Links for Keyword: Stroke

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 319

By Allison Bond, Although neurologist Amie Hsia was hundreds of miles away from the emergency room team caring for her ailing aunt last February, she knew her symptoms and imaging pointed to a severe stroke. Hsia’s aunt needed treatment fast with a clot-busting medicine and a procedure known as an endovascular thrombectomy, which removes the clot and restores blood flow to oxygen-starved patches of the brain. The hospital caring for her wasn’t equipped to perform the surgery, however, so Hsia insisted she be transferred to a nearby hospital, where the clot was removed from her brain. Hsia’s aunt survived and is able to live independently, despite some remaining symptoms from the stroke. Still, the travel to another hospital cost her valuable time—and could have hurt her in the long run. That’s the implication of a study published Monday in the Journal of the American Medical Association that found that the sooner patients with severe strokes receive a thrombectomy, the less disabled they tend to be three months later. The research indicates that the brain-saving benefits of thrombectomy are most pronounced within the first few hours after signs of a stroke begin, and that these effects decline with each passing hour. To some experts, the study is a call to rejigger the current method of determining where ambulances ought to take stroke patients, which is based solely on proximity. Instead, they say, patients with apparent severe strokes should be rushed to hospitals that perform thrombectomies. © 2016 Scientific America

Related chapters from BP7e: Chapter 19: Language and Hemispheric Asymmetry
Related chapters from MM:Chapter 15: Brain Asymmetry, Spatial Cognition, and Language
Link ID: 22703 - Posted: 09.28.2016

Scientists and clinicians have long dreamed of helping the injured brain repair itself by creating new neurons, and an innovative NIH-funded study published today in Nature Medicine may bring this goal much closer to reality. A team of researchers has developed a therapeutic technique that dramatically increases the production of nerve cells in mice with stroke-induced brain damage. The therapy relies on the combination of two methods that show promise as treatments for stroke-induced neurological injury. The first consists of surgically grafting human neural stem cells into the damaged area, where they mature into neurons and other brain cells. The second involves administering a compound called 3K3A-APC, which the scientists have shown helps neural stem cells grown in a petri dish develop into neurons. However, it was unclear what effect the molecule, derived from a human protein called activated protein-C (APC), would have in live animals. A month after their strokes, mice that had received both the stem cells and 3K3A-APC performed significantly better on tests of motor and sensory functions compared to mice that received neither or only one of the treatments. In addition, many more of the stem cells survived and matured into neurons in the mice given 3K3A-APC. “This USC-led animal study could pave the way for a potential breakthrough in how we treat people who have experienced a stroke,” added Jim Koenig, Ph.D., a program director at the NIH’s National Institute of Neurological Disorders and Stroke (NINDS), which funded the research. “If the therapy works in humans, it could markedly accelerate the recovery of these patients.”

Related chapters from BP7e: Chapter 19: Language and Hemispheric Asymmetry; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 15: Brain Asymmetry, Spatial Cognition, and Language; Chapter 13: Memory, Learning, and Development
Link ID: 22589 - Posted: 08.23.2016

Laura Sanders Under duress, nerve cells get a little help from their friends. Brain cells called astrocytes send their own energy-producing mitochondria to struggling nerve cells. Those gifts may help the neurons rebound after injuries such as strokes, scientists propose in the July 28 Nature. It was known that astrocytes — star-shaped glial cells that, among other jobs, support neurons — take in and dispose of neurons’ discarded mitochondria. Now it turns out that mitochondria can move the other way, too. This astrocyte-to-neuron transfer is surprising, says neuroscientist Jarek Aronowski of the University of Texas Health Science Center at Houston. “Bottom line: It’s sort of shocking.” Study coauthor Eng Lo of Massachusetts General Hospital and Harvard Medical School cautions that the work is at a very early stage. But he hopes that a deeper understanding of this process might ultimately point out new ways to protect the brain from damage. Mitochondria produce the energy that powers cells in the body. Scientists have spotted the organelles moving into damaged cells in other parts of the body, including the lungs, heart and liver. The new study turns up signs of this mitochondrial generosity in the brain. Astrocytes produce mitochondria and shunt them out into the soup that surrounds cells, Lo and colleagues found. The researchers then put neurons into this mitochondria-rich broth. When starved of glucose and oxygen — a situation that approximates a stroke — the neurons took in the astrocyte-made organelles. |© Society for Science & the Public 2000 - 2016

