Links for Keyword: Brain imaging

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 334

Sam McDougle By now, perhaps you’ve seen the trailer for the new sci-fi thriller Lucy. It starts with a flurry of stylized special effects and Scarlett Johansson serving up a barrage of bad-guy beatings. Then comes Morgan Freeman, playing a professorial neuroscientist with the obligatory brown blazer, to deliver the film’s familiar premise to a full lecture hall: “It is estimated most human beings only use 10 percent of the brain’s capacity. Imagine if we could access 100 percent. Interesting things begin to happen.” Johansson as Lucy, who has been kidnapped and implanted with mysterious drugs, becomes a test case for those interesting things, which seem to include even more impressive beatings and apparently some kind of Matrix-esque time-warping skills. Of course, the idea that “you only use 10 percent of your brain” is, indeed, 100 hundred percent bogus. Why has this myth persisted for so long, and when is it finally going to die? Unfortunately, not any time soon. A survey last year by The Michael J. Fox Foundation for Parkinson's Research found that 65 percent of Americans believe the myth is true, 5 percent more than those who believe in evolution. Even Mythbusters, which declared the statistic a myth a few years ago, further muddied the waters: The show merely increased the erroneous 10 percent figure and implied, incorrectly, that people use 35 percent of their brains. The idea that swaths of the brain are stagnant pudding while one section does all the work is silly. Like most legends, the origin of this fiction is unclear, though there are some clues. © 2014 by The Atlantic Monthly Group

Related chapters from BP7e: Chapter 1: Biological Psychology: Scope and Outlook; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 1: An Introduction to Brain and Behavior; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 19848 - Posted: 07.17.2014

by Richard Frackowiak "A GRASS roots effort is under way to stop the project... 'Mediocre science, terrible science policy,' begins the spirited letter..." The year was 1990 and the journal Science was reporting on what it called a "backlash" against the Human Genome Project. Given the furore this past week you could be forgiven for thinking these words were written about another big science initiative: the Human Brain Project (HBP). Less than a year into its planned 10-year lifetime, the project was publicly criticised in an open letter posted online on 7 July, signed by more than 150 scientists. At the time of writing a further 400 individuals have added their names. The Human Genome Project weathered its criticisms and reached its goal in 2003, birthing the entire field of genomics and opening new medical, scientific and commercial avenues along the way. The Human Brain Project will similarly overcome its own teething troubles and catalyse a methodological paradigm shift towards unified brain research that weaves together neuroscience, computing and medicine. The goal of the HBP is a comprehensive understanding of brain structure and function through the development and use of computing tools. This is popularly deemed a "simulation of the whole human brain" but we prefer the analogy "CERN for the brain" (after Europe's premier particle physics lab): a large facility for diverse experiments and sharing of knowledge with a common goal of unlocking the most complex structure in the known universe. This brings me to two of the criticisms in the open letter: the apparent lack of experimental neuroscience and data generation in the HBP, and the emphasis on information and communications technologies (ICT) in what is billed as a neuroscience project. I will address a third criticism regarding funding later on. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 19842 - Posted: 07.17.2014

By Jonathan Webb Science reporter, BBC News After leaders of the billion-euro Human Brain Project hit back at critics, six top neuroscientists have expressed "dismay" at their public response. Last week an open message, signed by over 600 researchers, said the HBP was "not on course", demanding a review. An official reply said HBP members were "saddened" by the protest but Prof Henry Markram, the project's chair, has labelled it a personal crusade. In a letter to Nature, the six authors call for a more "open-minded attitude". They did not sign the original protest letter, but are disappointed by the publicly reported stance of the HBP leadership. "Instead of acknowledging that there is a problem and genuinely seeking to address scientists' concerns, the project leaders seem to be of the opinion that the letter's 580 signatories [now over 600] are misguided," wrote Prof Richard Morris, an eminent neuroscientist from the University of Edinburgh, and five colleagues. The six correspondents describe themselves as "neuroscientists in Europe who care about the success of research projects large and small in our field". Prof Richard Frackowiak, a co-executive director of the HBP, told the BBC he "strongly objects" to the idea that the project leaders were dismissive. "We've taken this extremely seriously," he said. The HBP is one of two flagship technology projects (the other being graphene research) announced in January 2013 by the European Commission (EC). BBC © 2014

