Most Recent Links

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.

Links 1 - 20 of 22212

By Michael-Paul Schallmo, Scott Murray, Most people do not associate autism with visual problems. It’s not obvious how atypical vision might be related to core features of autism such as social and language difficulties and repetitive behaviors. Yet examining how autism affects vision holds tremendous promise for understanding this condition at a neural level. Over the past 50 years, we have learned more about the visual parts of the brain than any other areas, and we have a solid understanding of how neural activity leads to visual perception in a typical brain. Differences in neuronal processing in autism are likely to be widespread, and may be similar across brain regions. So pinpointing these differences in visual areas might reveal important details about processing in brain regions related to social functioning and language, which are not as well understood. Studying vision in autism may also help connect studies of people to those of animal models. Working with animals allows neuroscientists to study neural processing at many different levels—from specific genes and single neurons to small neural networks and brain regions that control functions such as movement or hearing. But animals do not display the complexity and diversity in language and social functioning that people do. By contrast, visual brain processes are similar between people and animals. We can use our rich knowledge of how neurons in animals process visual information to bridge the gap between animals and people. We can also use it to test hypotheses about how autism alters neural functioning in the brain. © 2016 Scientific American

Keyword: Autism; Vision
Link ID: 22796 - Posted: 10.27.2016

By Helen Thomson IN THE 2009 Bruce Willis movie Surrogates, people live their lives by embodying themselves as robots. They meet people, go to work, even fall in love, all without leaving the comfort of their own home. Now, for the first time, three people with severe spinal injuries have taken the first steps towards that vision by controlling a robot thousands of kilometres away, using thought alone. The idea is that people with spinal injuries will be able to use robot bodies to interact with the world. It is part of the European Union-backed VERE project, which aims to dissolve the boundary between the human body and a surrogate, giving people the illusion that their surrogate is in fact their own body. In 2012, an international team went some way to achieving this by taking fMRI scans of the brains of volunteers while they thought about moving their hands or legs. The scanner measured changes in blood flow to the brain area responsible for such thoughts. An algorithm then passed these on as instructions to a robot. “The feeling of embodying the robot was good, although the sensation varied over time“ The volunteers could see what the robot was looking at via a head-mounted display. When they thought about moving their left or right hand, the robot moved 30 degrees to the left or right. Imagining moving their legs made the robot walk forward. © Copyright Reed Business Information Ltd.

Keyword: Robotics
Link ID: 22795 - Posted: 10.27.2016

Alison Abbott Psychiatrist Joshua Gordon wants to use mathematics to improve understanding of the brain. The US National Institute of Mental Health (NIMH) has a new director. On 12 September, psychiatrist Joshua Gordon took the reins at the institute, which has a budget of US$1.5 billion. He previously researched how genes predispose people to psychiatric illnesses by acting on neural circuits, at Columbia University in New York. His predecessor, Thomas Insel, left the NIMH to join Verily Life Sciences, a start-up owned by Google’s parent company Alphabet, in 2015. Gordon says that his priorities at the NIMH will include “low-hanging clinical fruit, neural circuits and mathematics — lots of mathematics", and explains to Nature exactly what that means. What do you plan to achieve in your first year in office? I won’t be doing anything radical. I am just going to listen to and learn from all the stakeholders — the scientific community, the public, consumer advocacy groups and other government offices. But I can say two general things. In the past twenty years, my two predecessors, Steve Hyman [now director of the Stanley Center for Psychiatric Research at the Broad Institute in Cambridge, Massachusetts] and Tom Insel, embedded into the NIMH the idea that psychiatric disorders are disorders of the brain, and to make progress in treating them we really have to understand the brain. I will absolutely continue this legacy. This does not mean we are ignoring the important roles of the environment and social interactions in mental health — we know they have a fundamental impact. But that impact is on the brain. Second, I will be thinking about how NIMH research can be structured to give pay-outs in the short-, medium- and long-terms. © 2016 Macmillan Publishers Limited,

