Chapter 16. None

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.

Links 41 - 60 of 2262

Bill McQuay and Christopher Joyce Acoustic biologists who have learned to tune their ears to the sounds of life know there's a lot more to animal communication than just, "Hey, here I am!" or "I need a mate." From insects to elephants to people, we animals all use sound to function and converse in social groups — especially when the environment is dark, or underwater or heavily forested. "We think that we really know what's going on out there," says Dartmouth College biologist Laurel Symes, who studies crickets. But there's a cacophony all around us, she says, that's full of information still to be deciphered. "We're getting this tiny slice of all of the sound in the world." Recently scientists have pushed the field of bioacoustics even further, to record whole environments, not just the animals that live there. Some call this "acoustic ecology" — listening to the rain, streams, wind through the trees. A deciduous forest sounds different from a pine forest, for example, and that soundscape changes seasonally. Neuroscientist Seth Horowitz, author of the book The Universal Sense: How Hearing Shapes the Mind, is especially interested in the ways all these sounds, which are essentially vibrations, have shaped the evolution of the human brain. "Vibration sensitivity is found in even the most primitive life forms," Horowitz says — even bacteria. "It's so critical to your environment, knowing that something else is moving near you, whether it's a predator or it's food. Everywhere you go there is vibration and it tells you something." © 2015 NPR

Keyword: Hearing; Evolution
Link ID: 21394 - Posted: 09.10.2015

By Siri Carpenter Alex, age 10, bounds onto his bed to pose with his Aaron Rodgers poster, grinning as proudly as if he had recruited the Green Bay Packers’ quarterback himself. Continuing the tour of his suburban New York bedroom, he points out his Packers-themed alarm clock, his soccer trophy, his Boy Scout trophy, and then the big reveal: a homemade foam box in Packers green and gold. “Mmm, very nice,” I say. Alex grins—part shy, part sly—as he turns it around to show me the message on the back: “Jets stink.” Even though he seems to be an entirely ordinary boy, there’s something unusual about Alex: He once had autism, and now he does not. There was a time when Alex’s parents didn’t know if he would ever speak in full sentences, let alone joke around with a stranger. His autism, they suspected, might prevent any such future. Alex’s parents began to worry about him before he was even a year old. He wasn’t learning to sit, crawl, or stand as his fraternal twin brother was. Even more striking was how much less social he was than his brother. “Alex was an expressionless child,” says his mother, Amy. (Alex’s and Amy’s names have been changed to protect their privacy.) She remembers a friend trying in vain to get Alex to laugh—jumping up and down, gesturing wildly, making silly faces. “His brother would be in belly laughs, and Alex would be just glazed over,” Amy says. © 2015 The Slate Group LLC.

Keyword: Autism
Link ID: 21393 - Posted: 09.10.2015

By Ann Gibbons From the moment in 2013 when paleoanthropologist Lee Berger posted a plea on Facebook, Twitter, and LinkedIn for “tiny and small, specialised cavers and spelunkers with excellent archaeological, palaeontological and excavation skills,” some experts began grumbling that the excavation of a mysterious hominin in the Rising Star Cave in South Africa was more of a media circus than a serious scientific expedition. Daily blogs recorded the dangerous maneuvers of “underground astronauts” who squeezed through a long, narrow chute to drop 30 meters into a fossil-filled cavern, while Berger, who is based at the University of the Witwatersrand in Johannesburg, South Africa, became the “voice from the cave” in radio interviews. When it came time to analyze the fossils, Berger put out a call for applications from “early career scientists” to study them at a workshop in Johannesburg in March 2014. Handing over much of the analysis of such potentially important specimens to inexperienced researchers didn’t inspire confidence among Berger’s colleagues either, though it did win him the nickname Mr. Paleodemocracy. Many thought the expedition “had more hype than substance,” paleoanthropologist Chris Stringer of the Natural History Museum in London writes in a commentary accompanying the fossils’ official presentation this week in the journal eLIFE. But the substance has now been unveiled, and few dispute that the findings are impressive. In their report, Berger and his team describe 1550 fossils representing more than 15 ancient members of a strange new kind of hominin, which they named Homo naledi. (Naledi means “star” in the Sotho language spoken in the region of the cave.) © 2015 American Association for the Advancement of Science.