Related chapters from BP7e: Chapter 19: Language and Hemispheric Asymmetry; Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 15: Brain Asymmetry, Spatial Cognition, and Language; Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 22491 - Posted: 07.30.2016

By Emily Underwood If your car’s battery dies, you might call on roadside assistance—or a benevolent bystander—for a jump. When damaged neurons lose their “batteries,” energy-generating mitochondria, they call on a different class of brain cells, astrocytes, for a boost, a new study suggests. These cells respond by donating extra mitochondria to the floundering neurons. The finding, still preliminary, might lead to novel ways to help people recover from stroke or other brain injuries, scientists say. “This is a very interesting and important study because it describes a new mechanism whereby astrocytes may protect neurons,” says Reuven Stein, a neurobiologist at The Rabin Institute of Neurobiology in Tel Aviv, Israel, who was not involved in the study. To keep up with the energy-intensive work of transmitting information throughout the brain, neurons need a lot of mitochondria, the power plants that produce the molecular fuel—ATP—that keeps cells alive and working. Mitochondria must be replaced often in neurons, in a process of self-replication called fission—the organelles were originally microbes captured inside a cell as part of a symbiosis. But if mitochondria are damaged or if they can’t keep up with a cell’s needs, energy supplies can run out, killing the cell. In 2014, researchers published the first evidence that cells can transfer mitochondria in the brain—but it seemed more a matter of throwing out the trash. When neurons expel damaged mitochondria, astrocytes swallow them and break them down. Eng Lo and Kazuhide Hayakawa, both neuroscientsists at Massachusetts General Hospital in Charlestown, wondered whether the transfer could go the other way as well—perhaps astrocytes donated working mitochondria to neurons in distress. Research by other groups supported that idea: A 2012 study, for example, found that stem cells from bone marrow can donate mitochondria to lung cells after severe injury. © 2016 American Association for the Advancement of Science

Related chapters from BP7e: Chapter 19: Language and Hemispheric Asymmetry; Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 15: Brain Asymmetry, Spatial Cognition, and Language; Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 22489 - Posted: 07.28.2016

By Tim Page When I returned to California, I brought my diaries into the back yard every afternoon and read them through sequentially, with the hope of learning more about the years before my brain injury. I remembered much of what I’d done professionally, and whatever additional information I needed could usually be found on my constantly vandalized Wikipedia page. Here was the story of an awkward, imperious child prodigy who made his own films and became famous much too early; a music explainer who won a Pulitzer Prize; a driven and obsessive loner whose fascinations led to collaborations with Glenn Gould, Philip Glass and Thomas Pynchon. In 2000, at age 45, I was diagnosed with Asperger’s syndrome. In retrospect, the only surprise is that it took so long. But the diaries offered a more intimate view. Reading them was slow going, and I felt as though my nose was pressed up against the windowpane of my own life. The shaggy-dog accretion of material — phone numbers, long-ago concert dates, coded references to secret loves — all seemed to belong to somebody else. My last clear memory was of a muggy, quiet Sunday morning in July, three months earlier, as I waited for a train in New London, Conn. It was 11:13 a.m., and the train was due to arrive two minutes later. I was contented, proud of my punctuality and expecting an easy ride to New York in the designated “quiet car,” with just enough time to finish whatever book I was carrying. There would be dinner in Midtown with a magical friend, followed by overnight family visits in Baltimore and Washington, and then a flight back to Los Angeles and the University of Southern California, at which point a sabbatical semester would be at an end.

