Links for Keyword: Hearing

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 21 - 40 of 535

by Bethany Brookshire CHIGAGO – From a cockatoo bopping to the Backstreet Boys to a sea lion doing the boogie, nothing goes viral like an animal swaying to the music. Now, research shows that not only can bonobos feel the beat, they can play along. Music “engages the brain in a way that no other stimulus can,” says cognitive psychologist Edward Large of the University of Connecticut in Storrs. He and Patricia Gray, a biomusic researcher at the University of North Carolina at Greensboro, wanted to see if bonobos, which share 98.7 percent of their DNA with humans, might respond similarly to musical rhythms. The researchers gave a group of bonobos access to a specially tailored drum, then showed them people drumming rhythmically. Eventually three animals picked up the beat and were able to match tempos with the scientists. Bonobos were also found to prefer a faster pace than most people. Large and Gray presented their findings February 15 at the American Association for the Advancement of Science annual meeting. Rhythm involves the coordination of many brain areas, such as auditory and motor regions. Further research could help scientists understand whether only a few species can keep the beat, or if moving to the groove is widespread in the animal kingdom. © Society for Science & the Public 2000 - 2013.

Related chapters from BP7e: Chapter 9: Hearing, Vestibular Perception, Taste, and Smell; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell; Chapter 14: Attention and Consciousness
Link ID: 19254 - Posted: 02.17.2014

Carl Zimmer In 2011, a 66-year-old retired math teacher walked into a London neurological clinic hoping to get some answers. A few years earlier, she explained to the doctors, she had heard someone playing a piano outside her house. But then she realized there was no piano. The phantom piano played longer and longer melodies, like passages from Rachmaninov’s Piano Concerto number 2 in C minor, her doctors recount in a recent study in the journal Cortex. By the time the woman — to whom the doctors refer only by her first name, Sylvia — came to the clinic, the music had become her nearly constant companion. Sylvia hoped the doctors could explain to her what was going on. Sylvia was experiencing a mysterious condition known as musical hallucinations. These are not pop songs that get stuck in your head. A musical hallucination can convince people there is a marching band in the next room, or a full church choir. Nor are musical hallucinations the symptoms of psychosis. People with musical hallucinations usually are psychologically normal — except for the songs they are sure someone is playing. The doctors invited Sylvia to volunteer for a study to better understand the condition. She agreed, and the research turned out to be an important step forward in understanding musical hallucinations. The scientists were able to compare her brain activity when she was experiencing hallucinations that were both quiet and loud — something that had never been done before. By comparing the two states, they found important clues to how the brain generates these illusions. If a broader study supports the initial findings, it could do more than help scientists understand how the brain falls prey to these phantom tunes. It may also shed light on how our minds make sense of the world. © 2014 The New York Times Company

Related chapters from BP7e: Chapter 9: Hearing, Vestibular Perception, Taste, and Smell; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell; Chapter 14: Attention and Consciousness
Link ID: 19252 - Posted: 02.15.2014

Dinsa Sachan Could being visually impaired have had a role in the musical genius of Stevie Wonder and Ray Charles? A study provides some clues by showing that adult mice kept in the dark quickly develop sharper hearing and become better at distinguishing pitch and frequency. The improvements were correlated with adaptations in the brain — such as strengthening of connections between neurons — that normally happen only early in life. For their study, published today in Neuron1, Hey-Kyoung Lee, a neuroscientist at Johns Hopkins University in Baltimore, Maryland, and her collaborators selected two sets of healthy adult mice. They kept the first group in a darkened environment for a week, while the other was exposed to natural light. The team used electrodes to measure activity in neurons in the animals' primary auditory cortex — the part of the brain that processes what a sound is, how loud it is and where it comes from. The researchers played sounds of different frequencies and intensities to the mice, and watched how their brain cells reacted. The results “showed that neurons in visually deprived animals can 'hear' much softer sounds” than in control animals, says Lee. “They also have much finer discrimination ability as far as identifying pitch goes.” Previous studies have found that changes in the auditory cortex take a long time, and that people who become blind early in life adapt better than those who lose their sight later. The team's findings, however, show that some modifications can occur rapidly in the adult brain, she says. “Moreover,” she adds, “the changes in the auditory cortex were achieved by changes in the strength of synaptic connections. These were believed to be unchangeable in adults.” © 2014 Nature Publishing Group

