Chapter 19. Language and Hemispheric Asymmetry

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 21 - 40 of 1934

By NATALIE ANGIER SOUTH LUANGWA NATIONAL PARK, ZAMBIA — We saw the impala first, a young buck with a proud set of ridged and twisted horns, like helical rebar, bounding across the open plain at full, desperate gallop. But why? A moment later somebody in our vehicle gasped, and the answer became clear. Rising up behind the antelope, as though conjured on movie cue from the aubergine glow of the late afternoon, were six African wild dogs, running in single file. They moved with military grace and precision, their steps synchronized, their radio-dish ears cocked forward, their long, puppet-stick legs barely skimming the ground. Still, the impala had such a jump on them that the dogs couldn’t possibly catch up — could they? We gunned the engine and followed. The pace quickened. The dogs’ discipline held steady. They were closing the gap and oh, no, did I really want to watch the kill? To my embarrassed relief, the violence was taken off-screen, when prey and predators suddenly dashed up a hill and into obscuring bushes. By the time we reached the site, the dogs were well into their communal feast, their dark muzzles glazed with bright red blood, their white-tipped tails wagging in furious joy. “They are the most enthusiastic animals,” said Rosie Woodroffe of the Institute of Zoology in London, who has studied wild dogs for the last 20 years. “Other predators may be bigger and fiercer, but I would argue that there is nothing so enthusiastic as a wild dog,” she said. “They live the life domestic dogs wish they could live.” In 1997, while devising an action plan to help save the wild dog species, Lycaon pictus, Dr. Woodroffe felt anything but exuberant. Wild dogs were considered among the most endangered of Africa’s mammals; Dr. Woodroffe had yet to see one in the wild, and she feared she never would. © 2014 The New York Times Company

Keyword: Aggression; Aggression
Link ID: 19941 - Posted: 08.12.2014

Ian Sample, science editor Stroke patients who took part in a small pilot study of a stem cell therapy have shown tentative signs of recovery six months after receiving the treatment. Doctors said the condition of all five patients had improved after the therapy, but that larger trials were needed to confirm whether the stem cells played any part in their progress. Scans of the patients' brains found that damage caused by the stroke had reduced over time, but similar improvements are often seen in stroke patients as part of the normal recovery process. At a six-month check-up, all of the patients fared better on standard measures of disability and impairment caused by stroke, but again their improvement may have happened with standard hospital care. The pilot study was designed to assess only the safety of the experimental therapy and with so few patients and no control group to compare them with, it is impossible to draw conclusions about the effectiveness of the treatment. Paul Bentley, a consultant neurologist at Imperial College London, said his group was applying for funding to run a more powerful randomised controlled trial on the therapy, which could see around 50 patients treated next year. "The improvements we saw in these patients are very encouraging, but it's too early to draw definitive conclusions about the effectiveness of the therapy," said Soma Banerjee, a lead author and consultant in stroke medicine at Imperial College Healthcare NHS Trust. "We need to do more tests to work out the best dose and timescale for treatment before starting larger trials." The five patients in the pilot study were treated within seven days of suffering a severe stroke. Each had a bone marrow sample taken, from which the scientists extracted stem cells that give rise to blood cells and blood vessel lining cells. These stem cells were infused into an artery that supplied blood to the brain. © 2014 Guardian News and Media Limited

Keyword: Stroke; Aggression
Link ID: 19929 - Posted: 08.09.2014

By Victoria Gill Science reporter, BBC News Very mobile ears help many animals direct their attention to the rustle of a possible predator. But a study in horses suggests they also pay close attention to the direction another's ears are pointing in order to work out what they are thinking. Researchers from the University of Sussex say these swivelling ears have become a useful communication tool. Their findings are published in the journal Current Biology. The research team studies animal behaviour to build up a picture of how communication and social skills evolved. "We're interested in how [they] communicate," said lead researcher Jennifer Wathan. "And being sensitive to what another individual is thinking is a fundamental skill from which other [more complex] skills develop." Ms Wathan and her colleague Prof Karen McComb set up a behavioural experiment where 72 individual horses had to use visual cues from another horse in order to choose where to feed. They led each horse to a point where it had to select one of two buckets. On a wall behind this decision-making spot was a life-sized photograph of a horse's head facing either to left or right. In some of the trials, the horses ears or eyes were covered. Horse images used in a study of horse communication The ears have it: Horses in the test followed the gaze of another horse, and the direction its ears pointed If the ears and eyes of the horse in the picture were visible, the horses being tested would choose the bucket towards which its gaze - and its ears - were directed. If the horse in the picture had either its eyes or its ears covered, the horse being tested would just choose a feed bucket at random. Like many mammals that are hunted by predators, horses can rotate their ears through almost 180 degrees - but Ms Wathan said that in our "human-centric" view of the world, we had overlooked the importance of these very mobile ears in animal communication. BBC © 2014

