Chapter 4. The Chemistry of Behavior: Neurotransmitters and Neuropharmacology

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.

Links 21 - 40 of 2120

By STEVE SILBERMAN In the late 1930s, Charles Bradley, the director of a home for “troublesome” children in Rhode Island, had a problem. The field of neuroscience was still in its infancy, and one of the few techniques available to allow psychiatrists like Bradley to ponder the role of the brain in emotional disorders was a procedure that required replacing a volume of cerebrospinal fluid in the patient’s skull with air. This painstaking process allowed any irregularities to stand out clearly in X-ray images, but many patients suffered excruciating headaches that lasted for weeks afterward. Meanwhile, a pharmaceutical company called Smith, Kline & French was facing a different sort of problem. The firm had recently acquired the rights to sell a powerful stimulant then called “benzedrine sulfate” and was trying to create a market for it. Toward that end, the company made quantities of the drug available at no cost to doctors who volunteered to run studies on it. Bradley was a firm believer that struggling children needed more than a handful of pills to get better; they also needed psychosocial therapy and the calming and supportive environment that he provided at the home. But he took up the company’s offer, hoping that the drug might eliminate his patients’ headaches. It did not. But the Benzedrine did have an effect that was right in line with Smith, Kline & French’s aspirations for its new product: The drug seemed to boost the children’s eagerness to learn in the classroom while making them more amenable to following the rules. The drug seemed to calm the children’s mood swings, allowing them to become, in the words of their therapists, more “attentive” and “serious,” able to complete their schoolwork and behave. Bradley was amazed that Benzedrine, a forerunner of Ritalin and Adderall, was such a great normalizer, turning typically hard-to-manage kids into models of complicity and decorum. But even after marveling at the effects of the drug, he maintained that medication should be considered for children only in addition to other forms of therapy. © 2016 The New York Times Company

Keyword: ADHD; Drug Abuse
Link ID: 22612 - Posted: 08.30.2016

Neuroscience News Researchers have identified a brain mechanism that could be a drug target to help prevent tolerance and addiction to opioid pain medication, such as morphine, according to a study by Georgia State University and Emory University. The findings, published in the Nature journal Neuropsychopharmacology in August, show for the first time that morphine tolerance is due to an inflammatory response produced in the brain. This brain inflammation is caused by the release of cytokines, chemical messengers in the body that trigger an immune response, similar to a viral infection. Researchers’ results show blocking a particular cytokine eliminated morphine tolerance, and they were able to reduce the dose of morphine required to alleviate pain by half. “These results have important clinical implications for the treatment of pain and also addiction,” said Lori Eidson, lead author and a graduate student in the laboratory of Dr. Anne Murphy in the Neuroscience Institute of Georgia State. “Until now, the precise underlying mechanism for opioid tolerance and its prevention have remained unknown.” Over 67 percent of the United States population will experience chronic pain at some point in their lives. Morphine is the primary drug used to manage severe and chronic pain, with 3 to 4 percent of adults in the U.S. receiving long-term opioid therapy. However, tolerance to morphine, defined as a decrease in pain relief over time, significantly impedes treatment for about 60 percent of patients. Long-term treatment with opioids is associated with increased risk of abuse, dependence and fatal overdoses.

Keyword: Drug Abuse; Pain & Touch
Link ID: 22596 - Posted: 08.24.2016

Sara Reardon Neuroscientists have invented a way to watch the ebb and flow of the brain's chemical messengers in real time. They were able to see the surge of neurotransmitters as mice were conditioned — similarly to Pavlov's famous dogs — to salivate in response to a sound. The study, presented at the American Chemical Society’s meeting in Philadelphia, Pennyslvania, on 22 August, uses a technique that could help to disentangle the complex language of neurotransmitters. Ultimately, it could lead to a better understanding of brain circuitry. The brain’s electrical surges are easy to track. But detecting the chemicals that drive this activity — the neurotransmitters that travel between brain cells and lead them to fire — is much harder. “There’s a hidden signalling network in the brain, and we need tools to uncover it,” says Michael Strano, a chemical engineer at the Massachusetts Institute of Technology in Cambridge. In many parts of the brain, neurotransmitters can exist at undetectably low levels. Typically, researchers monitor them by sucking fluid out from between neurons and analysing the contents in the lab. But that technique cannot measure activity in real time. Another option is to insert a metal probe into the space between neurons to measure how neurotransmitters react chemically when they touch metal. But the probe is unable to distinguish between structurally similar molecules, such as dopamine, which is involved in pleasure and reward, and noradrenaline which is involved in alertness. © 2016 Macmillan Publishers Limited