Related chapters from BP7e: Chapter 9: Hearing, Vestibular Perception, Taste, and Smell; Chapter 10: Vision: From Eye to Brain
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell; Chapter 7: Vision: From Eye to Brain
Link ID: 19217 - Posted: 02.06.2014

About two-thirds of people are left with ringing in their ears after a night out at a club, gig or pub, a poll suggests. Campaign group Action on Hearing Loss said the poll of 1,000 adults also showed a third would ignore the "safe level" on their music players. The group warns that people doing either increase the risk of tinnitus. DJ Paul Oakenfold urged people to wear ear defenders to gigs and to "turn down the volume". Half of those surveyed said they listened to music for between one and six hours a day - up to a third of their waking day - perhaps in the background at work or on their MP3 player on their way to and from work or studies. But one in five would not do anything differently to take any care of their hearing. Action on Hearing Loss warned that one in 10 people across the UK is affected by tinnitus every day, ranging from a "light buzzing" to a "constant roar" in the ears and head. It can affect everything from the ability to concentrate at work to getting to sleep at night. The poll also found that one in 10 people does not know what tinnitus is, with 3% thinking it was "big ears" and 4% a "repetitive strain injury". It has created an audio version of what tinnitus sounds like in order to raise awareness. Paul Breckell, chief executive of Action on Hearing Loss, said: "Listening to loud music for a long time can trigger tinnitus and is an indication of damaged hearing. BBC © 2014

Related chapters from BP7e: Chapter 9: Hearing, Vestibular Perception, Taste, and Smell
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell
Link ID: 19201 - Posted: 02.04.2014

By TRICIA ROMANO Like many men of his generation, Larry Faust, 61, of Seattle, went to a lot of rock concerts in his youth. And like many men of his generation, his hearing isn’t what it used to be. “My wife has been bugging me for several years to do something about my hearing,” said Mr. Faust. “I spent part of the summer of 1969 at Woodstock. So that probably didn’t help.” Instead of going the traditional route — buying hearing aids through an audiologist or licensed hearing aid dispenser — Mr. Faust purchased a device that is classified as a personal sound amplifier product, or P.S.A.P., which is designed to amplify sounds in a recreational environment. Unlike hearing aids, P.S.A.P.’s are exempt from Food and Drug Administration oversight and can be sold as electronic devices directly to consumers, with no need to see a physician before buying one. They come with a range of features and vary widely in price. And while some hearing professionals have long cautioned against the devices, citing their unreliability and poor quality, many also say that a new generation of P.S.A.P.s that utilize the latest wireless technology are offering promising alternatives for some people with hearing loss. The device Mr. Faust bought, the CS10 from a Chicago-based company called Sound World Solutions, cost $299.99, thousands of dollars cheaper than most digital hearing aids. While it has many of the same features that high-end hearing aids have, including 16 channels to process sound, directional microphones, feedback insulation and noise reduction, it has one capability that hearing aids and other devices on the market currently don’t have. It comes with software that enables consumers to program it themselves, a feature made possible in part by the adoption of the widely available Bluetooth wireless technology, rather than the proprietary platforms used by most wireless hearing aids. © 2014 The New York Times Company

Related chapters from BP7e: Chapter 9: Hearing, Vestibular Perception, Taste, and Smell
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell
Link ID: 19144 - Posted: 01.16.2014

Fifty million Americans experience chronic ringing in the ears, a condition known as tinnitus. But new research from the University of Michigan Medical School may soon provide solace to those suffering. The discovery helps to explain what is going on inside the brains of those with tinnitus and may provide a new approach to treat the nagging noise. The research team already has a patent pending and device in development. The findings, published in the Journal of Neuroscience, explain that a process called stimulus-timing dependent multisensory plasticity is altered in animals with tinnitus and the results have revealed the relationship between tinnitus, hearing loss and sensory input. Dr. Susan Shore, senior author of the paper notes that any treatment likely will have to be customized to each patient and delivered on a regular basis. Some patients may be more likely to benefit than others. © 1996-2013 MacNeil/Lehrer Productions

Related chapters from BP7e: Chapter 9: Hearing, Vestibular Perception, Taste, and Smell
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell
Link ID: 19050 - Posted: 12.18.2013