Keyword: Miscellaneous
Link ID: 22794 - Posted: 10.27.2016

By Kerry Grens Scientists have observed changes in the human brain as study participants tell lies—specifically, as white lies became outright deception, the amygdalas of the fibbing volunteers became less active. The researchers’ findings, published in Nature Neuroscience yesterday (October 24), offer a possible neural mechanism for a common human failing, that lying can lead to more extensive dishonesty. “The reduction in activity in the amygdala can predict how much people increase dishonesty subsequently,” study coauthor Neil Garrett, a psychologist at University College London, told The Verge. Garrett and colleagues asked 25 volunteers who saw a big image of a jar of pennies to give others (who only saw a small picture of the jar) estimates about the number of pennies. The volunteers were given incentives to lie, and after they had fibbed previously, fMRI data showed reduced activity in the amygdala when people were dishonest again. This brain region is involved in processing emotions. “It’s an intriguing possibility that adaptation of amygdala response might underlie escalation in self-serving dishonesty,” Tom Johnstone, a neuroscientist at the University of Reading who was not involved in the study, told Scientific American, “though the results need to be replicated in a larger sample of participants, in order to examine the involvement of the many other brain regions previously shown to play a role in generating and regulating emotional responses.” © 1986-2016 The Scientist

Keyword: Stress; Emotions
Link ID: 22793 - Posted: 10.27.2016

By NICHOLAS BAKALAR Extremely high or low resting heart rates in young men may predict psychiatric illness later in life, a large new study has found. Researchers used heart rate and blood pressure data gathered at Swedish military inductions from 1969 to 2010, and linked them with information from the country’s detailed health records through the end of 2013. The study, in JAMA Psychiatry, included 1,794,361 men whose average age was 18 at induction. The highest heart rates — above 82 beats a minute — were associated with increased risks of obsessive-compulsive disorder, anxiety disorder and schizophrenia. The lowest, below 62 beats, were associated with an increased risk of substance abuse and violent criminality. Extremes in blood pressure followed similar patterns, but the associations were not as strong. The lead author, Antti Latvala, a researcher at the University of Helsinki, said that the reasons for the association remain unknown. But, he added, “These measures are indicators of slightly different reactivity to stimuli. These people might have elevated heart rates because of an elevated stress level that is then predictive of these disorders.” Still, Dr. Latvala said, a high or low heart rate does not mean future psychiatric disease. “These are very complex illnesses,” he said. “People with high or low heart rate have nothing to worry about because of these findings. This is just a tiny piece of the puzzle.” © 2016 The New York Times Company

Keyword: OCD - Obsessive Compulsive Disorder; Schizophrenia
Link ID: 22792 - Posted: 10.27.2016

Heidi Ledford Teaching parents of children with autism how to interact more effectively with their offspring brings the children benefits that linger for years, according to the largest and longest-running study of autism interventions. The training targeted parents with 2–4-year-old children with autism. Six years after the adults completed the year-long course, their children showed better social communication and reduced repetitive behaviours, and fewer were considered to have “severe” autism as compared to a control group, according to results published on 25 October in The Lancet1. “This is not a cure,” says child psychiatrist Jonathan Green of the University of Manchester, and an investigator on the study. “But it does have a sustained and substantial reduction in severity and that’s important in families.” John Constantino, a child psychiatrist at Washington University in St. Louis, Missouri, says that the results are “monumentally important”, because there has been little evidence showing that interventions for autism at an early stage are effective — even though researchers already broadly endorse the idea. "It is a rare long-term randomized controlled trial in a field in which there exists almost no data of this kind," he says. But he adds that the magnitude of the improvement was a disappointment, and that there were signs that the effects of treatment were diminishing over time. And although the therapy benefited communication skills and decreased repetitive behaviours, it did not lessen childrens' anxiety — another key symptom of autism. “Perhaps most of all, this underscores how desperately important it is that we develop higher-impact interventions,” he says. © 2016 Macmillan Publishers Limited,