Keyword: Brain imaging; Drug Abuse
Link ID: 22584 - Posted: 08.22.2016

Laura Sanders For some people, fentanyl can be a life-saver, easing profound pain. But outside of a doctor’s office, the powerful opioid drug is also a covert killer. In the last several years, clandestine drugmakers have begun experimenting with this ingredient, baking it into drugs sold on the streets, most notably heroin. Fentanyl and closely related compounds have “literally invaded the entire heroin supply,” says medical toxicologist Lewis Nelson of New York University Langone Medical Center. Fentanyl is showing up in other drugs, too. In San Francisco’s Bay Area in March, high doses of fentanyl were laced into counterfeit versions of the pain pill Norco. In January, fentanyl was found in illegal pills sold as oxycodone in New Jersey. And in late 2015, fentanyl turned up in fake Xanax pills in California. This ubiquitous recipe-tinkering makes it impossible for users to know whether they’re about to take drugs mixed with fentanyl. And that uncertainty has proved deadly. Fentanyl-related deaths are rising sharply in multiple areas. National numbers are hard to come by, but in many regions around the United States, fentanyl-related fatalities have soared in recent years. Maryland is one of the hardest-hit states. From 2007 to 2012, the number of fentanyl-related deaths hovered around 30 per year. By 2015, that number had grown to 340. A similar rise is obvious in Connecticut, where in 2012, there were 14 fentanyl-related deaths. In 2015, that number was 188. |© Society for Science & the Public 2000 - 2016.

Keyword: Drug Abuse; Pain & Touch
Link ID: 22581 - Posted: 08.22.2016

Angus Chen Once people realized that opioid drugs could cause addiction and deadly overdoses, they tried to use newer forms of opioids to treat the addiction to its parent. Morphine, about 10 times the strength of opium, was used to curb opium cravings in the early 19th century. Codeine, too, was touted as a nonaddictive drug for pain relief, as was heroin. Those attempts were doomed to failure because all opioid drugs interact with the brain in the same way. They dock to a specific neural receptor, the mu-opioid receptor, which controls the effects of pleasure, pain relief and need. Now scientists are trying to create opioid painkillers that give relief from pain without triggering the euphoria, dependence and life-threatening respiratory suppression that causes deadly overdoses. That wasn't thought possible until 2000, when a scientist named Laura Bohn found out something about a protein called beta-arrestin, which sticks to the opioid receptor when something like morphine activates it. When she gave morphine to mice that couldn't make beta-arrestin, they were still numb to pain, but a lot of the negative side effects of the drug were missing. They didn't build tolerance to the drug. At certain dosages, they had less withdrawal. Their breathing was more regular, and they weren't as constipated as normal mice on morphine. Before that experiment, scientists thought the mu-opioid receptor was a simple switch that flicked all the effects of opioids on or off together. Now it seems they could be untied. © 2016 npr

Keyword: Pain & Touch; Drug Abuse
Link ID: 22569 - Posted: 08.18.2016

By Robin Wylie Scientists have been searching for a genetic explanation for athletic ability for decades. So far their efforts have focused largely on genes related to physical attributes, such as muscular function and aerobic efficiency. But geneticists have also started to investigate the neurologicalbasis behind what makes someone excel in sports—and new findings implicate dopamine, a neurotransmitter responsible for the feelings of reward and pleasure. Dopamine is also involved in a host of other mental functions, including the ability to deal with stress and endure pain. Consequently, the new research supports the idea that the mental—not just the physical—is what sets elite athletes above the rest. In an effort to piece together what makes a great athlete great, researchers at the University of Parma in Italy collected DNA from 50 elite athletes (ones who had achieved top scores at an Olympic Games or other international competition) and 100 nonprofessional athletes (ones who played sports regularly, but below competitive level). They then compared four genes across the two groups that had previously been suggested as linked to athletic ability: one related to muscle development, one involved with transporting dopamine in the brain, another that regulates levels of cerebral serotonin and one involved in breaking down neurotransmitters. The researchers found a significant genetic difference between the two groups in only one of the genes: the one involved in transporting dopamine. Two particular variants of this gene (called the dopamine active transporter, or DAT) were significantly more common among the elite athletes than in the control group. One variant was almost five times more prevalent in the elite group (occurring in 24 percent of the elites versus 5 percent of the rest); the other variant was approximately 1.7 times more prevalent (51 percent versus 30 percent). The results were published in Journal of Biosciences. © 2016 Scientific American