Keyword: Evolution
Link ID: 21392 - Posted: 09.10.2015

By Steve Mirsky It's nice to know that the great man we celebrate in this special issue had a warm sense of humor. For example, in 1943 Albert Einstein received a letter from a junior high school student who mentioned that her math class was challenging. He wrote back, “Do not worry about your difficulties in mathematics; I can assure you that mine are still greater.” Today we know that his sentiment could also have been directed at crows, which are better at math than those members of various congressional committees that deal with science who refuse to acknowledge that global temperatures keep getting higher. Studies show that crows can easily discriminate between a group of, say, three objects and another containing nine. They have more trouble telling apart groups that are almost the same size, but unlike the aforementioned committee members, at least they're trying. A study in the Proceedings of the National Academy of Sciences USA finds that the brain of a crow has nerve cells that specialize in determining numbers—a method quite similar to what goes on in our primate brain. Human and crow brains are substantially different in size and organization, but convergent evolution seems to have decided that this kind of neuron-controlled numeracy is a good system. (Crows are probably unaware of evolution, which is excusable. Some members of various congressional committees that deal with science pad their reactionary résumés by not accepting evolution, which is astonishing.) © 2015 Scientific American

Keyword: Intelligence; Attention
Link ID: 21390 - Posted: 09.09.2015

By Susan Milius The larger Pacific striped octopus hunts shrimp using a strategy worthy of a schoolyard prank. And that’s not the only oddity about the species. It’s only the second octopus known with females that prolong motherhood, instead of dying after weeks of all-out coddling a single brood. But what everyone wants to talk about, researchers who study the species have found, is beak-to-beak mating. Before writhing, wrestling videos of the larger Pacific striped octopus (nicknamed LPSO), biologists knew of two forms of eight-armed sex. Some species mate at a distance, says Roy Caldwell of the University of California, Berkeley. The male extends one arm, always the same one, toward the female and up under her mantle. A travel-ready package of sperm emerges onto his skin and settles into a specialized groove on his mating arm. Waves of arm flexing resembling mammal intestinal motions nudge the packet toward one of two openings to her reproductive tracts. “It’s a messy way of reproducing,” Caldwell says. A lot of sperm packets “are wasted and go floating off.” Distance mating has other challenges. In an Indonesian octopus species, Caldwell’s former student Christine Huffard of the Monterey Bay Aquarium Research Institute discovered males hunkered in their dens sending an arm across the seafloor into the den of the female next door. On occasion, such females leave their dens on some octopus errand, dragging the male along by his mating arm. © Society for Science & the Public 2000 - 2015.

Keyword: Sexual Behavior
Link ID: 21389 - Posted: 09.09.2015

By Emily Chung, Whadd'ya at? Ow ya goin'? If you were at a picnic with a bunch of Newfoundlanders or Australians, those are the greetings you might fling around. Similarly, scientists who eavesdrop on sperm whales – Moby Dick's species — have found they also have distinct "dialects." And a new study suggests like human dialects, they arise through cultural learning. "Cultural transmission seems key to the partitioning of sperm whales into… clans," the researchers wrote in a paper published today in the journal Nature Communications. Sperm whales live around the world, mainly in deeper waters far offshore. The solitary males live in colder areas, and roam in Canadian waters in areas where the ocean depth is more than 1000 metres, says Mauricio Cantor, the Dalhousie University PhD. student who led the new study with Hal Whitehead, a Dalhousie biology professor. The females live in warmer, more southern waters, in loose family groups of around seven to 12 whales – sisters, aunts, grandmothers, cousins, and the occasional unrelated friend and their calves. Sometimes, they meet up with other families for gatherings of up to 200 whales, similar to human picnics or festivals. These can last from a few hours to a few days. The whales that gather in these groups, called clans, have distinct "dialects" of patterns of clicks called codas that are distinct from the clicks they use in echolocation when they're hunting for food. They use codas talk to each other when they surface between dives. ©2015 CBC/Radio-Canada.