Keyword: Autism; Learning & Memory
Link ID: 22791 - Posted: 10.26.2016

By Tori Rodriguez Uric acid is almost always mentioned in the context of gout, an inflammatory type of arthritis that results from excessive uric acid in the blood. It may be surprising, then, that it has also been linked with a vastly different type of disease: bipolar disorder. Elevated uric acid has been observed in patients with acute mania, and reducing uric acid improves symptoms. New evidence supports its potential as a treatment target. Uric acid is a by-product of the breakdown of compounds called purines, found in many foods and manufactured by the body. High levels of uric acid can indicate that these compounds, such as the neurotransmitter adenosine, are being broken down too readily in the body. “Adenosine might play a key role in neurotransmission and neuromodulation, having sedative, anticonvulsant and antiaggressive effects,” says physician Francesco Bartoli, a researcher at the University of Milano-Bicocca in Italy. Bartoli's new study, published in May in the Journal of Psychosomatic Research, examined uric acid levels in 176 patients with bipolar disorder or another severe mental illness and 89 healthy controls. The results show that bipolar disorder was the only diagnosis significantly linked with levels of uric acid. Excess uric acid was found to be linked to male gender, metabolic syndrome, waist size and triglyceride levels. Beyond the too rapid breakdown of adenosine, other potential explanations for increased uric acid include the metabolic abnormalities often present in people with bipolar disorder and frequent consumption of purine-rich foods and drinks, such as liver, legumes, anchovies and alcohol. Fructose consumption can also be a problem because the sugar inhibits uric acid excretion. Dietary interventions may reduce levels, but medication is typically required if dietary changes are insufficient. © 2016 Scientific American

Keyword: Schizophrenia
Link ID: 22790 - Posted: 10.26.2016

Andrew Solomon A new virtual-reality attraction planned for Knott’s Berry Farm in Buena Park, Calif., was announced last month in advance of the peak haunted-house season. The name, “Fear VR 5150,” was significant. The number 5150 is the California psychiatric involuntary commitment code, used for a mentally ill person who is deemed a danger to himself or others. Upon arrival in an ersatz “psychiatric hospital exam room,” VR 5150 visitors would be strapped into a wheelchair and fitted with headphones. “The VR headset puts you in the middle of the action inside the hospital,” an article in The Orange County Register explained. “One patient seems agitated and attempts to get up from a bed. Security officers try to subdue him. A nurse gives you a shot (which you will feel), knocking you out. When you wake up in the next scene, all hell has broken loose. Look left, right and down, bloody bodies lie on the floor. You hear people whimpering in pain.” Knott’s Berry Farm is operated by Ohio-based Cedar Fair Entertainment Company, and Fear VR 5150 was to be featured at two other Cedar Fair parks as well. Almost simultaneously, two similar attractions were started at Six Flags. A news release for one explained: “Our new haunted house brings you face-to-face with the world’s worst psychiatric patients. Traverse the haunted hallways of Dark Oaks Asylum and try not to bump into any of the grunting inmates around every turn. Maniacal inmates yell out from their bloodstained rooms and deranged guards wander the corridors in search of those who have escaped.” The Orange County branch of the National Alliance on Mental Illness (NAMI) sprang into action, and Doris Schwartz, a Westchester, N.Y.-based mental-health professional, immediately emailed a roster of 130 grass-roots activists, including me, many of whom flooded Cedar Fair and Six Flags with phone calls, petitions and emails. After some heated back-and-forth, Fear VR 5150 was shelved, and Six Flags changed the mental patients in its maze into zombies. © 2016 The New York Times Company

Keyword: Depression; Schizophrenia
Link ID: 22789 - Posted: 10.26.2016

Richard Harris Researchers have launched an innovative medical experiment that's designed to provide quick answers while meeting the needs of patients, rather than drug companies. Traditional studies can cost hundreds of millions of dollars, and can take many years. But patients with amyotrophic lateral sclerosis, or Lou Gehrig's disease don't have the time to wait. This progressive muscle-wasting disease is usually fatal within a few years. Scientists in an active online patient community identified a potential treatment and have started to gather data from the participants virtually rather than requiring many in-person doctor's visits. How is that possible? In this case, doctors and patients alike got interested in an extraordinary ALS patient whose symptoms actually got better, which rarely occurs. He'd been taking a dietary supplement called lunasin, "and lo and behold six months later, [his] speech [was] back to normal, swallowing back to normal, doesn't use his feeding tube, [and he was] significantly stronger as measured by his therapists," said Richard Bedlack, a neurologist who runs the ALS clinic at Duke University. Of course, it could just be a coincidence that the man who got better happened to be taking these supplements. To find out, Bedlack teamed up to run a study with Paul Wicks, a neuropsychologist and vice president for innovation at a web-based patient organization called PatientsLikeMe. © 2016 npr