Related chapters from BP7e: Chapter 19: Language and Hemispheric Asymmetry; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 15: Brain Asymmetry, Spatial Cognition, and Language; Chapter 13: Memory, Learning, and Development
Link ID: 22478 - Posted: 07.26.2016

Rachel Ehrenberg When mice have a stroke, their gut reaction can amp up brain damage. A series of new experiments reveals a surprising back-and-forth between the brain and the gut in the aftermath of a stroke. In mice, this dickering includes changes to the gut microbial population that ultimately lead to even more inflammation in the brain. There is much work to be done to determine whether the results apply to humans. But the research, published in the July 13 Journal of Neuroscience, hints that poop pills laden with healthy microbes could one day be part of post-stroke therapy. The work also highlights a connection between gut microbes and brain function that scientists are only just beginning to understand,says Ted Dinan of the Microbiome Institute at the University College Cork, Ireland. There’s growing evidence that gut microbes can influence how people experience stress or depression, for example (SN: 4/2/16, p. 23). “It’s a fascinating study” says Dinan, who was not involved with the work. “It raises almost as many questions as it answers, which is what good studies do.” Following a stroke, the mouse gut becomes temporarily paralyzed, leading to a shift in the microbial community, neurologist Arthur Liesz of the Institute for Stroke and Dementia Research in Munich and colleagues found. This altered, less diverse microbial ecosystem appears to interact with immune system cells called T cells that reside in the gut. These T cells can either dampen inflammation or dial it up, leading to more damage, says Liesz. Whether the T cells further damage the brain after a stroke rather than soothe it seems to be determined by the immune system cells’ interaction with the gut microbes. © Society for Science & the Public 2000 - 2016.

Related chapters from BP7e: Chapter 19: Language and Hemispheric Asymmetry; Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 15: Brain Asymmetry, Spatial Cognition, and Language; Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 22431 - Posted: 07.13.2016

Playing simple card games, such as snap, can help stroke patients with their recovery, say Canadian researchers. The scientists found it improved patients' motor skills. Playing Jenga, bingo or a games consol like Wii worked equally well. They told the Lancet Neurology that the type of task used for motor rehabilitation might be less relevant, as long as it is intensive, repetitive and gets the hands and arms moving. The researchers designed their study to test whether virtual reality gaming, which is increasingly being employed as a rehab therapy for stroke patients, is any better than more traditional games for honing upper limb motor skills. The Canadian team recruited 141 patients who had recently suffered a stroke, and now had some impaired movement in one or both of their hands and arms. Approximately half of the patients, at random, were then allocated to the Wii rehab, while the rest were asked to do other recreational activities, such as playing cards. All of the patients continued to receive usual stroke rehabilitation care and support on top of the 10, one-hour sessions of gaming or card playing for a fortnight. Both groups showed significant improvement in their motor skills at the end of the two weeks and four weeks later. Importantly, both groups fared equally well, say the researchers. While it's not clear from this study how much of the improvement was from the regular stroke care the participants received, other research suggests adding in more therapy is beneficial. Investigator Dr Gustavo Saposnik, from St Michael's Hospital in Toronto, said: "We all like technology and have the tendency to think that new technology is better than old-fashioned strategies, but sometimes that's not the case. In this study, we found that simple recreational activities that can be implemented anywhere may be as effective as technology." © 2016 BBC.

Related chapters from BP7e: Chapter 19: Language and Hemispheric Asymmetry
Related chapters from MM:Chapter 15: Brain Asymmetry, Spatial Cognition, and Language
Link ID: 22367 - Posted: 06.28.2016