Keyword: Language; Aggression
Link ID: 19914 - Posted: 08.05.2014

By GREGORY HICKOK IN the early 19th century, a French neurophysiologist named Pierre Flourens conducted a series of innovative experiments. He successively removed larger and larger portions of brain tissue from a range of animals, including pigeons, chickens and frogs, and observed how their behavior was affected. His findings were clear and reasonably consistent. “One can remove,” he wrote in 1824, “from the front, or the back, or the top or the side, a certain portion of the cerebral lobes, without destroying their function.” For mental faculties to work properly, it seemed, just a “small part of the lobe” sufficed. Thus the foundation was laid for a popular myth: that we use only a small portion — 10 percent is the figure most often cited — of our brain. An early incarnation of the idea can be found in the work of another 19th-century scientist, Charles-Édouard Brown-Séquard, who in 1876 wrote of the powers of the human brain that “very few people develop very much, and perhaps nobody quite fully.” But Flourens was wrong, in part because his methods for assessing mental capacity were crude and his animal subjects were poor models for human brain function. Today the neuroscience community uniformly rejects the notion, as it has for decades, that our brain’s potential is largely untapped. The myth persists, however. The newly released movie “Lucy,” about a woman who acquires superhuman abilities by tapping the full potential of her brain, is only the latest and most prominent expression of this idea. Myths about the brain typically arise in this fashion: An intriguing experimental result generates a plausible if speculative interpretation (a small part of the lobe seems sufficient) that is later overextended or distorted (we use only 10 percent of our brain). The caricature ultimately infiltrates pop culture and takes on a life of its own, quite independent from the facts that spawned it. © 2014 The New York Times Company

Keyword: Brain imaging; Aggression
Link ID: 19911 - Posted: 08.02.2014

Nishad Karim African penguins communicate feelings such as hunger, anger and loneliness through six distinctive vocal calls, according to scientists who have observed the birds' behaviour in captivity. The calls of the "jackass" penguin were identified by researchers at the University of Turin, Italy. Four are exclusive to adults and two are exclusive to juveniles and chicks. The study, led by Dr Livio Favaro, found that adult penguins produce distinctive short calls to express their isolation from groups or their mates, known as "contact" calls, or to show aggression during fights or confrontations, known as "agonistic" calls. They also observed an "ecstatic display song", sung by single birds during the mating season and the "mutual display song", a custom duet sung by nesting partners to each other. Juveniles and chicks produce calls relating to hunger. "There are two begging calls; the first one is where chicks utter 'begging peeps', short cheeps when they want food from adults, and the second one we've called 'begging moan', which is uttered by juveniles when they're out of the nest, but still need food from adults," said Favaro. The team made simultaneous video and audio recordings of 48 captive African penguins at the zoo Zoom Torino, over a 104 non-consecutive days. They then compared the audio recordings with the video footage of the birds' behaviour. Additional techniques, including visual inspection of spectrographs, produced statistical and quantifiable results. The research is published in the journal PLOS One. © 2014 Guardian News and Media Limited