Keyword: ALS-Lou Gehrig's Disease
Link ID: 22788 - Posted: 10.26.2016

By Steven C. Pan A good night’s sleep can be transformative. Among its benefits are improved energy and mood, better immune system functioning and blood sugar regulation, and greater alertness and ability to concentrate. Given all of these benefits, the fact that a third of the human lifespan is spent sleeping makes evolutionary sense. However, sleep appears to have another important function: helping us learn. Across a plethora of memory tasks—involving word lists, maze locations, auditory tones, and more—going to sleep after training yields better performance than remaining awake. This has prompted many sleep researchers to reach a provocative conclusion: beyond merely supporting learning, sleep is vital, and perhaps even directly responsible, for learning itself. Recent discoveries from neuroscience provide insights into that possibility. Sleep appears to be important for long-term potentiation, a strengthening of signals between neurons that is widely regarded as a mechanism of learning and memory. Certain memories acquired during the day appear to be reactivated and “replayed” in the brain during sleep, which may help make them longer lasting. In some instances the amount of improvement that occurs on memory tasks positively correlates with the length of time spent in certain stages of sleep. These and other findings are generating great excitement among sleep researchers, as well as prompting heated debates about the degree to which sleep may or may not be involved in learning. To date, most sleep and learning research has focused on recall, which is the capacity to remember information. However, new research by Stéphanie Mazza and colleagues at the University of Lyon, recently published in the journal Psychological Science,suggests another potential benefit of sleep: improved relearning. © 2016 Scientific American

Keyword: Sleep; Learning & Memory
Link ID: 22787 - Posted: 10.26.2016

Merrit Kennedy Parents can reduce the risk of sudden infant death syndrome by keeping their child's crib in the same room, close to their bed, according to the American Academy of Pediatrics. That's one of the key recommendations in new guidance released today aimed at preventing SIDS, which claims the lives of approximately 3,500 infants every year in the United States. That number "initially decreased in the 1990s after a national safe sleep campaign, but has plateaued in recent years," the AAP adds. The pediatricians say that children should sleep in the same room but on a separate surface from their parents for at least the first six months of their lives, and ideally the first year. They say that this can halve the risk of SIDS. It also "removes the possibility of suffocation, strangulation, and entrapment that may occur when the infant is sleeping in an adult bed," according to the recommendations. The AAP discourages sharing a bed with an infant. You can read the AAP's full guidance here. These are a few more of the pediatricians' recommendations: Infants under a year old should always sleep lying on their backs. Side sleeping "is not safe and is not advised," the AAP says. Infants should always sleep on a firm surface covered by only a flat sheet. That's because soft mattresses "could create a pocket ... and increase the chance of rebreathing or suffocation if the infant is placed in or rolls over to the prone position." Smoking — both during pregnancy and around the infant after birth — can increase the risk of SIDS. Alcohol and illicit drugs during pregnancy can also contribute to SIDS, and "parental alcohol and/or illicit drug use in combination with bed-sharing places the infant at particularly high risk of SIDS," the pediatricians say. © 2016 npr

Keyword: Sleep; Development of the Brain
Link ID: 22786 - Posted: 10.25.2016

David Brooks We’ve had a tutorial on worry this year. The election campaign isn’t really about policy proposals, issue solutions or even hope. It’s led by two candidates who arouse gargantuan anxieties, fear and hatred in their opponents. As a result, some mental health therapists are reporting that three-quarters of their patients are mentioning significant election-related anxiety. An American Psychological Association study found that more than half of all Americans are very or somewhat stressed by this race. Of course, there are good and bad forms of anxiety — the kind that warns you about legitimate dangers and the kind that spirals into dark and self-destructive thoughts. In his book “Worrying,” Francis O’Gorman notes how quickly the good kind of anxiety can slide into the dark kind. “Worry is circular,” he writes. It may start with a concrete anxiety: Did I lock the back door? Is this headache a stroke? “And it has a nasty habit of taking off on its own, of getting out of hand, of spawning thoughts that are related to the original worry and which make it worse.” That’s what’s happening this year. Anxiety is coursing through American society. It has become its own destructive character on the national stage. Worry alters the atmosphere of the mind. It shrinks your awareness of the present and your ability to enjoy what’s around you right now. It cycles possible bad futures around in your head and forces you to live in dreadful future scenarios, 90 percent of which will never come true. Pretty soon you are seeing the world through a dirty windshield. Worry dims every sunrise and amplifies mistrust. A mounting tide of anxiety makes people angrier about society and more darkly pessimistic about the possibility of changing it. Spiraling worry is the perverted underside of rationality. This being modern polarized America, worry seems to come in two flavors. © 2016 The New York Times Company