Keyword: Drug Abuse; Genes & Behavior
Link ID: 22566 - Posted: 08.17.2016

Ramin Skibba Scientists and medical researchers in the United States have been studying the health benefits and risks of marijuana for decades. But despite the increasing availability of legal marijuana, scientists have been forced to obtain the drug from a single source — the University of Mississippi in Oxford, which grows pot for research on a campus farm under a contract with the National Institute on Drug Abuse (NIDA). Now, the university’s monopoly is coming to an end. In an unexpected move, the US Drug Enforcement Administration (DEA) announced on 11 August that it will allow any institution to apply for permission to grow marijuana for research. Nature explains how the policy could transform the study of marijuana. Why do researchers want to study pot — and how do they get it? Researchers have been extracting cannabinoids — chemical compounds found in cannabis — and developing strains of varying strength to test whether they could alleviate chronic pain and treat or mitigate the effects of ailments such as seizures and other neurological disorders. Approved medical-marijuana consumers may buy pot from dispensaries in more than half the country, and recreational marijuana use is permitted in a few states. But researchers are limited to the handful of strains grown by the University of Mississippi farm. © 2016 Macmillan Publishers Limited

Keyword: Drug Abuse
Link ID: 22554 - Posted: 08.13.2016

By THE EDITORIAL BOARD Supporters of a saner marijuana policy scored a small victory this week when the Obama administration said it would authorize more institutions to grow marijuana for medical research. But the government passed up an opportunity to make a more significant change. The Drug Enforcement Administration on Thursday turned down two petitions — one from the governors of Rhode Island and Washington and the other from a resident of New Mexico — requesting that marijuana be removed from Schedule 1 of the Controlled Substances Act. Drugs on that list, which include heroin and LSD, are deemed to have no medical use; possession is illegal under federal law, and researchers have to jump through many hoops to obtain permission to study them and obtain samples to study. Having marijuana on that list is deeply misguided since many scientists and President Obama have said that it is no more dangerous than alcohol. Over the years, Congress and attorneys general have deferred to the expertise of the D.E.A., which is the part of the Justice Department that enforces the nation’s drug laws. So the D.E.A. has amassed extensive control over drug policy making. It determines who gets to grow marijuana for research and which scholars are allowed to study it, for example. It has strongly resisted efforts by scientists, state officials and federal lawmakers to reclassify marijuana by rejecting or refusing to acknowledge evidence that marijuana is not nearly as harmful as federal law treats it. Since 1968, the University of Mississippi has been the only institution allowed to grow the plant for research. This has severely limited availability. The D.E.A. now says that because researchers are increasingly interested in studying marijuana, it will permit more universities to grow the cannabis plant and supply it to researchers who have been approved to conduct studies on it. This should make it easier for researchers to obtain varieties of marijuana with varying concentrations of different compounds. © 2016 The New York Times Company

Keyword: Drug Abuse
Link ID: 22553 - Posted: 08.13.2016

By CATHERINE SAINT LOUIS and MATT APUZZO The Obama administration is planning to remove a major roadblock to marijuana research, officials said Wednesday, potentially spurring broad scientific study of a drug that is being used to treat dozens of diseases in states across the nation despite little rigorous evidence of its effectiveness. The new policy is expected to sharply increase the supply of marijuana available to researchers. And in taking this step, the Obama administration is further relaxing the nation’s stance on marijuana. President Obama has said he views it as no more dangerous than alcohol, and the Justice Department has not stood in the way of states that have legalized the drug. For years, the University of Mississippi has been the only institution authorized to grow the drug for use in medical studies. This restriction has so limited the supply of marijuana federally approved for research purposes that scientists said it could often take years to obtain it and in some cases it was impossible to get. But soon the Drug Enforcement Administration will allow other universities to apply to grow marijuana, three government officials said. While 25 states have approved the medical use of marijuana for a growing list of conditions, including Parkinson’s, Crohn’s disease, Tourette’s syndrome, Alzheimer’s, lupus and rheumatoid arthritis, the research to back up many of those treatments is thin. The new policy could begin to change that. “It will create a supply of research-grade marijuana that is diverse, but more importantly, it will be competitive and you will have growers motivated to meet the demand of researchers,” said John Hudak, a senior fellow at the Brookings Institution. The new policy will be published as soon as Thursday in the federal register, according to the three officials, who have seen the policy but spoke on condition of anonymity because they were not authorized to discuss it. © 2016 The New York Times Company