Bats can understand the emotional state of other bats from the intonations of their calls, a new study suggests. In the lab, researchers observed greater false vampire bats (Megaderma lyra, pictured) that had been trained to wait for food on a perch. In some tests, they played “aggression calls” over a speaker, typically made by a bat defending its place on a perch from an approaching bat. In other trials, the researchers played “appeasement calls” often made by a bat approaching one already ensconced on a perch and thus seeking to share its space. (Bats were tested individually, and the use of recorded calls ensured that the bats were responding to the content of the call and not visual cues from another bat.) In all tests, the scientists played a call once every 20 seconds until the bats began to ignore the call (by not turning toward the speaker), and then they played a slightly different version of the same call—one that was either more urgent (with shorter, more closely spaced syllables) or less urgent. The novel aggression calls always caused a bat to turn toward the speaker, but the novel appeasement calls only drew a response when they became more urgent, the researchers report online today in Frontiers of Zoology. The failure of a bat to react to weakening appeasement calls suggests that the bats can interpret the emotional content of the calls—a sign that such perception might exist more widely in mammals than previously thought. © 2013 American Association for the Advancement of Science.

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 9: Hearing, Vestibular Perception, Taste, and Smell
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 6: Hearing, Balance, Taste, and Smell
Link ID: 19037 - Posted: 12.16.2013

Associated Press The U.S. Navy plans to increase sonar testing over the next five years, even as research it funded reveals worrying signs that the loud underwater noise could disturb whales and dolphins. Reported mass strandings of whale species have increased worldwide since the military started using sonar half a century ago. Scientists think the sounds scare animals into shallow waters where they can become disoriented and wash ashore, but technology capable of close monitoring has emerged only in the past decade. Aside from strandings, biologists are concerned marine mammals could suffer prolonged stress from changes in diving, feeding and communication. Two studies off the Southern California coast found certain endangered blue whales and beaked whales stopped feeding and fled from recordings of sounds similar to military sonar. Beaked whales are highly sensitive to sound and account for the majority of beachings near military exercises. Scientists, however, were surprised by the reaction of blue whales - the world's largest animal - long thought to be immune to the high-pitched sounds. It's unclear how the change in behavior would affect the overall population, estimated at between 5,000 and 12,000 animals. The studies involved only a small group of tagged whales, and noise levels were less intense than what's used by the Navy. Shy species - such as the Cuvier's beaked whale, which can dive 3,000 feet below the surface - have taken years to find and monitor. "This is a warning flag and deserves more research," said Stanford University biologist Jeremy Goldbogen, who led the blue whale study published this summer in the journal Proceedings of the Royal Society B. © 2013 Hearst Communications, Inc.

Related chapters from BP7e: Chapter 9: Hearing, Vestibular Perception, Taste, and Smell
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell
Link ID: 19036 - Posted: 12.16.2013

By NICHOLAS BAKALAR A high body mass and a large waist are both associated with self-reported hearing loss, a new study has found. Researchers used data from a 20-year prospective study of 68,421 women who were25 to 42 years old at the start. After controlling for age, smoking, diabetes, hypertension and other factors, they found that the higher the body mass index, the greater the risk for hearing loss. Compared with women with a B.M.I. under 25, those with an index of 25 to 29 had an 8 percent increased risk. The numbers kept going up in tandem: 11 percent for 30 to 34, 16 percent for 35 to 39 and 19 percent for those above 40. The increasing risk associated with larger waist circumference followed a similar pattern. The study, published in the December issue of The American Journal of Medicine, found that moderate physical activity — as little as four hours of walking a week — also reduced the risk for hearing loss. Researchers found no further advantage in more vigorous exercise. The lead author, Dr. Sharon G. Curhan, a clinical researcher at Brigham and Women’s Hospital in Boston, suggested that obesity might compromise blood flow to the inner ear, and that exercise might improve it, which could explain the associations. “Hearing loss may not be an inevitable part of growing older,” she said. “There may be things we can do to prevent it.” Copyright 2013 The New York Times Company

Related chapters from BP7e: Chapter 9: Hearing, Vestibular Perception, Taste, and Smell; Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell; Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 19004 - Posted: 12.06.2013