In a study of stroke patients, investigators confirmed through MRI brain scans that there was an association between the extent of disruption to the brain’s protective blood-brain barrier and the severity of bleeding following invasive stroke therapy. The results of the National Institutes of Health-funded study were published in Neurology. These findings are part of the Diffusion and Perfusion Imaging Evaluation for Understanding Stroke Evolution (DEFUSE)-2 Study, which was designed to see how MRIs can help determine which patients undergo endovascular therapy following ischemic stroke caused by a clot blocking blood flow to the brain. Endovascular treatment targets the ischemic clot itself, either removing it or breaking it up with a stent. The blood-brain barrier is a layer of cells that protects the brain from harmful molecules passing through the bloodstream. After stroke, the barrier is disrupted, becoming permeable and losing control over what gets into the brain. “The biggest impact of this research is that information from MRI scans routinely collected at a number of research hospitals and stroke centers can inform treating physicians on the risk of bleeding,” said Richard Leigh, M.D., a scientist at NIH’s National Institute of Neurological Disorders and Stroke (NINDS) and an author on the study. In this study, brain scans were collected from more than 100 patients before they underwent endovascular therapy, within 12 hours of stroke onset. Dr. Leigh and his team obtained the images from DEFUSE-2 investigators.

Related chapters from BP7e: Chapter 19: Language and Hemispheric Asymmetry; Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 15: Brain Asymmetry, Spatial Cognition, and Language; Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 22332 - Posted: 06.18.2016

By Amina Zafar, When Susan Robertson's fingers and left arm felt funny while she was Christmas shopping, they were signs of a stroke she experienced at age 36. The stroke survivor is now concerned about her increased risk of dementia. The link between stroke and dementia is stronger than many Canadians realize, the Heart and Stroke Foundation says. The group's annual report, released Thursday, is titled "Mind the connection: preventing stroke and dementia." Stroke happens when blood stops flowing to parts of the brain. Robertson, 41, of Windsor, Ont., said her short-term memory, word-finding and organizational skills were impaired after her 2011 stroke. She's extremely grateful to have recovered the ability to speak and walk after doctors found clots had damaged her brain's left parietal lobe. "I knew what was happening, but I couldn't say it," the occupational nurse recalled. Dementia risk A stroke more than doubles the risk of dementia, said Dr. Rick Swartz, a spokesman for the foundation and a stroke neurologist in Toronto. Raising awareness about the link is not to scare people, but to show how controlling blood pressure, not smoking or quitting if you do, eating a balanced diet and being physically active reduce the risk to individuals and could make a difference at a society level, Swartz said. While aging is a common risk factor in stroke and dementia, evidence in Canada and other developed countries shows younger people are also increasingly affected. ©2016 CBC/Radio-Canada.

Related chapters from BP7e: Chapter 19: Language and Hemispheric Asymmetry; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 15: Brain Asymmetry, Spatial Cognition, and Language; Chapter 13: Memory, Learning, and Development
Link ID: 22302 - Posted: 06.09.2016

By Andy Coghlan People once dependent on wheelchairs after having a stroke are walking again since receiving injections of stem cells into their brains. Participants in the small trial also saw improvements in their speech and arm movements. “One 71-year-old woman could only move her left thumb at the start of the trial,” says Gary Steinberg, a neurosurgeon at Stanford University who performed the procedure on some of the 18 participants. “She can now walk and lift her arm above her head.” Run by SanBio of Mountain View, California, this trial is the second to test whether stem cell injections into patients’ brains can help ease disabilities resulting from stroke. Patients in the first, carried out by UK company ReNeuron, also showed measurable reductions in disability a year after receiving their injections and beyond. All patients in the latest trial showed improvements. Their scores on a 100-point scale for evaluating mobility – with 100 being completely mobile – improved on average by 11.4 points, a margin considered to be clinically meaningful for patients. “The most dramatic improvements were in strength, coordination, ability to walk, the ability to use hands and the ability to communicate, especially in those whose speech had been damaged by the stroke,” says Steinberg. In both trials, improvements in patients’ mobility had plateaued since having had strokes between six months and three years previously. © Copyright Reed Business Information Ltd

Related chapters from BP7e: Chapter 19: Language and Hemispheric Asymmetry; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 15: Brain Asymmetry, Spatial Cognition, and Language; Chapter 13: Memory, Learning, and Development
Link ID: 22281 - Posted: 06.04.2016

