relatively few studies of its pharmaceutical effect on this condition. The team investigated the effectiveness of CBDV – one of around 100 non-psychoactive cannabinoids found in cannabis – as an anti-convulsant. They induced seizures in live rats and mice that had been given the drug. These animals experienced less severe seizures and lower mortality compared with animals given a placebo. The drug also had fewer side effects and was better tolerated than three of the most widely prescribed anticonvulsants. Epileptic seizures affect about one per cent of the population. Left uncontrolled, they can lead to depression, cognitive decline and death. If you control the seizures, says Whalley, "the chances of death drop away completely". The decision about whether to test the drug in humans will be made next year. © Copyright Reed Business Information Ltd

Related chapters from BP7e: Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Related chapters from MM:Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Link ID: 17255 - Posted: 09.13.2012

By Karen Weintraub Paul Barney had his first seizure four days after his fourth birthday. By the time he was 10, his mom worried that if they didn’t get the seizures under control soon, he might lose IQ points along with his ready smile. When Brian Manning, 11, had a seizure on the school playground – instead of in his bed as usual – his parents knew it was time for drastic action. He’d already had brain surgery once, but doctors said he might need five or six more operations. Or he could have one, to completely remove the right half of his brain. Both boys have epilepsy and recently underwent surgery at Boston Children’s Hospital. And both represent the promise and frustration of epilepsy treatment today. Patients have more options, and there is more awareness, less stigma, and a better understanding of epilepsy than there has ever been. But available medications can’t control seizures in about one-third of patients, including Paul and Brian, and while surgery is safer, it still comes with high risks. It also remains unclear what causes the electrical disturbance in patients’ brains that triggers seizures. Roughly 1 in 26 Americans will develop epilepsy at some point in life – more than will have autism, AIDS, or Parkinson’s disease. Some patients do fine between seizures and can function normally. In others, their brains are constantly being disrupted, like a radio station filled with static, according to Dr. Blaise Bourgeois the director of the Division of Epilepsy and Clinical Neurophysiology at Boston Children’s. © 2012 NY Times Co.

Related chapters from BP7e: Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 17156 - Posted: 08.13.2012

Duncan Graham-Rowe A skull implant that can detect an epileptic seizure and deliver therapeutic electrical impulses can reduce the length of these events by 60% in rats. The device, tested on nine rats with a ‘petit mal’ form of epilepsy, is described today in Science1. Most electrical stimulation devices, such as those that deliver deep-brain stimulation (DBS) to treat Parkinson’s disease and depression, operate continuously, delivering impulses regardless of the patient’s brain activity. But this can cause a range of undesirable side effects, such as headaches. Seizure-responsive versions of DBS devices are coming to market, such as the Responsive Neurostimulator System developed by NeuroPace, based in Mountain View, California. The system is awaiting approval by the US Food and Drug Administration and will be aimed at adults with certain types of partial-onset seizures, which tend to be localized to certain regions of the brain. But as the name implies, DBS uses electrodes that penetrate the brain, which can also carry certain risks, such as a worsening of epilepsy symptoms. In the latest study, György Buzsáki, a neuroscientist at the New York University School of Medicine, and his colleagues used a less invasive approach that involves transcranial electrical stimulation (TES) of neurons using electrodes implanted in the skull. This technique has been shown to be effective at modifying the brain's cortical (outermost) neurons, which become abnormally excited during epileptic seizures. To detect the onset of a seizure, recording electrodes that detect neural activity were implanted on the brain's surface. © 2012 Nature Publishing Group,

Related chapters from BP7e: Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 17148 - Posted: 08.11.2012

By Justin Moyer, On June 9, Commerce Secretary John Bryson was hospitalized after his reported involvement in three auto accidents. Although details were not disclosed, the White House confirmed that he had a seizure. On July 30, 2007, Chief Justice John Roberts collapsed on a boat dock at his Maine summer home. Although that seizure was Roberts’s second, he offered little explanation. When Time magazine asked “Does Justice Roberts Have Epilepsy?,” Roberts didn’t answer, and he hasn’t in five years. Reading these stories, I wish public figures such as Roberts and Bryson would talk publicly about their conditions. They should do this not because they are legally compelled to or because their health may affect their work. They should do it because hiding their problems makes it seem like their problems are worth hiding. I received a diagnosis of epilepsy in 2001, at age 24. My seizures are generalized, meaning they strike my whole brain and body. Without warning, I lose consciousness for several minutes and remain disoriented for a few hours. Later, I have no memory of the episode save muscle aches and a sore mouth from biting my tongue. My seizures are idiopathic: They have no known cause. They can be controlled with levetiracetam, a medication that regulates brain neurotransmitters. © 1996-2012 The Washington Post

Related chapters from BP7e: Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 16930 - Posted: 06.19.2012