By JOYCE COHEN Earlier this fall, Seattle Seahawks fans at CenturyLink Field broke the world record for loudest stadium crowd with a skull-splitting 136.6 decibels. That volume, as the Seahawks’ website boasts, hits the scale somewhere between “serious hearing damage” and “eardrum rupture.” Just weeks later, Kansas City Chiefs fans at Arrowhead Stadium topped that number with 137.5 screaming decibels of their own. The measuring method used for the Guinness World Record has an edge of gimmickry. That A-weighted peak measurement, reached for a split second near the measuring device, displays the highest possible readout. For a vulnerable ear, however, game-day noise isn’t just harmless fun. With peaks and troughs, the decibel level of noise reaching a typical spectator averages in the mid-90s, but for a longer time. Such noise is enough to cause permanent damage and to increase the likelihood of future damage. “The extent to which hearing-related issues get so little attention is amazing and troubling,” said M. Charles Liberman, a professor of otology at Harvard Medical School and director of a hearing research lab at the Massachusetts Eye and Ear Infirmary. “Many people are damaging their ears with repeated noise exposure such that their hearing abilities will significantly diminish as they age, much more so than if they were more careful,” he said. Ears are deceptive. Even if they seem to recover from the muffling, ringing and fullness after a rousing game, they don’t really recover. It’s not just the tiny sensory cells in the cochlea that are damaged by noise, Dr. Liberman said, but also the nerve fibers between the ears and the brain that degrade over time. Copyright 2013 The New York Times Company

Related chapters from BP7e: Chapter 9: Hearing, Vestibular Perception, Taste, and Smell
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell
Link ID: 18950 - Posted: 11.21.2013

by Colin Barras IT'S musical mind-reading. Your patterns of brain activity can show what song you are listening to. In the area of the brain that processes sound – the auditory cortex – different neurons become active in response to different sound frequencies. So it should be possible to work out which musical note someone is listening to just by looking at this activity, says Geoff Boynton at the University of Washington in Seattle. To find out, Boynton and his colleague Jessica Thomas had four volunteers listen to various notes, while they used fMRI to record the resulting neural activity. "Then the game is to play a song and use the neural activity to guess what was played," he says. They were able to identify melodies like Twinkle, Twinkle, Little Star from neural activity alone, Boynton told the Society for Neuroscience annual meeting in San Diego, California, this week. The results could help probe the neural roots of people who are tone deaf. This can be a problem for people with cochlear implants, says Rebecca Schaefer, who researches neuroscience and music at the University of California in Santa Barbara. Another study into the music of the mind, also presented this week in San Diego, suggests that the brain is highly attuned to rhythm and this might explain why we talk at certain speeds. David Poeppel at New York University and his colleagues monitored brain activity in 12 volunteers while they listened to three piano sonatas. One sonata had a quick tempo, with around eight notes per second, one had five per second, and the slowest had one note every 2 seconds. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 9: Hearing, Vestibular Perception, Taste, and Smell
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell
Link ID: 18924 - Posted: 11.14.2013

by Jennifer Viegas Music skills evolved at least 30 million years ago in the common ancestor of humans and monkeys, according to a new study that could help explain why chimpanzees drum on tree roots and monkey calls sound like singing. The study, published in the latest issue of Biology Letters, also suggests an answer to this chicken-and-egg question: Which came first, language or music? The answer appears to be music. "Musical behaviors would constitute a first step towards phonological patterning, and therefore language," lead author Andrea Ravignani told Discovery News. For the study, Ravignani, a doctoral candidate at the University of Vienna's Department of Cognitive Biology, and his colleagues focused on an ability known as "dependency detection." This has to do with recognizing relationships between syllables, words and musical notes. For example, once we hear a certain pattern like Do-Re-Mi, we listen for it again. Hearing something like Do-Re-Fa sounds wrong because it violates the expected pattern. Normally monkeys don't respond the same way, but this research grabbed their attention since it used sounds within their frequency ranges. In the study, squirrel monkeys sat in a sound booth and listened to a set of three novel patterns. (The researchers fed the monkeys insects between playbacks, so the monkeys quickly got to like this activity.) Whenever a pattern changed, similar to our hearing Do-Re-Fa, the monkeys stared longer, as if to say, "Huh?" © 2013 Discovery Communications, LLC.