Keyword: Stress; Emotions
Link ID: 22785 - Posted: 10.25.2016

Laura Sanders When small lies snowball into blizzards of deception, the brain becomes numb to dishonesty. As people tell more and bigger lies, certain brain areas respond less to the whoppers, scientists report online October 24 in Nature Neuroscience. The results might help explain how small transgressions can ultimately set pants aflame. The findings “have big implications for how lying can develop,” says developmental psychologist Victoria Talwar of McGill University in Montreal, who studies how dishonest behavior develops in children. “It starts to give us some idea about how lying escalates from small lies to bigger ones.” During the experiment, researchers from University College London and Duke University showed 80 participants a crisp, big picture of a glass jar of pennies. They were told that they needed to send an estimate of how much money was in the jar to an unseen partner who saw a smaller picture of the same jar. Each participant was serving as a “well-informed financial adviser tasked with advising a client who is less informed about what investments to make,” study coauthor Neil Garrett of University College London said October 20 during a news briefing. Researchers gave people varying incentives to lie. In some cases, for instance, intentionally overestimating the jar’s contents was rewarded with a bigger cut of the money. As the experiment wore on, the fibs started flying. People lied the most when the lie would benefit both themselves and their unseen partner. But these “financial advisers” still told self-serving lies even when it would hurt their partner. |© Society for Science & the Public 2000 - 2016

Keyword: Emotions
Link ID: 22784 - Posted: 10.25.2016

By Alison F. Takemura In the mid-1980s, György Buzsáki was trying to get inside rats’ heads. Working at the University of California, San Diego, he would anesthetize each animal with ether and hypothermia, cut through its scalp, and drill holes in its skull. Carefully, he’d screw 16 gold-plated stainless steel electrodes into the rat’s brain. When he was done with the surgery, these tiny pieces of metal—just 0.5 mm in diameter—allowed him to measure voltage changes from individual neurons deep in the brain’s folds, all while the rodent was awake and moving around. He could listen to the cells fire action potentials as the animal explored its environment, learning and remembering what it encountered (J Neurosci, 8:4007-26, 1988). In those days, recording from two cells simultaneously was the norm. The 16-site recording in Buzsáki’s 1988 study “was the largest ever in a rat,” he says. Nowadays, scientists can measure voltage changes from 1,000 neurons at the same time with silicon multielectrode arrays. But the basic techniques of using a probe to measure electrical activity within the brain (electrophysiology) or from outside it (electroencephalography, or EEG) are still workhorses of neural imaging labs. “The new tools don’t replace the old ones,” says Jessica Cardin, a neuroscientist at the Yale School of Medicine. “They add new layers of information.” Another decades-old neuroscientific technique that remains popular today is patch clamping. Developed in the late 1970s and early 1980s, it can detect changes in the electric potential of individual cells, or even single ion channels. With a tiny glass pipette suctioned against the cell’s membrane, researchers can make a small tear, sealed by the pipette tip, and detect voltage changes inside the cell. With some improvements, the patch clamp, like electrophysiology and EEG, has remained a regular part of the neuroscientist’s tool kit. Recently, researchers had a robot carry out the process (Nat Methods, 9:585-87, 2012). © 1986-2016 The Scientist