Keyword: Language; Aggression
Link ID: 19905 - Posted: 07.31.2014

By PAUL VITELLO The conventional wisdom among animal scientists in the 1950s was that birds were genetically programmed to sing, that monkeys made noise to vent their emotions, and that animal communication, in general, was less like human conversation than like a bodily function. Then Peter Marler, a British-born animal behaviorist, showed that certain songbirds not only learned their songs, but also learned to sing in a dialect peculiar to the region in which they were born. And that a vervet monkey made one noise to warn its troop of an approaching leopard, another to report the sighting of an eagle, and a third to alert the group to a python on the forest floor. These and other discoveries by Dr. Marler, who died July 5 in Winters, Calif., at 86, heralded a sea change in the study of animal intelligence. At a time when animal behavior was seen as a set of instinctive, almost robotic responses to environmental stimuli, he was one of the first scientists to embrace the possibility that some animals, like humans, were capable of learning and transmitting their knowledge to other members of their species. His hypothesis attracted a legion of new researchers in ethology, as animal behavior research is also known, and continues to influence thinking about cognition. Dr. Marler, who made his most enduring contributions in the field of birdsong, wrote more than a hundred papers during a long career that began at Cambridge University, where he received his Ph.D. in zoology in 1954 (the second of his two Ph.D.s.), and that took him around the world conducting field research while teaching at a succession of American universities. Dr. Marler taught at the University of California, Berkeley, from 1957 to 1966; at Rockefeller University in New York from 1966 to 1989; and at the University of California, Davis, where he led animal behavior research, from 1989 to 1994. He was an emeritus professor there at his death. © 2014 The New York Times Company

Keyword: Language; Aggression
Link ID: 19885 - Posted: 07.28.2014

|By Nathan Collins Time, space and social relationships share a common language of distance: we speak of faraway places, close friends and the remote past. Maybe that is because all three share common patterns of brain activity, according to a January study in the Journal of Neuroscience. Curious to understand why the distance metaphor works across conceptual domains, Dartmouth College psychologists used functional MRI scans to analyze the brains of 15 people as they viewed pictures of household objects taken at near or far distances, looked at photographs of friends or acquaintances, and read phrases such as “in a few seconds” or “a year from now.” Patterns of activity in the right inferior parietal lobule, a region thought to handle distance information, robustly predicted whether a participant was thinking about near versus far in any of the categories—indicating that certain aspects of time, space and relationships are all processed in a similar way in the brain. The results, the researchers say, suggest that higher-order brain functions are organized more around computations such as near versus far than conceptual domains such as time or social relationships. © 2014 Scientific American

Keyword: Attention
Link ID: 19860 - Posted: 07.21.2014

By Meeri Kim Babies start with simple vowel sounds — oohs and aahs. A mere months later, the cooing turns into babbling — “bababa” — showing off a newfound grasp of consonants. A new study has found that a key part of the brain involved in forming speech is firing away in babies as they listen to voices around them. This may represent a sort of mental rehearsal leading up to the true milestone that occurs after only a year of life: baby’s first words. Any parent knows how fast babies learn how to comprehend and use language. The skill develops so rapidly and seemingly without much effort, but how do they do it? Researchers at the University of Washington are a step closer to unraveling the mystery of how babies learn how to speak. They had a group of 7- and 11-month-old infants listen to a series of syllables while sitting in a brain scanner. Not only did the auditory areas of their brains light up as expected but so did a region crucial to forming higher-level speech, called Broca’s area. A year-old baby sits in a brain scanner, called magnetoencephalography -- a noninvasive approach to measuring brain activity. The baby listens to speech sounds like "da" and "ta" played over headphones while researchers record her brain responses. (Institute for Learning and Brain Sciences, University of Washington) These findings may suggest that even before babies utter their first words, they may be mentally exercising the pivotal parts of their brains in preparation. Study author and neuroscientist Patricia Kuhl says that her results reinforce the belief that talking and reading to babies from birth is beneficial for their language development, along with exaggerated speech and mouth movements (“Hiii cuuutie! How are youuuuu?”). © 1996-2014 The Washington Post