Related chapters from BP7e: Chapter 9: Hearing, Vestibular Perception, Taste, and Smell; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell
Link ID: 18918 - Posted: 11.13.2013

By PAULA SPAN Jim Cooke blames his hearing loss on the constant roar of C-119 aircraft engines he experienced in the Air Force. He didn’t wear protective gear because, like most 20-year-olds, “you think you’re indestructible,” he said. By the time he was 45, he needed hearing aids for both ears. Still, he had a long career as a telephone company executive while he and his wife, Jean, raised two children in Broadview Heights, Ohio. Only after retirement, he told me in an interview, did he start having trouble communicating. Jean and Jim Cooke Jean and Jim Cooke Mr. Cooke had to relinquish a couple of part-time jobs he enjoyed because “I felt insecure about dealing with people on the phone,” he said. He withdrew from a church organization he led because he couldn’t grasp what members were saying at meetings. “He didn’t want to be in social situations,” Mrs. Cooke said. “It gave him a feeling of inadequacy, and anger at times.” Two years ago, when their grandchildren began saying that Granddad needed to replace his hearing aid batteries — although the batteries were fine — the Cookes went to the Cleveland Clinic, where an audiologist there, Dr. Sarah Sydlowski, told Jim that at 76, he might consider a cochlear implant. Perhaps the heart-tugging YouTube videos of deaf toddlers suddenly hearing sounds have led us to think of cochlear implants as primarily for children. Or perhaps, said Dr. Frank R. Lin, a Johns Hopkins University epidemiologist, we consider late-life hearing loss normal (which it is), “an unfortunate but inconsequential aspect of aging,” and don’t explore treatment beyond hearing aids. In any case, the idea of older adults having a complex electronic device surgically implanted has been slow to catch on, even though by far the greatest number of people with severe hearing loss are seniors. © 2013 The New York Times Company

Related chapters from BP7e: Chapter 9: Hearing, Vestibular Perception, Taste, and Smell
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell
Link ID: 18912 - Posted: 11.12.2013

by Laura Sanders Neonatal intensive care units are crammed full of life-saving equipment and people. The technology that fills these bustling hubs is responsible for saving the lives of fragile young babies. That technology is also responsible for quite a bit of noise. In the NICU, monitors beep, incubators whir and nurses, doctors and family members talk. This racket isn’t just annoying: NICU noise often exceeds acceptable levels set by the American Academy of Pediatrics, a 2009 analysis found. To dampen the din, many hospitals are shifting away from open wards to private rooms for preemies. Sounds like a no-brainer, right? Fragile babies get their own sanctuaries where they can recover and grow in peace. But in a surprising twist, a new study finds that this peace and quiet may actually be bad for some babies. Well aware of the noise problem in the NICU ward, Roberta Pineda of Washington University School of Medicine in St. Louis and colleagues went into their study of 136 preterm babies expecting to see benefits in babies who stayed in private rooms. Instead, the researchers found the exact opposite. By the time they left the hospital, babies who stayed in private rooms had less mature brains than those who stayed in an open ward. And two years later, babies who had stayed in private rooms performed worse on language tests. The results were not what the team expected. “It was extremely surprising,” Pineda told me. The researchers believe that the noise abatement effort made things too quiet for these babies. As distressing data from Romanian orphanages highlights, babies need stimulation to thrive. Children who grew up essentially staring at white walls with little contact from caregivers develop serious brain and behavioral problems, heartbreaking results from the Bucharest Early Intervention Project show. Hearing language early in life, even before birth, might be a crucial step in learning to talk later. And babies tucked away in private rooms might be missing out on some good stimulation. © Society for Science & the Public 2000 - 2013

Related chapters from BP7e: Chapter 9: Hearing, Vestibular Perception, Taste, and Smell; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell; Chapter 13: Memory, Learning, and Development
Link ID: 18898 - Posted: 11.09.2013

Learning a musical instrument as a child gives the brain a boost that lasts long into adult life, say scientists. Adults who used to play an instrument, even if they have not done so in decades, have a faster brain response to speech sounds, research suggests. The more years of practice during childhood, the faster the brain response was, the small study found. The Journal of Neuroscience work looked at 44 people in their 50s, 60s and 70s. The volunteers listened to a synthesised speech syllable, "da", while researchers measured electrical activity in the region of the brain that processes sound information - the auditory brainstem. Despite none of the study participants having played an instrument in nearly 40 years, those who completed between four and 14 years of music training early in life had a faster response to the speech sound than those who had never been taught music. Lifelong skill Researcher Michael Kilgard, of Northwestern University, said: "Being a millisecond faster may not seem like much, but the brain is very sensitive to timing and a millisecond compounded over millions of neurons can make a real difference in the lives of older adults." As people grow older, they often experience changes in the brain that compromise hearing. For instance, the brains of older adults show a slower response to fast-changing sounds, which is important for interpreting speech. Musical training may help offset this, according to Dr Kilgard's study. BBC © 2013