Keyword: Brain imaging
Link ID: 22783 - Posted: 10.25.2016

Robin McKie New visions of the brain and body’s detailed operations will be unveiled by a suite of medical scanners being opened this week. The newly refurbished Wolfson Brain Imaging Centre in the University of Cambridge has been equipped with some of the world’s most powerful magnetic resonance imaging (MRI) and positron emission tomography (PET) scanners and will give its researchers unprecedented power to make images of cancers, study the precise makeup of the cortex and analyse how chemicals in the brain – known as neurotransmitters – underpin the development of schizophrenia and depression. “It is a remarkable set of machines,” says Professor Ed Bullmore, head of neuroscience at Cambridge University. “We will be able to address clinical issues such as the detailed progression of Parkinson’s disease. At the same time, we will be able to address basic issues about the mind. How does the brain develop? How does the adult brain perform its functions?” At the heart of the refurbished centre – funded by the Medical Research Council, Wellcome Trust and Cancer Research UK – are three groundbreaking devices. Only a handful of these exist at institutions outside Cambridge and no institution – other than Cambridge – has all three. “The devices we have assembled are primarily for studying humans and will have a strong research focus,” Bullmore says. A key example is provided by the 7T MRI scanner. Current devices have magnetic fields that have strengths of around 3T (tesla) and can see structures 2-3 mm in size. By contrast, the new Cambridge scanner with its 7T field will have a resolution of around 0.5mm. © 2016 Guardian News and Media Limited

Keyword: Brain imaging
Link ID: 22782 - Posted: 10.24.2016

By KATE MURPHY Eavesdrop on any conversation or pay close attention to your own and you’ll hear laughter. From explosive bursts to muffled snorts, some form of laughter punctuates almost all verbal communication. Electronic communication, too, LOL. You’ll probably also notice that, more often than not, the laughter is in response to something that wasn’t very funny — or wasn’t funny at all. Observational studies suggest this is the case 80 percent to 90 percent of the time. Take Hillary Clinton’s strategic laughter during heated exchanges with Donald J. Trump during the presidential debates. Or Jimmy Fallon’s exaggerated laughter when interviewing guests on “The Tonight Show.” Or employees at Fox News reporting that they tried to “laugh off” unwanted sexual advances by Roger Ailes and others within the organization. How laughter went from a primal signal of safety (the opposite of a menacing growl) to an odd assortment of vocalizations that smooth as much as confuse social interactions is poorly understood. But researchers who study laughter say reflecting on when and why you titter, snicker or guffaw is a worthy exercise, given that laughter can harm as much as help you. “It’s a hall of mirrors of inferences and intentions every time you encounter laughter,” said Sophie Scott, a neuroscientist at University College London who studies how the brain produces and processes laughter. “You think it’s so simple. It’s just jokes and ha-ha but laughter is really sophisticated and complicated.” Laughter at its purest and most spontaneous is affiliative and bonding. To our forebears it meant, “We’re not going to kill each other! What a relief!” But as we’ve developed as humans so has our repertoire of laughter, unleashed to achieve ends quite apart from its original function of telling friend from foe. Some of it is social lubrication — the warm chuckles we give one another to be amiable and polite. Darker manifestations include dismissive laughter, which makes light of something someone said sincerely, and derisive laughter, which shames. © 2016 The New York Times Company

Keyword: Emotions; Attention
Link ID: 22781 - Posted: 10.24.2016

Ian Sample Science editor Experiments with a fake body part have revealed how the brain becomes confused during a party trick known as the rubber hand illusion. Researchers in Italy performed the trick on a group of volunteers to explore how the mind combines information from the senses to create a feeling of body ownership. Under the illusion, people feel that a rubber hand placed on the table before them is their own, a bizarre but convincing shift in perception that is accompanied by a sense of disowning their real hand. The scientists launched the study after noticing that some stroke patients in their care experienced similar sensations, at times becoming certain that a paralysed limb was not their own, and even claiming ownership over other people’s appendages. “It is a very strong belief,” said Francesca Garbarini at the University of Turin. “We know that the feeling of body ownership can be dramatically altered after brain damage.” For the study, healthy volunteers sat with their forearms resting on a table and their right hand hidden inside a box. A lifelike rubber hand was then placed in front of them and lined up with their right shoulder. A cloth covered the stump of the hand, but the fingers remained visible. To induce the illusion, one of the researchers stroked the middle finger of the participant’s real hand while simultaneously stroking the same finger on the rubber hand. © 2016 Guardian News and Media Limited