Keyword: Language; Evolution
Link ID: 21388 - Posted: 09.09.2015

By Bruce Bower Lemurs don’t yawn in the face of danger. They wait a few minutes after perils have passed before breaking into breathy mouth gapes. Lemurs in a southern Madagascar reserve yawned frequently within 10 minutes of fighting with other lemurs, surviving attacks by predatory birds and coming close to snakes, tourists or other potential dangers, primatologist Elisabetta Palagi of the University of Pisa in Italy and her colleagues report August 28 in the American Journal of Primatology. Lemurs largely stopped yawning after that brief outburst. This pattern held for 13 ring-tailed lemurs and 15 Verreaux’s sifakas tracked daily for three months in 2011. Recurring dangers that lemurs learn to escape or avoid elicit moderate, brief anxiety, the researchers suspect. Yawning amps up as animals rapidly return to calmness, much as it increases when lemurs take rest breaks during the day, Palagi’s team says. Many physiological and social forces contribute to yawning, they add. Citations A. Zannella et al. Testing yawning hypotheses in wild populations of two strepsirrhine species: Propithecus verreauxi and Lemur catta. American Journal of Primatology. Published August 28, 2015. doi:10.1002/ajp.22459. © Society for Science & the Public 2000 - 2015.

Keyword: Emotions
Link ID: 21387 - Posted: 09.09.2015

A particular region of the brain may drive smoking addiction, say scientists who found stroke survivors with damage to their insular cortex more easily kicked the habit. They studied 156 stroke patients with different patterns of brain injury. More of those with insular cortex damage successfully gave up smoking and reported fewer withdrawal symptoms than the other stroke patients. Experts say targeting this brain area may help other smokers quit. Most stop smoking medicines currently on the market work by blocking the brain's reward pathways in response to nicotine. And patches and gums aim to lessen cravings by supplying a controlled dose of nicotine as the person weans themselves off tobacco. But post-graduate researcher Amir Abdolahi and colleagues believe the insular cortex could be a valuable new target for quit smoking aids. Therapies that could hone in on this area of the brain and disrupt its role in addiction, potentially with new drugs or other techniques such as deep brain stimulation or transcranial magnetic stimulation, should be explored, they say. "Much more research is needed in order for us to more fully understand the underlying mechanism and specific role of the insular cortex, but it is clear that something is going on in this part of the brain that is influencing addiction," Mr Abdolahi said. The research findings are published in two medical journals - Addiction and Addictive Behaviors. The patients in the study were smokers who had been admitted to hospital because of a stroke. Medical scans revealed that 38 of them had suffered damage to the insular cortex, while the remaining 118 had damage to other parts of the brain. All of the patients were encouraged by their doctor to quit smoking. © 2015 BBC.

Keyword: Drug Abuse
Link ID: 21385 - Posted: 09.08.2015

By Michael Balter If you find yourself along the Atlantic coastal border between Spain and France, here are some phrases that might come in handy: Urte askotarako! (“Pleased to meet you!”), Eskerrik asko! (“Thank you!”), and Non daude komunak? (“Where is the toilet?”). Welcome to Basque Country, where many people speak a musical language that has no known relationship to any other tongue. Many researchers have assumed that Basque must represent a “relic language” spoken by the hunter-gatherers who occupied Western Europe before farmers moved in about 7500 years ago. But a new study contradicts that idea and concludes that the Basques are descended from a group of those early farmers that kept to itself as later waves of migration swept through Europe. The great majority of Europeans speak languages belonging to the Indo-European family, which includes such diverse tongues as German, Greek, Spanish, and French; a smaller number speak Uralic languages like Finnish, Hungarian, and Estonian. But Basque stands truly alone; what linguists call a “language isolate.” This uniqueness is a source of pride among the nearly 700,000 Basque speakers, some of whom have called for the creation of an independent nation separate from Spain and France. For scientists, however, Basque is a major unsolved mystery. In the 19th century, some anthropologists claimed that Basques had differently shaped skulls than other Europeans. Yet although that racial idea had been discredited by the 20th century, researchers have been able to show that the Basques have a striking number of genetic differences that set them apart from other Europeans. Variations in their immune cells and proteins include a higher-than-normal frequency of Rh-negative blood types, for example. Those findings led to the hypothesis that the Basques descended from early hunter-gatherers who had somehow avoided being genetically overwhelmed when farming spread into Europe from the Near East. But some recent studies have questioned just how genetically distinct the Basques really are. © 2015 American Association for the Advancement of Science.