Keyword: Language; Aggression
Link ID: 19858 - Posted: 07.21.2014

Some concussion symptoms that last three months after a head injury may be related to post-traumatic stress disorder, a new study suggests. Mild traumatic brain injury accounts for more than 90 per cent of brain injuries, according to an international review for the World Health Organization, but little is known about prognosis. TMR car accident Road crashes were the source of many of the head injuries suffered by patients in the study group. (Radio-Canada) In Wednesday’s issue of the journal JAMA Psychiatry, Emmanuel Lagarde of the University of Boredeaux, David Cassidy of Toronto Western Research Institute and their team focused on 534 patients with head injuries and 827 control patients with non-head injuries who went to an emergency department in France. Concussions or mild traumatic brain injury can lead to three different types of symptoms: During the three-month followup, 21 per cent of the patients with head injuries and 16 per cent of the patients with non-head injuries met the criteria for a diagnosis of post-concussion syndrome. Nearly nine per cent of patients with head injuries met the criteria for PTSD compared with two per cent of patients in the control group. In a statistical analysis, having a mild traumatic brain injury was a predicator of PTSD, but not post-concussion syndrome. "Available evidence does not support further use of post-concussion syndrome. Our results also stressed the importance of considering PTSD risk and treatment for patients with mild traumatic brain injury," the researchers concluded. Jane Topolovec-Vranic, a clinical researcher in mild traumatic brain injury and neuroscience at St. Michael’s Hospital in Toronto, said the study was well done with rigorous analyses and a control group that is often missing in such studies. © CBC 2014

Keyword: Brain Injury/Concussion; Aggression
Link ID: 19846 - Posted: 07.17.2014

|By Daisy Yuhas At Sunday’s World Cup Final, German soccer player Christoph Kramer knocked his head against an Argentine opponent’s shoulder with such force that Kramer spun to the ground and fell face down. The blow was one of many at this year’s competition, which further fueled a rising debate about concussion, the damages of fútbol versus football and the best response to head injuries. Part of the challenge in understanding these injuries is how varied they can be. Although much attention has gone to severe forms of traumatic brain injury (TBI) such as concussion-induced coma, far more common are the milder impacts that come from falling off a bicycle, a low-speed car accident or taking a weak punch in a fistfight. These injuries may not entail losing consciousness but rather just a brief lack in responsiveness before recovering. Now a group of researchers in the U.K. at Newcastle University, the University of Aberdeen and the University of Edinburgh have released results of a longer-term investigation of individuals who have suffered such first-time, minor head injuries. Their findings hint that the contusions leave a lasting trace in the brain. The team, led by Newcastle imaging physicist Andrew Blamire, scanned the brains of 53 individuals with mild or moderate TBI within two weeks of the injury. They mapped the tracts of fibers connecting brain regions in the patients as well as in 33 healthy subjects. Blamire and colleagues discovered distinct differences between the two groups. “Even in patients with mild injury, you can detect a marker of that injury,” Blamire says. That marker may distinguish mild injuries from more forceful impacts. In cases of severe TBI, brain tissue known as white matter that envelops the tracts deteriorates, effectively mashed by the impact. But Blamire identified an opposite trend in the mild and moderate cases. For these patients, the white matter fibers became even more structured. He and his colleagues hypothesize that this organization may be caused by an inflammatory response in which the brain’s glial cells leap into action, perhaps repairing damage or blocking further injury. © 2014 Scientific American

Keyword: Brain Injury/Concussion
Link ID: 19845 - Posted: 07.17.2014

By NICHOLAS BAKALAR The incidence of stroke in the United States has declined significantly over the past two decades, a new analysis has found. The decreases were apparent in people older than 65, the most common age group for stroke, and were similar in men and women and in blacks and whites. There were decreases in stroke deaths as well, but they were concentrated in younger research participants. The report appeared in JAMA. Researchers followed 14,357 people, ages 45 to 64 at the start of the study, from 1987 to 2011. After accounting for coronary heart disease, hypertension, diabetes, smoking, statin use and other factors, they found that the incidence of stroke decreased by about 50 percent over the period of the study, and stroke deaths by about 40 percent. Smoking cessation and better treatment of hypertension and high cholesterol accounted for part of the decrease, according to the senior author, Dr. Josef Coresh, a professor of epidemiology at the Johns Hopkins Bloomberg School of Public Health, and improved medical care and more rigorous control of risk factors probably helped as well. Increased diabetes prevalence, on the other hand, contributed to higher risk. “The decrease in stroke also suggests that there’s a decrease in smaller strokes that we may not detect,” he said, “and that would bode well for overall brain health and the potential for decreasing the risk of dementia with aging.” © 2014 The New York Times Company