Keyword: Drug Abuse
Link ID: 22539 - Posted: 08.11.2016

By MARTHA C. WHITE A graphic 30-year-old drug education campaign from Partnership for a Drug-Free America is being updated. For a generation of commercial-watching adolescents, it was an indelible image: an egg, sizzling in a frying pan, representing “your brain on drugs.” It was a straightforward message, and the ad’s final line — “Any questions?” — asked as the egg white clouded and cooked, was strictly rhetorical. Three decades later, the Partnership for Drug-Free Kids (the group formerly known as the Partnership for a Drug-Free America) is bringing the frying pan out of retirement and firing up the stove again. But this time questions are the point. The group hopes it can tap into the nostalgia parents may have for the old frying egg ad while also letting them know their children do indeed want answers about drugs. “‘Any questions’ was the end. Now it’s the beginning,” said Scott Seymour, chief creative officer at BFG Communications, which created print and digital banner ads for the new campaign. “The landscape of drugs has really gotten a lot more complex, so we took this idea of having a succession of questions delivered by kids,” he said. The group drew on real inquiries from parents to develop the questions featured in the ads, which cover topics like prescription drugs and marijuana legalization. Children today feel empowered and entitled to ask questions about drugs, and parents are more willing to entertain those questions, observers say. “Because of parenting styles today, parents are engaged with their kids in a different way,” said Kristi Rowe, chief marketing officer at the Partnership for Drug-Free Kids. “They’re really stumped by the questions. They don’t know how to answer them.” © 2016 The New York Times Company

Keyword: Drug Abuse
Link ID: 22524 - Posted: 08.08.2016

Tina Hesman Saey Alcoholism may stem from using genes incorrectly, a study of hard-drinking rats suggests. Rats bred either to drink heavily or to shun alcohol have revealed 930 genes linked to a preference for drinking alcohol, researchers in Indiana report August 4 in PLOS Genetics. Human genetic studies have not found most of the genetic variants that put people at risk for alcoholism, says Michael Miles, a neurogenomicist at Virginia Commonwealth University in Richmond. The new study takes a “significant and somewhat novel approach” to find the genetic differences that separate those who will become addicted to alcohol from those who drink in moderation. It took decades to craft the experiment, says study coauthor William Muir, a population geneticist at Purdue University in West Lafayette, Ind. Starting in the 1980s, rats bred at Indiana University School of Medicine in Indianapolis were given a choice to drink pure water or water mixed with 10 percent ethanol, about the same amount of alcohol as in a weak wine. For more than 40 generations, researchers selected rats from each generation that voluntarily drank the most alcohol and bred them to create a line of rats that consume the rat equivalent of 25 cans of beer a day. Simultaneously, the researchers also selected rats that drank the least alcohol and bred them to make a line of low-drinking rats. A concurrent breeding program produced another line of high-drinking and teetotaling rats. For the new study, Muir and colleagues collected DNA from 10 rats from each of the high- and low-drinking lines. Comparing complete sets of genetic instructions from all the rats identified 930 genes that differ between the two lines. |© Society for Science & the Public 2000 - 2016.