By Jordana Cepelewicz The bacteria that inhabit our guts have become key players for neuroscientists. A growing body of research links them to a wide array of mental and neurological disorders—from anxiety and depression to schizophrenia and Alzheimer’s disease. Now a study in mice published this week in Nature Medicine suggests that striking the right microbial balance could cause changes in the immune system that significantly reduce brain damage after a stroke—the second leading cause of both death and disability for people around the globe. (Scientific American is part of Springer Nature.) Experts have known for some time that stroke severity is influenced by the presence of two types of cell, found abundantly within the intestine, that calibrate immune responses: Regulatory T cells have a beneficial inflammatory effect, protecting an individual from stroke. But gamma delta T cells produce a cytokine that causes harmful inflammation after a stroke. A team of researchers at Weill Cornell Medical College and Memorial Sloan Kettering Cancer Center set about investigating whether they could tilt the balance of these cells in the favor of beneficial cells by tinkering with the body’s bacterial residents. To do so, they bred two colonies of mice: One group’s intestinal flora was resistant to antibiotics whereas the other’s gut bacteria was vulnerable to treatment. As a result, when given a combination of antibiotics over the course of two weeks, only the latter’s microbiota underwent change. The researchers then obstructed the cerebral arteries of the mice, inducing an ischemic stroke (the most common type). They found that subsequent brain damage was 60 percent smaller in the drug-susceptible mice than it was in the other group. © 2016 Scientific American,

Related chapters from BP7e: Chapter 19: Language and Hemispheric Asymmetry; Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 15: Brain Asymmetry, Spatial Cognition, and Language; Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 22054 - Posted: 03.31.2016

Nicola Davis Electrical brain stimulation could benefit stroke patients by boosting the effects of rehabilitation therapy, new research suggests. Writing in the journal Science Translational Medicine, the authors reveal that patients who were given electrical brain stimulation during a rehabilitation programme performed better on a range of tasks than those taking part in the rehabilitation programme. “It is an exciting message because there is so much frustration about people not reaching their true recovery potential,” said Professor Heidi Johansen-Berg, an author of the study from the University of Oxford, highlighting the fact that the cost of programmes and limited availability of therapists often restricts the amount of rehabilitation offered to patients. To probe the effects of brain stimulation, the researchers chose 24 patients who had experienced a stroke at least six months before, and who had difficulties with moving one hand. The participants were then split into two groups. The first group underwent nine consecutive days of rehabilitation training, with each session lasting an hour. For the first 20 minutes, the patients had two electrodes placed on their heads and a direct current applied, a process known as anodal transcranial direct current stimulation (tDCS). This is stimulation is thought to prime the brain for learning. © 2016 Guardian News and Media Limited

Related chapters from BP7e: Chapter 19: Language and Hemispheric Asymmetry
Related chapters from MM:Chapter 15: Brain Asymmetry, Spatial Cognition, and Language
Link ID: 22000 - Posted: 03.17.2016

Rae Ellen Bichell "I am what I like to call 'new stroke'," says Troy Hodge, a 43-year-old resident of Carol County, Md. With a carefully trimmed beard and rectangular hipster glasses, Hodge looks spry. But two years ago, his brain stopped communicating for a time with the left half of his body. He was at home getting ready for work as a food service director at a nearby nursing home. Hodge remembers entering the downstairs bathroom to take his blood pressure medications. He sat down on the bathroom floor and couldn't get up. He says he felt so hot, he actually splashed some toilet water on his face because he couldn't reach the sink. When Hodge didn't show up for work, a colleague got worried and came over. She called 911 when she found him on the floor. "I remember telling her not to let me die," says Hodge, "and from then on I really don't remember that much." He woke up a day or so later at a trauma center one state over, in Delaware. "Troy experienced what we call an intracerebral hemorrhage, which basically just means bleeding within the substance of the brain," says Dr. Steven Kittner, a neurologist at the University of Maryland School of Medicine. Hodge's high blood pressure probably damaged the tiny vessels in his brain, Kittner says. Hodge is one of many Americans having strokes at a younger age. About 10 percent of all strokes occur in people between 18 and 50 years old, and the risk factors include some that Hodge had: high blood pressure, overweight, off-kilter cholesterol, smoking and diabetes. © 2016 npr