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 19841 - Posted: 07.17.2014

Posted by alison abbott Cautious efforts to restore unity to the billion-euro Human Brain Project have begun. Both the European Commission and the project’s leaders have now responded to a scorching open letter in which angry neuroscientists condemn the flagship project, and pledge to boycott it. Signed by 156 top neuroscientists, including many research institute directors in Europe, the letter was sent on 7 July to the European Commission, which is funding the project’s first phase. It expresses concern about both the scientific approach in the neuroscience arm of the project, which aims to simulate brain function in supercomputers, and the general project management. The letter makes a series of demands for changes that it claims are needed to make the management and governance of the Human Brain Project more transparent and representative of the scientific views of the whole community. Since it was sent, a further 408 neuroscientists have added their signatures. On 10 July, the European Commission sent a bland statement to Nature, stating that “it is too early to draw conclusions on the success or failure of the project”, given that it has only been running for nine months. The Commission’s response also says that a “divergence of views” is not unusual in large-scale projects, particularly at their beginnings and that the Commission will “continue to engage with all partners in this ambitious project”. © 2014 Macmillan Publishers Limited

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 19821 - Posted: 07.14.2014

By GARY MARCUS ARE we ever going to figure out how the brain works? After decades of research, diseases like schizophrenia and Alzheimer’s still resist treatment. Despite countless investigations into serotonin and other neurotransmitters, there is still no method to cure clinical depression. And for all the excitement about brain-imaging techniques, the limitations of fMRI studies are, as evidenced by popular books like “Brainwashed” and “Neuromania,” by now well known. In spite of the many remarkable advances in neuroscience, you might get the sinking feeling that we are not always going about brain science in the best possible way. This feeling was given prominent public expression on Monday, when hundreds of neuroscientists from all over the world issued an indignant open letter to the European Commission, which is funding the Human Brain Project, an approximately $1.6 billion effort that aims to build a complete computer simulation of the human brain. The letter charges that the project is “overly narrow” in approach and not “well conceived.” While no neuroscientist doubts that a faithful-to-life brain simulation would ultimately be tremendously useful, some have called the project “radically premature.” The controversy serves as a reminder that we scientists are not only far from a comprehensive explanation of how the brain works; we’re also not even in agreement about the best way to study it, or what questions we should be asking. The European Commission, like the Obama administration, which is promoting a large-scale research enterprise called the Brain Initiative, is investing heavily in neuroscience, and rightly so. (A set of new tools such as optogenetics, which allows neuroscientists to control the activity of individual neurons, gives considerable reason for optimism.) But neither project has grappled sufficiently with a critical question that is too often ignored in the field: What would a good theory of the brain actually look like? Different kinds of sciences call for different kinds of theories. Physicists, for example, are searching for a “grand unified theory” that integrates gravity, electromagnetism and the strong and weak nuclear forces into a neat package of equations. Whether or not they will get there, they have made considerable progress, in part because they know what they are looking for. © 2014 The New York Times Company

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior; Chapter 1: Biological Psychology: Scope and Outlook
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System; Chapter 1: An Introduction to Brain and Behavior
Link ID: 19818 - Posted: 07.12.2014