Keyword: Drug Abuse; Genes & Behavior
Link ID: 22521 - Posted: 08.06.2016

Janet Raloff Over the last three years, growing evidence has shown that electronic cigarettes are not the harmless alternative to smoking that many proponents have argued. Now, a new study traces a large share of e-cigs’ toxic gases to a heat-triggered breakdown of the liquids used to create the vapors. And the hotter an e-cig gets — and the more it’s used — the more toxic compounds it emits, the study shows. “There is this image that e-cigarettes are a lot better than regular cigarettes, if not harmless,” says Hugo Destaillats, a chemist at Lawrence Berkeley National Laboratory in California. But after his team’s new analyses, published July 27 in Environmental Science & Technology, “we are now definitely convinced that they are far from harmless.” Electronic cigarettes draw liquids over one or more hot metal coils to transform them into vapors. Those liquids — polyethylene glycol, glycerin or a mix of the two — are food-grade solvents laced with flavorings and usually nicotine. The Berkeley team used two current models of e-cigs and three different commercially available e-liquids. The experimental setup mechanically drew air through the devices to create the vapors that a user would normally inhale. Heating up The higher an e-cigarette’s voltage, the more toxic aldehydes it produces in each puff of vapor. Once a certain threshold is hit, each voltage increase produces a disproportionate increase (see last bar) in acrolein, acetaldehyde and formaldehyde, three of the most harmful compounds in the vapor. |© Society for Science & the Public 2000 - 2016

Keyword: Drug Abuse
Link ID: 22490 - Posted: 07.28.2016

By KATHARINE Q. SEELYE PORTLAND, Me. — A woman in her 30s was sitting in a car in a parking lot here last month, shooting up heroin, when she overdosed. Even after the men she was with injected her with naloxone, the drug that reverses opioid overdoses, she remained unconscious. They called 911. Firefighters arrived and administered oxygen to improve her breathing, but her skin had grown gray and her lips had turned blue. As she lay on the asphalt, the paramedics slipped a needle into her arm and injected another dose of naloxone. In a moment, her eyes popped open. Her pupils were pinpricks. She was woozy and disoriented, but eventually got her bearings as paramedics put her on a stretcher and whisked her to a hospital. Every day across the country, hundreds, if not thousands, of people who overdose on opioids are being brought back to life with naloxone. Hailed as a miracle drug by many, it carries no health risk; it cannot be abused and, if given mistakenly to someone who has not overdosed on opioids, does no harm. More likely, it saves a life. As a virulent opioid epidemic continues to ravage the country, with 78 people in the United States dying of overdoses every day, naloxone’s use has increasingly moved out of medical settings, where it has been available since the 1970s, and into the homes and hands of the general public. But naloxone, also known by the brand name Narcan, has also had unintended consequences. Critics say that it gives drug users a safety net, allowing them to take more risks as they seek higher highs. Indeed, many users overdose more than once, some multiple times, and each time, naloxone brings them back. © 2016 The New York Times Company

Keyword: Drug Abuse; Pain & Touch
Link ID: 22481 - Posted: 07.27.2016

Ian Sample Science editor They were once considered merely lazy and adorable. But new research into the antics of the slow loris has revealed a wilder side to the docile creatures. Given the chance the innocent-eyed beasts will neck the most alcoholic drinks they can lay their paws on. The ability of the slow loris to seek out the most potent brew in reach was discovered by researchers in the US who wanted to know whether the animals favoured highly-fermented nectar over the less alcoholic forms secreted by plants in their natural habitats. As sugary nectar ferments in the wild, its calorie content rises, making it a potentially more valuable source of energy. In a series of tests with Dharma, an adult female slow loris, biologists at Dartmouth College in New Hampshire found that when presented with a choice of sugary solutions laced with different amounts of alcohol, the loris speedily settled on the most intoxicating. But while the animal was quickly drawn to the nectar substitutes, which contained between 1% and 4% alcohol, the slow loris displayed what the researchers describe as “a relative aversion to tap water”, which was used as a control. Dharma was not alone in her taste for drink. The scientists ran the same series of experiments with two nocturnal aye aye lemurs, a male called Merlin and a female called Morticia. Once again, the primates homed in on the most alcoholic of sugary solutions the researchers knocked up to mimic fermented nectar. © 2016 Guardian News and Media Limited