Related chapters from BP7e: Chapter 19: Language and Hemispheric Asymmetry
Related chapters from MM:Chapter 15: Brain Asymmetry, Spatial Cognition, and Language
Link ID: 21921 - Posted: 02.22.2016

By Ariana Eunjung Cha The scariest form of stroke involves the pooling of blood in the brain. When this begins, there has been very little that can be done to stop it. Even with open brain surgery, blood often clots so fast that it's impossible to remove, and an estimated 60 percent to 80 percent of patients who suffer from this condition don't survive. Of those who do pull through, 90 percent are left severely impaired. Researchers, however, believe they may have finally found a way to improve a patient's odds. Speaking at the 2016 International Stroke Conference in Los Angeles, they reported that using a clot-busting heart drug not only appeared to reduce the fatality percentage, it also appeared to increase patients' chances of a functional recovery, which in the past has been extremely rare. Issam Awad, a professor of surgery at the University of Chicago who is co-chair of the study, said the therapy could potentially "be the difference between going home instead of going to a nursing home." The study involved 500 patients with hemorrhagic or bleeding stroke from 73 sites around the world. Through a brain catheter, they were treated either with saline, which served as the control, or the drug Alteplase, which is known as a tissue plasminogen activator, or tPA, and has been used in people with heart attacks or blood clots near the lungs. In the five years of follow-up from 2009 to 2015, those who received tPA were 10 percent less likely to die than those who received saline.

Related chapters from BP7e: Chapter 19: Language and Hemispheric Asymmetry
Related chapters from MM:Chapter 15: Brain Asymmetry, Spatial Cognition, and Language
Link ID: 21911 - Posted: 02.19.2016

Sidharth Gupta always dazzled people with his intelligence. “Everybody used to praise my brother’s brain,” says Isha Gupta , two years his junior. “Everybody. Like, ‘Oh Sidharth, he’s very smart. He’s got a very sharp brain.’ That’s something that I’ve heard all my life. And his brain is what gave up on him.” Two years ago, “Sid” was the picture of exuberance and ambition. Having established his own marketing and event planning business in his native India, he moved to Toronto in 2011 to work as an account executive at Canada’s largest advertising agency, MacLaren McCann. According to Isha, Sid had big dreams. The event management company in India was just the beginning; he was planning to grow it into a worldwide marketing business. Thirty years old at the time, Sid was smart, savvy, on the ball — and always up for fun. He had “insane energy,” says colleague Zain Ali . “He could work all day and then party late and then get back to work the next day.” “Sid was very happy-go-lucky,” says another work friend, Rishi Gupta (no relation). “He had that same smile on his face all the time. He wanted to be part of the party, to have a good time.” That was Sid’s frame of mind on Feb. 20, 2014, as he geared up for a marketing launch at the Canadian International Auto Show in Toronto. After he and Zain put in 12 hours setting up an interactive display for the new Camaro Z28, Sid joined a few friends to celebrate Rishi’s birthday. ©2016 CBC/Radio-Canada.