Keyword: Pain & Touch
Link ID: 22780 - Posted: 10.24.2016

by Bethany Brookshire Most of us spend our careers trying to meet — and hopefully exceed — expectations. Scientists do too. But the requirements for success in a job in academic science don’t always line up with the best scientific methods. The net result? Bad science doesn’t just happen — it gets selected for. What does it mean to be successful in science? A scientist gets a job and funding by publishing a lot of high-impact papers with novel findings. Those papers and findings beget awards and funding to do more science — and publish more papers. “The problem that we face is that the incentive system is focused almost entirely on getting research published, rather than on getting research right,” says Brian Nosek, a psychologist at the University of Virginia in Charlottesville. This idea of success has become so ingrained that scientists are even introduced when they give talks by the number of papers they have published or the amount of grant funding they have, says Marc Edwards, a civil engineer at Virginia Polytechnic Institute and State University in Blacksburg. But rewarding researchers for the number of papers they publish results in a “natural selection” of sloppy science, new research shows. The idea of scientific “success” equated as number of publications promotes not just lazy science but also unethical science, another paper argues. Both articles proclaim that it’s time for a culture shift. But with many scientific labs to fund and little money to do it, what does a new, better scientific enterprise look like? © Society for Science & the Public 2000 - 2016

Keyword: Miscellaneous
Link ID: 22779 - Posted: 10.24.2016

By Kensy Cooperrider, Rafael Núñez “What is the difference between yesterday and tomorrow?” The Yupno man we were interviewing, Danda, paused to consider his answer. A group of us sat on a hillside in the Yupno Valley, a remote nook high in the mountains of Papua New Guinea. Only days earlier we had arrived on a single-engine plane. After a steep hike from the grass airstrip, we found ourselves in the village of Gua, one of about 20 Yupno villages dotting the rugged terrain. We came all the way here because we are interested in time—in how Yupno people understand concepts such as past, present and future. Are these ideas universal, or are they products of our language, our culture and our environment? As we interviewed Danda and others in the village, we listened to what they said about time, but we paid even closer attention to what they did with their hands as they spoke. Gestures can be revealing. Ask English speakers about the difference between yesterday and tomorrow, and they might thrust a hand over the shoulder when referring to the past and then forward when referring to the future. Such unreflective movements reveal a fundamental way of thinking in which the past is at our backs, something that we “leave behind,” and the future is in front of us, something to “look forward” to. Would a Yupno speaker do the same? Danda was making just the kinds of gestures we were hoping for. As he explained the Yupno word for “yesterday,” his hand swept backward; as he mentioned “tomorrow,” it leaped forward. We all sat looking up a steep slope toward a jagged ridge, but as the light faded, we changed the camera angle, spinning around so that we and Danda faced in the opposite direction, downhill. With our backs now to the ridge, we looked over the Yupno River meandering toward the Bismarck Sea. “Let's go over that one more time,” we suggested. © 2016 Scientific American,

Keyword: Attention
Link ID: 22778 - Posted: 10.22.2016

Bret Stetka Every day in the United States, millions of expectant mothers take a prenatal vitamin on the advice of their doctor. The counsel typically comes with physical health in mind: folic acid to help avoid fetal spinal cord problems; iodine to spur healthy brain development; calcium to be bound like molecular Legos into diminutive baby bones. But what about a child's future mental health? Questions about whether ADHD might arise a few years down the road or whether schizophrenia could crop up in young adulthood tend to be overshadowed by more immediate parental anxieties. As a friend with a newborn daughter recently fretted over lunch, "I'm just trying not to drop her!" Yet much as pediatricians administer childhood vaccines to guard against future infections, some psychiatrists now are thinking about how to shift their treatment-centric discipline toward one that also deals in early prevention. In 2013, University of Colorado psychiatrist Robert Freedman and colleagues recruited 100 healthy, pregnant women from greater Denver to study whether giving the B vitamin choline during pregnancy would enhance brain growth in the developing fetus. The moms-to-be were randomly given either a placebo or a form of choline called phosphatidylcholine. Choline itself is broken down by bacteria in the gut; by giving it in this related form the supplement can more effectively be absorbed into the bloodstream. © 2016 npr

Keyword: Schizophrenia; Development of the Brain
Link ID: 22777 - Posted: 10.22.2016