Related chapters from BP7e: Chapter 9: Hearing, Vestibular Perception, Taste, and Smell; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell; Chapter 13: Memory, Learning, and Development
Link ID: 18887 - Posted: 11.07.2013

On Easter Sunday in 2008, the phantom noises in Robert De Mong’s head dropped in volume -- for about 15 minutes. For the first time in months, he experienced relief, enough at least to remember what silence was like. And then they returned, fierce as ever. It was six months earlier that the 66-year-old electrical engineer first awoke to a dissonant clamor in his head. There was a howling sound, a fingernails-on-a-chalkboard sound, “brain zaps” that hurt like a headache and a high frequency "tinkle" noise, like musicians hitting triangles in an orchestra. Many have since disappeared, but two especially stubborn noises remain. One he describes as monkeys banging on symbols. Another resembles frying eggs and the hissing of high voltage power lines. He hears those sounds every moment of every day. De Mong was diagnosed in 2007 with tinnitus, a condition that causes a phantom ringing, buzzing or roaring in the ears, perceived as external noise. When the sounds first appeared, they did so as if from a void, he said. No loud noise trauma had preceded the tinnitus, as it does for some sufferers -- it was suddenly just there. And the noises haunted him, robbed him of sleep and fueled a deep depression. He lost interest in his favorite hobby: tinkering with his ‘78 Trans Am and his two Corvettes. He stopped going into work. That month, De Mong visited an ear doctor, who told him he had high frequency hearing loss in both ears. Another doctor at the Stanford Ear, Nose and Throat clinic confirmed it, and suggested hearing aids as a possibility. They helped the hearing, but did nothing for the ringing. © 1996-2013 MacNeil/Lehrer Productions.

Related chapters from BP7e: Chapter 9: Hearing, Vestibular Perception, Taste, and Smell
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell
Link ID: 18885 - Posted: 11.07.2013

by Sarah Zielinski In the United States, you’re rarely far from a road. And as you get closer to one, or other bits of human infrastructure, bird populations decline. But are the birds avoiding our cars or the noises produced by them? Noise might be a big factor, scientists have reasoned, because they’ve seen declines in bird populations near noisy natural gas compressor sites. It turns out that the sound of cars driving down a road is enough to deter many bird species from an area. Researchers from Boise State University in Idaho created a “phantom road” at a site in the Boise Foothills that is a stopover for migratory birds in the fall. They put up 15 speakers in Douglas fir trees and played recorded sounds of a road at intervals of four days — four days on, four days off. They then counted birds at three locations along their phantom road and three locations nearby where the road noises couldn’t be heard. The scientists spotted lots of birds during their study — more than 8,000 detections and 59 species. The birds they saw changed as the fall progressed, which was natural because the various species of migrating birds hit the stopover point at different times. But all that variation was good for the experiment, the researchers say, because it helped even out any fluctuations they might have seen from site to site and from noise-on to noise-off intervals, letting the researchers tease out the effects of the road noise. © Society for Science & the Public 2000 - 2013.

Related chapters from BP7e: Chapter 9: Hearing, Vestibular Perception, Taste, and Smell
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell
Link ID: 18879 - Posted: 11.06.2013

Brian Owens Bats that nest inside curled-up leaves may be getting an extra benefit from their homes: the tubular roosts act as acoustic horns, amplifying the social calls that the mammals use to keep their close-knit family groups together. South American Spix’s disc-winged bats (Thyroptera tricolor) roost in groups of five or six inside unfurling Heliconia and Calathea leaves. The leaves remain curled up for only about 24 hours, so the bats have to find new homes almost every day, and have highly specialized social calls to help groups stay together. When out flying, they emit a simple inquiry call. Bats inside leaves answer with a more complex response call to let group members know where the roost is. Gloriana Chaverri, a biologist at the University of Costa Rica in Golfito, took curled leaves into the lab and played recorded bat calls through them, to see how the acoustics were changed by the tapered tubular shape of the leaves. “The call emitted by flying bats got really amplified,” she says, “while the calls from inside the leaves were not amplified as much.” Sound system The inquiry calls from outside the roost were boosted by as much as 10 decibels as the sound waves were compressed while moving down the narrowing tube — the same thing that happens in an amplifying ear trumpet. Most response calls from inside the leaf were boosted by only 1–2 decibels, but the megaphone shape of the leaf made them highly directional. The results are published today in Proceedings of the Royal Society B1. © 2013 Nature Publishing Group