Keyword: Language
Link ID: 21384 - Posted: 09.08.2015

Erin Wayman Nose picking isn’t a mark of distinction among people — but it is among monkeys. For the first time, researchers have reported a wild capuchin monkey using a tool to pick its nose and teeth. The monkey was caught in the act last year by Michael Haslam of the University of Oxford. For about five minutes, an adult female bearded capuchin (Sapajus libidinosus) in northeastern Brazil repeatedly inserted a twig or stem into its nostril, usually inducing a sneeze. The monkey also rubbed sticks back and forth against the base of its teeth, probably to dislodge debris, Haslam and Oxford colleague Tiago Falótico report in the July Primates. After picking its nose or teeth, the monkey often licked the tool tip, perhaps to wipe the stick clean. Bearded capuchins are quite handy, brandishing rocks to crack open nuts (SN Online: 4/30/15) and sticks to retrieve insects from crevices or to collect honey. But until now, no one had seen a wild capuchin use a tool as a nasal probe or toothpick. M. Haslam and T. Falótico. Nasal probe and toothpick tool use by a wild female bearded capuchin (Sapajus libidinosus). Primates. Vol. 56, July 2015, p. 211. doi: 10.1007/s10329-015-0470-6. © Society for Science & the Public 2000 - 2015

Keyword: Evolution
Link ID: 21382 - Posted: 09.08.2015

By Olivia Campbell Leave it to childbirth to cause a woman who’s never felt pain in her life to now experience persistent discomfort. When a 37-year-old woman with a condition known as congenital insensitivity to pain gave birth, her labor was as painless as expected. But during the delivery, she sustained pelvic fractures and an epidural hematoma that impinged on a nerve in her lower spine. Since then, she has added an unfortunate variety of words to her vocabulary: Her hips “hurt” and “ache;” she feels a “continuous buzzing in both legs and a vice-like squeezing in the pelvis.” When resting, she is left with “tingling” and “electric shocks.” She now has headaches, backaches, period pains, and stomach cramps; and even describes “the sting” of a graze and “the sharpness” of an exposed gum. According to doctors who treated her, the woman's sensitivity to pain -- tested on the tops of her feet -- is 10 times higher than it was before she gave birth. Congenital insensitivity to pain is an incredibly rare genetic disorder — there are only 20 recorded cases — that causes individuals to be totally unaware of pain. Co-author of the paper Michael Lee explained how pain pathways start with specialized nerves, called nociceptors, that sense damaging temperatures or pressure and then fire off signals to the brain. Those signals make us feel pain to prevent further damage. In people with CIP, a defective gene prevents these signals from going through. But pain can also arise when nociceptors or nerves are damaged, as was the case when this woman’s lumbar nerve was pinched during childbirth.

Keyword: Pain & Touch
Link ID: 21379 - Posted: 09.03.2015

In 1938, an Austrian pediatrician named Hans Asperger gave the first public talk on autism in history. Asperger was speaking to an audience of Nazis, and he feared that his patients — children who fell onto what we now call the autism spectrum — were in danger of being sent to Nazi extermination camps. As Asperger spoke, he highlighted his "most promising" patients, a notion that would stick with the autistic spectrum for decades to come. "That is where the idea of so-called high-functioning versus low-functioning autistic people comes from really — it comes from Asperger's attempt to save the lives of the children in his clinic," science writer Steve Silberman tells Fresh Air's Terry Gross. Silberman chronicles the history of autism and examines some of the myths surrounding our current understanding of the condition in his new book, NeuroTribes. Along the way, he revisits Asperger's calculated efforts to save his patients. Steve Silberman's articles have been published in Wired, The New Yorker, Nature and Salon. Silberman shies away from using the terms high-functioning and low-functioning, because "both of those terms can be off base," he says. But he praises Asperger's courage in speaking to the Nazis. "I would literally weep while I was writing that chapter," he says. NeuroTribes also explores how a 1987 expansion of the medical definition of autism (which was previously much narrower and led to less frequent diagnoses) contributed to the perception that there was an autism epidemic. © 2015 NPR