Keyword: Drug Abuse; Evolution
Link ID: 22460 - Posted: 07.20.2016

Research supported by the National Institutes of Health has identified brain patterns in humans that appear to underlie “resilient coping,” the healthy emotional and behavioral responses to stress that help some people handle stressful situations better than others. People encounter stressful situations and stimuli everywhere, every day, and studies have shown that long-term stress can contribute to a broad array of health problems. However, some people cope with stress better than others, and scientists have long wondered why. The new study, by a team of researchers at Yale University, New Haven, Connecticut, is now online in the Proceedings of the National Academy of Sciences. “This important finding points to specific brain adaptations that predict resilient responses to stress,” said George F. Koob, Ph.D., director of the National Institute on Alcohol Abuse and Alcoholism (NIAAA), part of NIH and a supporter of the study. “The findings also indicate that we might be able to predict maladaptive stress responses that contribute to excessive drinking, anger, and other unhealthy reactions to stress.” In a study of human volunteers, scientists led by Rajita Sinha, Ph.D., and Dongju Seo, Ph.D., used a brain scanning technique called functional magnetic resonance imaging (fMRI) to measure localized changes in brain activation during stress. Study participants were given fMRI scans while exposed to highly threatening, violent and stressful images followed by neutral, non-stressful images for six minutes each. While conducting the scans, researchers also measured non-brain indicators of stress among study participants, such as heart rate, and levels of cortisol, a stress hormone, in blood. The brain scans revealed a sequence of three distinct patterns of response to stress, compared to non-stress exposure.

Keyword: Stress; Drug Abuse
Link ID: 22459 - Posted: 07.20.2016

By Maia Szalavitz When a family member, spouse or other loved one develops an opioid addiction — whether to pain relievers like Vicodin or to heroin — few people know what to do. Faced with someone who appears to be driving heedlessly into the abyss, families often fight, freeze or flee, unable to figure out how to help. Families are sometimes overwhelmed with conflicting advice about what should come next. Much of the advice given by treatment groups and programs ignores what the data says in a similar way that anti-vaccination or climate skeptic websites ignore science. The addictions field is neither adequately regulated nor effectively overseen. There are no federal standards for counseling practices or rehab programs. In many states, becoming an addiction counselor doesn’t require a high school degree or any standardized training. “There’s nothing professional about it, and it’s not evidence-based,” said Dr. Mark Willenbring, the former director of treatment research at the National Institute on Alcohol Abuse and Alcoholism, who now runs a clinic that treats addictions. Consequently, families are often given guidance that bears no resemblance to what the research evidence shows — and patients are commonly subjected to treatment that is known to do harm. People who are treated as experts firmly proclaim that they know what they are doing, but often turn out to base their care entirely on their own personal and clinical experience, not data. “Celebrity Rehab with Dr. Drew,” which many people see as an example of the best care available, for instance, used an approach that is not known to be effective for opioid addiction. More than 13 percent of its participants died after treatment,1 mainly of overdoses that could potentially have been prevented with evidence-based care. Unethical practices such as taking kickbacks for patient referrals are also rampant.

Keyword: Drug Abuse; Pain & Touch
Link ID: 22458 - Posted: 07.20.2016

By SARAH MASLIN NIR Almost as soon as the young man crouching on a trash-strewed street in Brooklyn pulled out a crumpled dollar bill from his pocket and emptied its contents of dried leaves into a wrapper, he had company. A half-dozen disheveled men and women walked swiftly to where the young man was rolling a cigarette of a synthetic drug known as K2 to wait for a chance to share. The drug has been the source of an alarming and sudden surge in overdoses — over three days this week, 130 people across New York City were treated in hospital emergency rooms after overdosing on K2, almost equaling the total for the entire month of June, according to the city’s health department. About one-fourth of the overdoses, 33, took place on Tuesday along the border of Bedford-Stuyvesant and Bushwick, the same Brooklyn neighborhoods where, despite a heightened presence of police officers, people were again openly smoking the drug on Thursday. In response to the overdoses, the city is sending a health alert to emergency rooms and other health care providers warning about the drug. The outbreak comes after officials this spring lauded what they described as a successful campaign to severely curb the prevalence of K2. On Thursday, Gov. Andrew M. Cuomo announced that the State Police would step up enforcement against the drug and aggressively go after merchants who illegally sell it. The same day, just steps from where people were using the drug, clusters of police officers patrolled beneath the elevated subway tracks along a stretch where, the day before, five bodegas had been raided. K2 is typically sold by convenience stores, though the raids did not turn up any. © 2016 The New York Times Company