Keyword: Stroke
Link ID: 19839 - Posted: 07.16.2014

By Joel Achenbach Friends often look alike. The tendency of people to forge friendships with people of a similar appearance has been noted since the time of Plato. But now there is research suggesting that, to a striking degree, we tend to pick friends who are genetically similar to us in ways that go beyond superficial features. For example, you and your friends are likely to share certain genes associated with the sense of smell. Our friends are as similar to us genetically as you’d expect fourth cousins to be, according to the study published Monday in the Proceedings of the National Academy of Sciences. This means that the number of genetic markers shared by two friends is akin to what would be expected if they had the same great-great-great-grandparents. “Your friends don’t just resemble you superficially, they resemble you genetically,” said Nicholas A. Christakis, a physician and social scientist at Yale University and a co-author of the study. The resemblance is slight, just about 1 percent of the genetic markers, but that has huge implications for evolutionary theory, said James Fowler, a professor of medical genetics and political science at the University of California at San Diego. “We can do better than chance at predicting if two people are going to be friends if all we have is their genetic data,” Fowler said. This is a data-driven study that covers hundreds of friendship pairs and stranger pairs, plus hundreds of thousands of genetic markers. There’s no single “friendship” gene driving people together. There’s no way to say that a person befriended someone else because of any one genetic trait.

Keyword: Genes & Behavior; Aggression
Link ID: 19833 - Posted: 07.15.2014

By BENEDICT CAREY PHILADELPHIA — The man in the hospital bed was playing video games on a laptop, absorbed and relaxed despite the bustle of scientists on all sides and the electrodes threaded through his skull and deep into his brain. “O.K., that’s enough,” he told doctors after more than an hour. “All those memory tests, it’s exhausting.” The man, Ralph, a health care worker who asked that his last name be omitted for privacy, has severe epilepsy; and the operation to find the source of his seizures had provided researchers an exquisite opportunity to study the biology of memory. The Department of Defense on Tuesday announced a $40 million investment in what has become the fastest-moving branch of neuroscience: direct brain recording. Two centers, one at the University of Pennsylvania and the other at the University of California, Los Angeles, won contracts to develop brain implants for memory deficits. Their aim is to develop new treatments for traumatic brain injury, the signature wound of the wars in Iraq and in Afghanistan. Its most devastating symptom is the blunting of memory and reasoning. Scientists have found in preliminary studies that they can sharpen some kinds of memory by directly recording, and stimulating, circuits deep in the brain. Unlike brain imaging, direct brain recording allows scientists to conduct experiments while listening to the brain’s internal dialogue in real time, using epilepsy patients like Ralph or people with Parkinson’s disease as active collaborators. The technique has provided the clearest picture yet of how neural circuits function, and raised hopes of new therapies for depression and anxiety as well as cognitive problems. But experts also worry about the possible side effects of directly tampering with memory. © 2014 The New York Times Company

Keyword: Learning & Memory; Aggression
Link ID: 19810 - Posted: 07.09.2014

By Helen Briggs Health editor, BBC News website The same genes drive maths and reading ability, research suggests. Around half of the genes that influence a child's aptitude for reading also play a role in how easily they learn maths, say scientists. The study of 12-year-old British twins from 3,000 families, reported in Nature Communications, adds to the debate about the role of genes in education. An education expert said the work had little relevance for public policy as specific genes had not been identified. Past research suggests both nature and nurture have a similar impact on how children perform in exams. One study found genes explained almost 60% of the variation in GCSE exam results. However, little is known about which genes are involved and how they interact. The new research suggests a substantial overlap between the genetic variations that influence mathematics and reading, say scientists from UCL, the University of Oxford and King's College London. But non-genetic factors - such as parents, schools and teachers - are also important, said Prof Robert Plomin of King's College London, who worked on the study. "The study does not point to specific genes linked to literacy or numeracy, but rather suggests that genetic influence on complex traits, like learning abilities, and common disorders, like learning disabilities, is caused by many genes of very small-effect size," he said. BBC © 2014