By JOSHUA A. KRISCH The Human Brain Project is Europe’s flagship contribution to neuroscience. Established last year and funded by the European Commission, the project was meant to rally scientists and computer engineers around developing better tools to study how the brain works. But its most ambitious goal — a computer simulation of the entire brain — came under attack on Monday when hundreds of neuroscientists from around the world sent an open letter to the commission condemning what they see as an absence of feasibility and transparency. The letter said that the project’s “overly narrow approach” threatened to set Europe back in terms of its scientific progress and its investment, about $130 million a year over the next 10 years. “It’s like a moonshot, but before we knew how to build an airplane,” said Zachary Mainen, a neuroscientist at the Champalimaud Center for the Unknown, in Lisbon, and an author of the letter. “We can’t simulate the 302 neurons in a nematode brain. It’s a bit premature to simulate the 100 billion neurons in a human brain.” The letter expressed concern over the recent dissolution of the project’s Cognitive Architectures branch, which would have explored the larger behavioral implications of the research. “It’s the departure of the entire cognitive neuroscience aspect of the H.B.P.,” Dr. Mainen said. “It’s not clear why they would throw that out.” Henry Markram, a neuroscientist at the Swiss Federal Institute of Technology and the director of the Human Brain Project, said he considered the letter “a big wake-up call.” © 2014 The New York Times Company

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 19807 - Posted: 07.09.2014

Europe’s ambitious project to unpick the workings of the human brain faces a crisis less than a year after it was launched with great fanfare at the Swiss Federal Institute of Technology (EPFL) in Lausanne. Some neuroscientists involved in the billion-euro Human Brain Project (HBP) are furious that much of their research into how the brain executes its cognitive functions is to be sidelined as the initiative enters its next phase. Arguments over the strategy and direction of mega-science projects are nothing new. But the acrimony over this project is particularly unfortunate, given its status as one of two European Union (EU) flagship programmes designed to cross some of the widest interdisciplinary barriers and solve societal problems — such as brain disease. Already, some leading scientists have walked away. If more follow, the project could waste a golden opportunity to understand the brain. Dissent in the ranks about what the project should encompass and who should decide this has been raging for months. But it peaked in late May, when the project’s leaders made clear that they intended to exclude studies on cognition from their core future plans. The first funding, or ‘ramp-up’, phase of the brain project began in October last year with €54 million (US$73 million) from the European Commissionand is scheduled to run for three years. The second phase of the ten-year project will be funded to the tune of around €100 million per year for two or three years. But in their detailed plans for this second stage, submitted on 10 June to the commission for approval, the project managers eliminated research on human cognitive architecture. © 2014 Nature Publishing Group

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 19806 - Posted: 07.09.2014

Alison Abbott The European Union’s high-profile, €1-billion Human Brain Project (HBP), launched last October, has come under fire from neuroscientists, who claim that poor management has run part of the effort’s scientific plans off course. Around 150 scientists have signed a protest letter that was delivered to the European Commission on 7 July. The letter requests that the commission seriously consider whether the project is still fit for purpose as it reviews proposals for the second round of funding, to be awarded in 2016. The HBP was originally designed to promote digital technologies by supporting and learning from neuroscience. A key element of the project, which has inspired other brain-research initiatives around the world (see Nature 503, 26–28; 2013), is to develop supercomputers that neuroscientists will use to try to simulate the brain. But as the initiative has developed, its goal has become more and more diffuse. And after months of often fractious discussions about the programme’s scientific scope, tempers boiled over at the end of May, when the HBP’s three-man executive board decided to cut parts of the project, including one on cognitive neuroscience, from the second phase — in a manner that the signatories say was autocratic and scientifically inappropriate. Stanislas Dehaene, director of the Cognitive Neuroimaging Unit run by the French Institute of Health and Medical Research (INSERM) and the French Alternative Energies and Atomic Energy Commission (CEA) in Paris and one of the winners of this year’s prestigious Brain Prize, had led this part of the effort. On 30 May, he withdrew his participation from the second phase, citing lack of confidence in some of the decisions being made and in the programme’s management; he has not signed the letter. © 2014 Nature Publishing Group