Related chapters from BP7e: Chapter 9: Hearing, Vestibular Perception, Taste, and Smell; Chapter 19: Language and Hemispheric Asymmetry
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell; Chapter 15: Language and Our Divided Brain
Link ID: 18791 - Posted: 10.16.2013

By PETER ANDREY SMITH In a cavernous basement laboratory at the University of Minnesota, Thomas Stoffregen thrusts another unwitting study subject — well, me — into the “moving room.” The chamber has a concrete floor and three walls covered in faux marble. As I stand in the middle, on a pressure sensitive sensor about the size of a bathroom scale, the walls lurch inward by about a foot, a motion so disturbing that I throw up my arms and stumble backward. Indeed, the demonstration usually throws adults completely off balance. I’m getting off lightly. Dr. Stoffregen, a professor of kinesiology, uses the apparatus to study motion sickness, and often subjects must stand and endure subtle computer-driven oscillations in the walls until they are dizzy and swaying. Dr. Stoffregen’s research has also taken him on cruises — cruise ships are to motion sickness what hospitals are to pneumonia. “No one’s ever vomited in our lab,” he said. “But our cruises are a different story.” For decades now, Dr. Stoffregen, 56, director of the university’s Affordance Perception-Action Laboratory, has been amassing evidence in support of a surprising theory about the causes of motion sickness. The problem does not arise in the inner ear, he believes, but rather in a disturbance in the body’s system for maintaining posture. The idea, once largely ignored, is beginning to gain grudging recognition. “Most theories say when you get motion sick, you lose your equilibrium,” said Robert Kennedy, a psychology professor at the University of Central Florida. “Stoffregen says because you lose your equilibrium, you get motion sick.” Motion sickness is probably a problem as old as passive transportation. The word “nausea” derives from the Greek for “boat,” but the well-known symptoms arise from a variety of stimuli: lurching on the back of a camel, say, or riding the Tilt-a-Whirl at a fair. “Pandemonium,” the perpetually seasick Charles Darwin called it. Copyright 2013 The New York Times Company

Related chapters from BP7e: Chapter 9: Hearing, Vestibular Perception, Taste, and Smell; Chapter 10: Vision: From Eye to Brain
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell; Chapter 7: Vision: From Eye to Brain
Link ID: 18691 - Posted: 09.24.2013

By Bruce Bower Babies have an ear for primeval dangers, a new study suggests. By age 9 months, infants pay special attention to sounds that have signaled threats to children’s safety and survival throughout human evolution, say psychologist Nicole Erlich of the University of Queensland, Australia, and her colleagues. Those sounds include a snake hissing, adults’ angry voices, a crackling fire, thunder claps and — as a possible indicator of a nearby but unseen danger — another infant’s cries. Noises denoting modern dangers, as well as pleasant sounds, failed to attract the same level of interest from 9-month-olds, Erlich and her colleagues report Aug. 27 in Developmental Science. People can learn to fear just about anything. But tens of thousands of years of evolution have primed infants’ brains to home in on longstanding perils, the scientists propose. “There is something special about evolutionarily threatening sounds that infants respond to,” Erlich says. Another study that supported that idea, by psychologist David Rakison of Carnegie Mellon University in Pittsburgh, found that 11-month-olds rapidly learn to associate fearful faces with images of snakes and spiders (SN: 9/26/09, p. 11). “There is now a coherent argument that infants are biologically prepared in at least two sensory systems to learn quickly which evolutionarily relevant objects to fear,” Rakison says. © Society for Science & the Public 2000 - 2013

Related chapters from BP7e: Chapter 9: Hearing, Vestibular Perception, Taste, and Smell; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell; Chapter 13: Memory, Learning, and Development
Link ID: 18627 - Posted: 09.10.2013