Keyword: Drug Abuse
Link ID: 22448 - Posted: 07.16.2016

Suzi Gage Ketamine hydrochloride is a synthetic dissociative anaesthetic. It was first synthesized in the 1960s for medical use, and was first used medicinally during the Vietnam war. Recreationally, it is usually consumed by snorting a white crystalline powder, and at lower doses than when it’s used as an anaesthetic. However it can also be injected, or smoked. It is used in a club setting, but also as a psychedelic. Short term effects When ketamine is snorted, it gets in to the blood stream quickly, and intoxication effects occur soon after it’s taken. Although it’s an anaesthetic, at low doses it raises heart rate. It’s also associated with cognitive impairment during intoxication, including to speech and executive function. It can also induce mild psychedelic effects such as perceptual changes and psychotic-like experiences, which are appealing to some users, but can also be distressing. At slightly higher doses, users can experience a dissociative state, where their mind feels separated from their body. This can also manifest as a feeling of depersonalization. At higher doses, the anaesthetic quality of ketamine becomes more pronounced. People may find it difficult to move and may feel numb, and can experience more vivid hallucinations. This is sometimes called the ‘k-hole’ by users. Amnesia can occur at this level of use. This is a particular danger of using ketamine recreationally: users are vulnerable to assault from others in this state, or can put themselves in danger by not being aware of their surroundings (for example being unaware they are outside and it is cold can lead to hypothermia, or being unaware of surroundings could lead to walking in to traffic). © 2016 Guardian News and Media Limited

Keyword: Drug Abuse
Link ID: 22436 - Posted: 07.14.2016

By Anahad O'Connor Like most of my work, this article would not have been possible without coffee. I’m never fully awake until I have had my morning cup of espresso. It makes me productive, energized and what I can only describe as mildly euphoric. But as one of the millions of caffeine-loving Americans who can measure out my life with coffee spoons, (to paraphrase T.S. Eliot), I have often wondered: How does my coffee habit impact my health? The health community can’t quite agree on whether coffee is more potion or poison. The American Heart Association says the research on whether coffee causes heart disease is conflicting. The World Health Organization, which for years classified coffee as “possibly” carcinogenic, recently reversed itself, saying the evidence for a coffee-cancer link is “inadequate.” National dietary guidelines say that moderate coffee consumption may actually be good for you – even reducing chronic disease. Why is there so much conflicting evidence about coffee? The answer may be in our genes. About a decade ago, Ahmed El-Sohemy, a professor in the department of nutritional sciences at the University of Toronto, noticed the conflicting research on coffee and the widespread variation in how people respond to it. Some people avoid it because just one cup makes them jittery and anxious. Others can drink four cups of coffee and barely keep their eyes open. Some people thrive on it. Dr. El-Sohemy suspected that the relationship between coffee and heart disease might also vary from one individual to the next. And he zeroed in on one gene in particular, CYP1A2, which controls an enzyme – also called CYP1A2 – that determines how quickly our bodies break down caffeine. One variant of the gene causes the liver to metabolize caffeine very quickly. People who inherit two copies of the “fast” variant – one from each parent – are generally referred to as fast metabolizers. Their bodies metabolize caffeine about four times more quickly than people who inherit one or more copies of the slow variant of the gene. These people are called slow metabolizers. © 2016 The New York Times Company

Keyword: Drug Abuse; Genes & Behavior
Link ID: 22434 - Posted: 07.13.2016

Tough love, interventions and 12-step programs are some of the most common methods of treating drug addiction, but journalist Maia Szalavitz says they're often counterproductive. "We have this idea that if we are just cruel enough and mean enough and tough enough to people with addiction, that they will suddenly wake up and stop, and that is not the case," she tells Fresh Air's Terry Gross. Szalavitz is the author of Unbroken Brain, a book that challenges traditional notions of addiction and treatment. Her work is based on research and experience; she was addicted to cocaine and heroin from the age of 17 until she was 23. Szalavitz is a proponent of "harm reduction" programs that take a nonpunitive approach to helping addicts and "treat people with addiction like human beings." In her own case, she says that getting "some kind of hope that I could change" enabled her to get the help she needed. On her criticism of 12-step programs I think that 12-step programs are fabulous self help. I think they can be absolutely wonderful as support groups. My issue with 12-step programs is that 80 percent of addiction treatment in this country consists primarily of indoctrinating people into 12-step programs, and no other medical care in the United States is like that. The data shows that cognitive behavioral therapy and motivational enhancement therapy are equally effective, and they have none of the issues around surrendering to a higher power, or prayer or confession. © 2016 npr

Keyword: Drug Abuse
Link ID: 22408 - Posted: 07.08.2016