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 19803 - Posted: 07.08.2014

BY Jenny Marder and Rebecca Jacobson Scientists at the NIH are mapping the activity of thousands of individual neurons inside the brain of a zebrafish as the animal hunts for food. In a small, windowless room that houses two powerful electron microscopes, a scientist is searching for the perfect fish brain. As the massive machines hum nearby, two gigantic fish eyes loom large, taking up most of a computer screen. The magnified perspective is misleading. The zebrafish is a larva, a newborn, just one week old, and barely six millimeters long. On the screen, it looks grumpy, like it’s frowning. Chris Harris, a postdoctoral researcher at the lab, is scrolling through the image. As he zooms in, the eyes become even larger and then disappear altogether, replaced by a glimpse of what lies within and behind them in its brain: a jungle of axons and dendrites and cell bodies — all the stuff that makes up individual neurons. He traces the outer edge of one of the cells with a gloved finger. “This layer is the nuclear membrane,” he says. “And just outside of that is the cell body membrane itself.” He points out the mitochondria, the individual axons, which send nerve impulses from one neuron to the next; the branching dendrites, which receive signals; and thick black dots that represent synaptic vesicles — pouches that hold neurotransmitters, or brain chemicals. © 1996 - 2014 MacNeil / Lehrer Productions.

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 19792 - Posted: 07.04.2014

Helen Shen As US science agencies firm up plans for a national ten-year neuroscience initiative, California is launching an ambitious project of its own. On 20 June, governor Jerry Brown signed into law a state budget that allocates US$2 million to establish the California Blueprint for Research to Advance Innovations in Neuroscience (Cal-BRAIN) project. Cal-BRAIN is the first state-wide programme to piggyback on the national Brain Research through Advancing Innovative Neurotechnologies (BRAIN) initiative announced by US President Barack Obama in April 2013 (see Nature 503, 26–28; 2013). The national project is backed this year by $110 million in public funding from the National Institutes of Health (NIH), the Defense Advanced Research Projects Agency (DARPA) and the National Science Foundation (NSF). California researchers and lawmakers hope that the state’s relatively modest one-time outlay will pave the way for a larger multiyear endeavour that gives its scientists an edge in securing grants from the national initiative. “It’s a drop in the bucket, but it’s an important start,” says Zack Lynch, executive director of the Neurotechnology Industry Organization, an advocacy group in San Francisco, California. Cal-BRAIN sets itself apart from the national effort by explicitly seeking industry involvement. The proposal emphasizes the potential economic benefits of neuroscience research and calls for the formation of a programme to facilitate the translation of any discoveries into commercial applications. © 2014 Nature Publishing Group,

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 19768 - Posted: 06.25.2014

By JAMES GORMAN The National Institutes of Health set an ambitious $4.5 billion price tag on its part of President Obama’s Brain Initiative on Thursday, stamping it as an effort on the scale of the Human Genome Project. The goals of the Brain Initiative were clearly grand when Mr. Obama announced it a year ago — nothing less than developing and applying new technology to crack the toughest unsolved puzzles of how the brains of humans and animals function. The hope is to lay a foundation for future advances in the medical treatment of brain disorders. But the initiative began with $110 million budgeted for 2014, shared by three major entities: the National Science Foundation; the Defense Advanced Research Projects Agency; and the N.I.H., which has a $40 million share. By calling for such a major commitment, to be spread over 12 years, the institutes answered concerns among neuroscientists about the initial level of funding. “This is a realistic amount of money,” said Dr. Eric R. Kandel, director of the Kavli Institute for Brain Science at Columbia University, who, like some other neuroscientists, had been skeptical of what could be accomplished with the funding committed when the initiative was announced about a year ago. Gerald Rubin, the executive director of the Janelia Farm Research Campus in Virginia, also found that this budget request allayed some of his concerns, but not all. “I am much more concerned about convincing Congress to fund the Brain Initiative at this level,” he said. © 2014 The New York Times Company