Keyword: Autism
Link ID: 21378 - Posted: 09.03.2015

Boer Deng Palaeontologist Stephen Gatesy wants to bring extinct creatures to life — virtually speaking. When he pores over the fossilized skeletons of dinosaurs and other long-dead beasts, he tries to imagine how they walked, ran or flew, and how those movements evolved into the gaits of their modern descendents. “I'm a very visual guy,” he says. But fossils are lifeless and static, and can only tell Gatesy so much. So instead, he relies on XROMM, a software package that he developed with his colleagues at Brown University in Providence, Rhode Island. XROMM (X-ray Reconstruction of Moving Morphology) borrows from the technology of motion capture, in which multiple cameras film a moving object from different angles, and markers on the object are rendered into 3D by a computer program. The difference is that XROMM uses not cameras, but X-ray machines that make videos of bones and joints moving inside live creatures such as pigs, ducks and fish. Understanding how the movements relate to the animals' bone structure can help palaeontologists to determine what movements would have been possible for fossilized creatures. “It's a completely different approach” to studying evolution, says Gatesy. XROMM, released to the public in 2008 as an open-source package, is one of a number of software tools that are expanding what researchers know about how animals and humans walk, crawl and, in some cases, fly (see ‘Movement from inside and out’). That has given the centuries-old science of animal motion relevance to a wide range of fields, from studying biodiversity to designing leg braces, prostheses and other assistive medical devices.“We're in an intense period of using camera-based and computer-based approaches to expand the questions we can ask about motion,” says Michael Dickinson, a neuroscientist at the California Institute of Technology in Pasadena. © 2015 Nature Publishing Group

Keyword: Movement Disorders
Link ID: 21370 - Posted: 09.01.2015

By LISA FELDMAN BARRETT Boston — IS psychology in the midst of a research crisis? An initiative called the Reproducibility Project at the University of Virginia recently reran 100 psychology experiments and found that over 60 percent of them failed to replicate — that is, their findings did not hold up the second time around. The results, published last week in Science, have generated alarm (and in some cases, confirmed suspicions) that the field of psychology is in poor shape. But the failure to replicate is not a cause for alarm; in fact, it is a normal part of how science works. Suppose you have two well-designed, carefully run studies, A and B, that investigate the same phenomenon. They perform what appear to be identical experiments, and yet they reach opposite conclusions. Study A produces the predicted phenomenon, whereas Study B does not. We have a failure to replicate. Does this mean that the phenomenon in question is necessarily illusory? Absolutely not. If the studies were well designed and executed, it is more likely that the phenomenon from Study A is true only under certain conditions. The scientist’s job now is to figure out what those conditions are, in order to form new and better hypotheses to test. A number of years ago, for example, scientists conducted an experiment on fruit flies that appeared to identify the gene responsible for curly wings. The results looked solid in the tidy confines of the lab, but out in the messy reality of nature, where temperatures and humidity varied widely, the gene turned out not to reliably have this effect. In a simplistic sense, the experiment “failed to replicate.” But in a grander sense, as the evolutionary biologist Richard Lewontin has noted, “failures” like this helped teach biologists that a single gene produces different characteristics and behaviors, depending on the context. © 2015 The New York Times Company