Related chapters from BP7e: Chapter 19: Language and Hemispheric Asymmetry; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 15: Brain Asymmetry, Spatial Cognition, and Language; Chapter 11: Emotions, Aggression, and Stress
Link ID: 21906 - Posted: 02.17.2016

Scientists hunting for a drug that speeds stroke recovery might find one in the bedside cabinets of millions of Americans. Mice treated with small doses of the sleeping pill Ambien recovered more quickly from strokes than those given a placebo. Ambien is the best-known incarnation of the drug zolpidem, which was prescribed 40 million times in the US in 2011. The researchers say that the finding should be replicated by other labs before proceeding with clinical trials, but it’s an intriguing result for a problem in desperate need of solutions. Strokes cut off the blood supply to part of the brain, leading to the death of oxygen-starved tissue. Some tissue repair can take place in the months afterwards, but most people never fully recover. Although physical therapy can help, there are no drugs that increase the amount of brain tissue repaired. “There are various natural mechanisms that promote a degree of normal recovery in animals and people, but it’s limited”, says Gary Steinberg of Stanford University School of Medicine, who was lead author of the study. One such mechanism may be an increase in signalling by the GABA neurotransmitter in parts of the brain that are able to rewire themselves. Because Ambien acts on GABA receptors, Steinberg and his team wondered whether they could use it to hack this mechanism to improve recovery. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 19: Language and Hemispheric Asymmetry; Chapter 14: Biological Rhythms, Sleep, and Dreaming
Related chapters from MM:Chapter 15: Brain Asymmetry, Spatial Cognition, and Language; Chapter 10: Biological Rhythms and Sleep
Link ID: 21710 - Posted: 12.19.2015

By Karen Russell In late October, when the Apple TV was relaunched, Bandit’s Shark Showdown was among the first apps designed for the platform. The game stars a young dolphin with anime-huge eyes, who battles hammerhead sharks with bolts of ruby light. There is a thrilling realism to the undulance of the sea: each movement a player makes in its midnight-blue canyons unleashes a web of fluming consequences. Bandit’s tail is whiplash-fast, and the sharks’ shadows glide smoothly over rocks. Every shark, fish, and dolphin is rigged with an invisible skeleton, their cartoonish looks belied by the programming that drives them—coding deeply informed by the neurobiology of action. The game’s design seems suspiciously sophisticated when compared with that of apps like Candy Crush Soda Saga and Dude Perfect 2. Bandit’s Shark Showdown’s creators, Omar Ahmad, Kat McNally, and Promit Roy, work for the Johns Hopkins School of Medicine, and made the game in conjunction with a neuroscientist and neurologist, John Krakauer, who is trying to radically change the way we approach stroke rehabilitation. Ahmad told me that their group has two ambitions: to create a successful commercial game and to build “artistic technologies to help heal John’s patients.” A sister version of the game is currently being played by stroke patients with impaired arms. Using a robotic sling, patients learn to sync the movements of their arms to the leaping, diving dolphin; that motoric empathy, Krakauer hopes, will keep patients engaged in the immersive world of the game for hours, contracting their real muscles to move the virtual dolphin.

Related chapters from BP7e: Chapter 19: Language and Hemispheric Asymmetry
Related chapters from MM:Chapter 15: Brain Asymmetry, Spatial Cognition, and Language
Link ID: 21635 - Posted: 11.17.2015

Looking at brain tissue from mice, monkeys and humans, scientists have found that a molecule known as growth and differentiation factor 10 (GDF10) is a key player in repair mechanisms following stroke. The findings suggest that GDF10 may be a potential therapy for recovery after stroke. The study, published in Nature Neuroscience, was supported by the National Institute of Neurological Disorders and Stroke (NINDS), part of the National Institutes of Health. “These findings help to elucidate the mechanisms of repair following stroke. Identifying this key protein further advances our knowledge of how the brain heals itself from the devastating effects of stroke, and may help to develop new therapeutic strategies to promote recovery,” said Francesca Bosetti, Ph.D., stroke program director at NINDS. Stroke can occur when a brain blood vessel becomes blocked, preventing nearby tissue from getting essential nutrients. When brain tissue is deprived of oxygen and nutrients, it begins to die. Once this occurs, repair mechanisms, such as axonal sprouting, are activated as the brain attempts to overcome the damage. During axonal sprouting, healthy neurons send out new projections (“sprouts”) that re-establish some of the connections lost or damaged during the stroke and form new ones, resulting in partial recovery. Before this study, it was unknown what triggered axonal sprouting. Previous studies suggested that GDF10 was involved in the early stages of axonal sprouting, but its exact role in the process was unclear. S. Thomas Carmichael, M.D., Ph.D., and his colleagues at the David Geffen School of Medicine at the University of California Los Angeles took a closer look at GDF10 to identify how it may contribute to axonal sprouting.