Keyword: Language; Aggression
Link ID: 19808 - Posted: 07.09.2014

By Smitha Mundasad Health reporter, BBC News Researchers have identified a gene that may put people at greater risk of strokes and heart attacks. Writing in PLOS ONE they say the gene fault may encourage the formation of blood clots - the ultimate cause of most heart attacks and strokes. Scientists hope gene tests may help doctors one day to pinpoint individuals more likely to suffer these conditions. But experts say lifestyle factors such as smoking and exercise have the greatest influence on risk. Around one in 10 people in the Caucasian population carries this variation of the gene, named PIA2. And researchers from King's College London reviewed more than 80 studies involving about 50,000 people - the largest analysis of this genetic fault to date. Threat to under-45s They found individuals with PIA2 were more likely to have a stroke - caused by a blood clot blocking blood supply to the brain - than those without the gene. Scientists calculate the gene increases a person's risk of having a stroke by 10-15%. But how significant this increase is depends on an individual's baseline risk - influenced by factors such as smoking, diet, weight and exercise, the scientists say. Heart attacks are caused by a blockage to the blood vessels that carry oxygen to the heart. More than 100,000 heart attacks are recorded in the UK each year And for people with two copies of the gene the risk rises by up to 70% from this baseline. In a second study published in the same journal, the scientists show PIA2 is also linked to an increased risk of heart attacks in people under 45. More research is needed to see whether this holds true for the whole population, they say. About 150,000 people have a stroke in the UK each year and more than 100,000 heart attacks are recorded annually. BBC © 2014

Keyword: Stroke; Aggression
Link ID: 19785 - Posted: 07.03.2014

From David Beckham’s infamous kick at France '98 to Luis Suárez chomping Giorgio Chiellini's shoulder in Brazil last week, the history of the World Cup is littered with moments of impulsive aggression that appear to defy all rational explanation. The story of human impulsivity stretches back deep into our evolutionary past. By nature, we are all prone to making quick, rash decisions that may lead to regret, and in some cases a four-month ban from international football. Impulsivity is actually a survival mechanism and was essential in the African savanna where our species evolved around a million and a half years ago. For our ancestors, the ability to make split-second decisions could make the difference between life and death. All of us have deep primal instincts but over the several hundred million years of evolution separating our reptilian ancestors from the first mammals, and eventually primates, the cognitive ability to exercise self-restraint has increased. While most living things make this decision purely as a trade-off between risk and reward, only humans can decide to exercise self-restraint on the basis of how they think they will be perceived by others – an ability that emerged some time in the past 100,000 years or so. “We evolved to be very social animals, living in large groups, and so we have developed inhibitory mechanisms in the more recently evolved parts of the prefrontal cortex,” explains Michael Price of the School of Social Sciences at the University of Brunel. “This is the social centre of the brain. Our big reason not to be impulsive is because of your reputation and how other people are going to judge you and perhaps ostracise you as we saw with Beckham in the aftermath of France ’98.” © 2014 Guardian News and Media Limited

Keyword: Aggression; Aggression
Link ID: 19784 - Posted: 07.03.2014

Learning a second language benefits the brain in ways that can pay off later in life, suggests a deepening field of research that specializes in the relationship between bilingualism and cognition. In one large Scottish test, researchers discovered archival data on 835 native speakers of English who were born in Edinburgh in 1936. The participants had been given an intelligence test at age 11 as part of standard British educational policy and many were retested in their early 70s. Those who spoke two or more languages had significantly better cognitive abilities on certain tasks compared with what would be expected from their IQ test scores at age 11, Dr. Thomas Bak of the Centre for Cognitive Aging and Cognitive Epidemiology at the University of Edinburgh reported in the journal Annals of Neurology. "Our results suggest a protective effect of bilingualism against age-related cognitive decline," independently of IQ, Bak and his co-authors concluded. It was a watershed study in 1962 by Elizabeth Peal and Wallace Lambert at McGill University in Montreal that turned conventional thinking on bilingualism on its head and set the rationale for French immersion in Canada. Psychologists at York University in Toronto have also been studying the effect of bilingualism on the brain across the lifespan, including dementia. They’ve learned how people who speak a second language outperform those with just one on tasks that tap executive function such as attention, selection and inhibition. Those are the high-level cognitive processes we use to multitask as we drive on the highway and juggle remembering the exit and monitoring our speed without getting distracted by billboards. © CBC 2014