Keyword: Attention
Link ID: 21369 - Posted: 09.01.2015

When we move our head, the whole visual world moves across our eyes. Yet we can still make out a bee buzzing by or a hawk flying overhead, thanks to unique cells in the eye called object motion sensors. A new study on mice helps explain how these cells do their job, and may bring scientists closer to understanding how complex circuits are formed throughout the nervous system. The study was funded by the National Institutes of Health, and was published online in Nature. “Understanding how neurons are wired together to form circuits in the eye is fundamental for advancing potential new therapies for blinding eye diseases,” said Paul A. Sieving, M.D., Ph.D., director of NIH’s National Eye Institute (NEI). “Research aimed at regenerating photoreceptors, for example, is enriched by efforts to understand the circuitry in the eye.” Object motion sensors are one of about 30 different types of retinal ganglion cells (RGCs) in the retina, the light-sensitive tissue at the back of the eye. These cells are unique because they fire only when the timing of a small object’s movement differs from that of the background; they are silent when the object and the background move in sync. Researchers believe this is critical to our ability to see small objects moving against a backdrop of complex motion. The cells in the retina are wired up like an electrical circuit. Vision begins with photoreceptors, cells that detect light entering the eye and convert it into electrical signals. Middleman neurons, called interneurons, shuttle signals from photoreceptors to the RGCs. And each RGC sends the output visual information deeper into the brain for processing. This all takes place within fractions of a second, so the scientists were surprised to discover that before it reaches object motion sensors, visual information about object motion takes a detour through a unique type of interneuron. Their results represent an ongoing effort by scientists to map out complex circuits of the nervous system.

Keyword: Vision
Link ID: 21368 - Posted: 09.01.2015

By EREZ YOELI and DAVID RAND Recently, three young American men and a British businessman thwarted a gunman’s attack on a French passenger train, acting within seconds and at enormous personal risk. When interviewed afterward, they stressed the unthinking nature of their actions. “It was just gut instinct,” said one, in a characteristic remark. “It wasn’t really a conscious decision.” This turns out to be typical of heroes. Last year, one of us, Professor Rand, together with his colleague Ziv Epstein, conducted an analysis of recipients of the Carnegie Medal for heroism, which is awarded to those who risk their lives for others. After collecting interviews given by 51 recipients and evaluating the transcripts, we found that the heroes overwhelming described their actions as fast and intuitive, and virtually never as carefully reasoned. This was true even in cases where the heroes had sufficient time to stop and think. Christine Marty, a college student who rescued a 69-year-old woman trapped in a car during a flash flood, said she was grateful that she didn’t take the time to reflect: “I’m thankful I was able to act and not think about it.” We found almost no examples of heroes whose first impulse was for self-preservation but who overcame that impulse with a conscious, rational decision to help. It is striking that our brute instincts, rather than our celebrated higher cognitive faculties, are what lead to such moral acts. But why would anyone ever develop such potentially fatal instincts? One possible explanation is that in most everyday situations, helping others pays off in the long run. You buy lunch for a friend or pitch in to help a colleague meet a tight deadline, and you find yourself repaid in kind, or even more, down the road. So it’s beneficial to develop a reflex to help — especially because the cost to you is usually quite small. © 2015 The New York Times Company

Keyword: Emotions
Link ID: 21365 - Posted: 08.31.2015

Depressed people who display "risky behaviour", agitation and impulsivity are at least 50% more likely to attempt suicide, a study has found. Research by the European College of Neuropsychopharmacology (ECNP) concluded that the behaviour patterns "precede many suicide attempts". The study said effective prevention measures were "urgently needed". The World Health Organisation estimates that there were more than 800,000 suicides worldwide in 2012. The ECNP study evaluated 2,811 patients suffering from depression, of whom 628 had previously attempted suicide. Researchers "looked especially at the characteristics and behaviours of those who had attempted suicide", and found that "certain patterns recur" before attempts. They said the risk of an attempt was "at least 50% higher" if a depressed patient displayed: "risky behaviour" such as reckless driving or promiscuous behaviour "psychomotor agitation" such as pacing around rooms or wringing their hands impulsivity - defined by the researchers as acting with "little or no forethought, reflection, or consideration of the consequences" Dr Dina Popovic, one of the report's authors, added: "We found that 'depressive mixed states' often preceded suicide attempts. "A depressive mixed state is where a patient is depressed, but also has symptoms of 'excitation', or mania." © 2015 BBC.