Related chapters from BP7e: Chapter 19: Language and Hemispheric Asymmetry
Related chapters from MM:Chapter 15: Brain Asymmetry, Spatial Cognition, and Language
Link ID: 21576 - Posted: 10.28.2015

By Catherine Saint Louis People who work 55 hours or more per week have a 33 percent greater risk of stroke and a 13 percent greater risk of coronary heart disease than those working standard hours, researchers reported on Wednesday in the Lancet. The new analysis includes data on more than 600,000 individuals in Europe, the United States and Australia, and is the largest study thus far of the relationship between working hours and cardiovascular health. But the analysis was not designed to draw conclusions about what caused the increased risk and could not account for all relevant confounding factors. “Earlier studies have pointed to heart attacks as a risk of long working hours, but not stroke,” said Dr. Urban Janlert, a professor of public health at Umea University in Sweden, who wrote an accompanying editorial. “That’s surprising.” Mika Kivimaki, a professor of epidemiology at University College London, and his colleagues combined the results of multiple studies and tried to account for factors that might skew the results. In addition to culling data from published studies, the researchers also compiled unpublished information from public databases and asked authors of previous work for additional data. Dr. Steven Nissen, the chief of cardiovascular medicine at the Cleveland Clinic, found the methodology unconvincing. “It’s based upon exclusively observational studies, many of which were unpublished,” and some never peer-reviewed, he said. Seventeen studies of stroke included 528,908 men and women who were tracked on average 7.2 years. Some 1,722 nonfatal and deadly strokes were recorded. After controlling for smoking, physical activity and high blood pressure and cholesterol, the researchers found a one-third greater risk of stroke among those workers who reported logging 55 or more hours weekly, compared with those who reported working the standard 35 to 40 hours. © 2015 The New York Times Company

Related chapters from BP7e: Chapter 19: Language and Hemispheric Asymmetry; Chapter 14: Biological Rhythms, Sleep, and Dreaming
Related chapters from MM:Chapter 15: Brain Asymmetry, Spatial Cognition, and Language; Chapter 10: Biological Rhythms and Sleep
Link ID: 21323 - Posted: 08.22.2015

A dipstick inserted into the brain can check its energy levels, just like checking oil levels in a car. The dipstick is already available and can save lives, according to some neuroscientists. “The goal is to save brain tissue,” says Elham Rostami of the Karolinska Institute in Stockholm, Sweden. Last month, Rostami and 47 others published guidelines about how and when to use the technique, known as brain microdialysis, in the hope of encouraging more hospitals to adopt it. The approach involves inserting a slim, 1-centimetre-long probe directly into the brain. It measures levels of chemicals in the fluid that bathes brain cells, including glucose, the brain’s main energy source. When used to monitor the brains of people in intensive care after a stroke or head injury, it warns doctors if glucose starts to dip – which can cause brain damage. The probe can theoretically monitor almost any molecule, but Rostami says the most useful parameters are glucose, which shows if there is a good blood supply, and lactate and pyruvate, two metabolites that indicate if brain cells are using the glucose to release energy. Although widely available, the device has so far mainly been used as a research tool rather than to guide treatment. Rostami believes her use of the probe helped save a woman’s life last year. The woman was in intensive care after a stroke involving bleeding on the surface of her brain. The probe revealed that although the bleeding had stopped, the woman’s brain glucose levels had fallen, probably caused by other blood vessels constricting. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 19: Language and Hemispheric Asymmetry; Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 15: Brain Asymmetry, Spatial Cognition, and Language; Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 21270 - Posted: 08.05.2015