Keyword: Language; Aggression
Link ID: 19781 - Posted: 07.02.2014

Carl Zimmer A novelist scrawling away in a notebook in seclusion may not seem to have much in common with an NBA player doing a reverse layup on a basketball court before a screaming crowd. But if you could peer inside their heads, you might see some striking similarities in how their brains were churning. That’s one of the implications of new research on the neuroscience of creative writing. For the first time, neuroscientists have used fMRI scanners to track the brain activity of both experienced and novice writers as they sat down — or, in this case, lay down — to turn out a piece of fiction. The researchers, led by Martin Lotze of the University of Greifswald in Germany, observed a broad network of regions in the brain working together as people produced their stories. But there were notable differences between the two groups of subjects. The inner workings of the professionally trained writers in the bunch, the scientists argue, showed some similarities to people who are skilled at other complex actions, like music or sports. The research is drawing strong reactions. Some experts praise it as an important advance in understanding writing and creativity, while others criticize the research as too crude to reveal anything meaningful about the mysteries of literature or inspiration. Dr. Lotze has long been intrigued by artistic expression. In previous studies, he has observed the brains of piano players and opera singers, using fMRI scanners to pinpoint regions that become unusually active in the brain. Needless to say, that can be challenging when a subject is singing an aria. Scanners are a lot like 19th-century cameras: They can take very sharp pictures, if their subject remains still. To get accurate data, Dr. Lotze has developed software that can take into account fluctuations caused by breathing or head movements. © 2014 The New York Times Company

Keyword: Language; Aggression
Link ID: 19756 - Posted: 06.21.2014

—By Indre Viskontas He might be fictional. But the gigantic Hodor, a character in the blockbuster Game of Thrones series, nonetheless sheds light on something very much in the realm of fact: how our ability to speak emerges from a complex ball of neurons, and how certain brain-damaged patients can lose very specific aspects of that ability. According to George R.R. Martin, who wrote the epic books that inspired the HBO show, the 7-foot-tall Hodor could only say one word—"Hodor"—and everyone therefore tended to assume that was his name. Here's one passage about Hodor from the first novel in Martin's series: Theon Greyjoy had once commented that Hodor did not know much, but no one could doubt that he knew his name. Old Nan had cackled like a hen when Bran told her that, and confessed that Hodor's real name was Walder. No one knew where "Hodor" had come from, she said, but when he started saying it, they started calling him by it. It was the only word he had. Yet it's clear that Hodor can understand much more than he can say; he's able to follow instructions, anticipate who needed help, and behave in socially appropriate ways (mostly). Moreover, he says this one word in many different ways, implying very different meanings: So what might be going on in Hodor's brain? Hodor's combination of impoverished speech production with relatively normal comprehension is a classic, albeit particularly severe, presentation of expressive aphasia, a neurological condition usually caused by a localized stroke in the front of the brain, on the left side. Some patients, however, have damage to that part of the brain from other causes, such as a tumor, or a blow to the head. ©2014 Mother Jones

Keyword: Language
Link ID: 19753 - Posted: 06.21.2014

By Michelle Roberts Health editor, BBC News online Scientists say they have devised a helmet that can quickly determine whether a patient has had a stroke. It could speed diagnosis and treatment of stroke to boost chances of recovery, the scientists say. The wearable cap bounces microwaves off the brain to determine whether there has been a bleed or clot deep inside. The Swedish scientists who made the device plan to give it to ambulance crews to test after successful results in early studies with 45 patients. When a person has a stroke, doctors must work quickly to limit any brain damage. If it takes more than four hours to get to hospital and start treatment, parts of their brain tissue may already be dying. But to give the best treatment, doctors first need to find out if the stroke is caused by a leaky blood vessel or one blocked by a clot. A computerised tomography (CT) scan will show this, but it can take some time to organise one for a patient, even if they have been admitted as an emergency to a hospital that has one of these scanners. Any delay in this "golden hour" of treatment opportunity could hamper recovery. To speed up the process, researchers in Sweden, from Chalmers University of Technology, Sahlgrenska Academy and Sahlgrenska University Hospital, have come up with a mobile device that could be used on the way to hospital. The helmet uses microwave signals - the same as the ones emitted by microwave ovens and mobile phones but much weaker - to build a picture of what is going on throughout the brain. BBC © 2014

Keyword: Stroke; Aggression
Link ID: 19741 - Posted: 06.17.2014