Keyword: Depression
Link ID: 21364 - Posted: 08.31.2015

By Lily Hay Newman Mental health issues manifest in a number of ways, and they're not all behavioral. Increasingly, scientists are using speech analysis software to detect subtle changes in voice acoustics and patterns to detect or even predict potentially problematic conditions. A study published Wednesday in NPG-Schizophrenia by researchers at Columbia University Medical Center, the New York State Psychiatric Institute, and IBM's T. J. Watson Research Center found that digital speech analysis correctly predicted whether 34 youths at risk for mental illness (11 female, 23 male) would develop psychosis within 2.5 years. The system, which evaluated the study participants quarterly, correctly predicted all of their outcomes; five became psychotic. The algorithm evaluated transcripts for predictive "semantic and syntactic features" like coherence and phrase length. "These speech features predicted later psychosis development with 100% accuracy, outperforming classification from clinical interviews," the researchers wrote. Clinicians are able to accurately categorize patients as "at-risk," but within that subpopulation it is difficult to determine who will actually experience psychosis and potentially develop schizophrenia. If voice recognition software can help identify these individuals, they may be able to receive more effective care. "Computerized analysis of complex human behaviors such as speech may present an opportunity to move psychiatry beyond reliance on self-report and clinical observation toward more objective measures of health and illness in the individual patient," the researchers wrote. © 2015 The Slate Group LLC.

Keyword: Schizophrenia
Link ID: 21362 - Posted: 08.31.2015

By GREGORY COWLES Oliver Sacks, the neurologist and acclaimed author who explored some of the brain’s strangest pathways in best-selling case histories like “The Man Who Mistook His Wife for a Hat,” using his patients’ disorders as starting points for eloquent meditations on consciousness and the human condition, died on Sunday at his home in Manhattan. He was 82. The cause was cancer, said Kate Edgar, his longtime personal assistant. Dr. Sacks announced in February, in an Op-Ed essay in The New York Times, that an earlier melanoma in his eye had spread to his liver and that he was in the late stages of terminal cancer. As a medical doctor and a writer, Dr. Sacks achieved a level of popular renown rare among scientists. More than a million copies of his books are in print in the United States, his work was adapted for film and stage, and he received about 10,000 letters a year. (“I invariably reply to people under 10, over 90 or in prison,” he once said.) Dr. Sacks variously described his books and essays as case histories, pathographies, clinical tales or “neurological novels.” His subjects included Madeleine J., a blind woman who perceived her hands only as useless “lumps of dough”; Jimmie G., a submarine radio operator whose amnesia stranded him for more than three decades in 1945; and Dr. P. — the man who mistook his wife for a hat — whose brain lost the ability to decipher what his eyes were seeing. Describing his patients’ struggles and sometimes uncanny gifts, Dr. Sacks helped introduce syndromes like Tourette’s or Asperger’s to a general audience. But he illuminated their characters as much as their conditions; he humanized and demystified them. © 2015 The New York Times Company

Keyword: Miscellaneous
Link ID: 21361 - Posted: 08.31.2015

An experimental gene therapy reduces the rate at which nerve cells in the brains of Alzheimer’s patients degenerate and die, according to new results from a small clinical trial, published in the current issue of the journal JAMA Neurology. Targeted injection of the Nerve Growth Factor gene into the patients’ brains rescued dying cells around the injection site, enhancing their growth and inducing them to sprout new fibres. In some cases, these beneficial effects persisted for 10 years after the therapy was first delivered. Alzheimer’s is the world’s leading form of dementia, affecting an estimated 47 million people worldwide. This figure is predicted to almost double every 20 years, with much of this increase is likely to be in the developing world. And despite the huge amounts of time, effort, and money devoted to developing an effective cure, the vast majority of new drugs have failed in clinical trials. The new results are preliminary findings from the very first human trials designed to test the potential benefits of nerve growth factor (NGF) gene therapy for Alzheimer’s patients. NGF was discovered in the 1940s by Rita Levi-Montalcini, who convincingly demonstrated that the small protein promotes the survival of certain sub-types of sensory neurons during development of the nervous system. Since then, others have shown that it also promotes the survival of acetylcholine-producing cells in the basal forebrain, which die off in Alzheimer’s. © 2015 Guardian News and Media Limited

Keyword: Alzheimers; Trophic Factors
Link ID: 21360 - Posted: 08.29.2015