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 19697 - Posted: 06.06.2014

Sarah C. P. Williams This, in all its molecular complexity, is what the bulging end of a single neuron looks like. A whopping 300,000 proteins come together to form the structure, which is less than a micrometer wide, hundreds of times smaller than a grain of sand. This particular synapse is from a rat brain. It’s where chemical signals called neurotransmitters are released into the space between neurons to pass messages from cell to cell. To create a 3D molecular model of the structure, researchers first isolated the synapses of rat neurons and turned to classic biochemistry to identify and quantify the molecules present at every stage of the neurotransmitter release cycle. Then, they used microscopy to pinpoint the location of each protein. Some proteins—like the red patches of SNAP25 visible in the video at 0:14—aid in the release of vesicles, tiny spheres full of neurotransmitters. Others—like the green, purple, and red rods at 0:45—help the synapse maintain its overall structure. Different proteins surround vesicles when they’re inside the synapse—the circles scattered throughout the structure at 0:56—than when the vesicles are forming at the edge of the synapse—as shown at 2:08. Researchers can use the model, described online today in Science, to better understand how neurons function and what goes wrong in brain disorders. (Video credit: Wilhelm et al. 2014, Science) © 2014 American Association for the Advancement of Science.

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior; Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System; Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Link ID: 19678 - Posted: 05.31.2014

Sara Reardon The researchers' technique shows neurons throughout the body twinkling with activity. Researchers have for the first time imaged all of the neurons firing in a living organism, the nematode worm Caenorhabditis elegans. The achievement, reported today in Nature Methods1 shows how signals travel through the body in real time. Scientists mapped the connections among all 302 of the nematode's neurons in 19862 — a first that has not been repeated with any other organism. But this wiring diagram, or 'connectome', does not allow researchers to determine the neuronal pathways that lead to a particular action. Nor does it allow researchers to predict what the nematode will do at any point in time, says neuroscientist Alipasha Vaziri of the University of Vienna. By providing a means of displaying signaling activity between neurons in three dimensions and in real-time, the new technique should allow scientists to do both. Vaziri and his colleagues engineered C. elegans so that when a neuron fires and calcium ions pass through its cell membranes, the neuron lights up. To capture those signals, they imaged the whole worm using a technique called light-field deconvolution microscopy, which combines images from a set of tiny lenses and analyses them using an algorithm to give a high-resolution three-dimensional image. The researchers took as many as 50 images per second of the entire worm, enabling them to watch the neurons firing in the brain, ventral cord, and tail (see video). Next, the group applied the technique to the transparent larvae of the zebrafish (Danio rerio), imaging the entire brain as the fish responded to the odours of chemicals pumped into their water. They were able to capture the activity of about 5,000 neurons simultaneously (the zebrafish has about 100,000 total neurons). © 2014 Nature Publishing Group

Related chapters from BP7e: Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 13: Memory, Learning, and Development
Link ID: 19631 - Posted: 05.18.2014

By Melissa Hogenboom Science reporter, BBC Radio Science Neuroscience is a fast growing and popular field, but despite advances, when an area of the brain 'lights up" it does not tell us as much as we'd like about the inner workings of the mind. Many of us have seen the pictures and read the stories. A beautiful picture of the brain where an area is highlighted and found to be fundamental for processes like fear, disgust or impaired social ability. There are so many stories it can be easy to be swayed into thinking that much more of the brain's mystery has been solved than is the case. The technology is impressive but one of the most popular scanning methods - functional magnetic resonance imaging (fMRI) actually measures regional regional changes of blood flow to areas of the brain, not our neurons directly. Researchers use it when they want to understand what part of the brain is involved in a particular task. They can place a person in a brain scanner and see which areas become active. The areas that light up are then inferred to be important for that task, but the resulting images and phrase "lighting up the brain" can lead to over interpretation. Neuroscientist Molly Crocket from University College London explains that while fMRI is extremely useful, we are still very far from being able to read an individual's mind from a scan. "There's a misconception that's still rather common that you can look at someone's brain imaging data and be able to read off what they're thinking and feeling. This is certainly not the case," Dr Crocket told the BBC's Inside Science programme. 19th Century brain "A study will have been done which tells us something about the brain, but what [the public] really want to do is make the leap and understand the mind." She cites an article with the headline, "You love your iPhone, literally". In this case a team saw an area previously associated with love - the insula - was active when participants watched videos of a ringing iPhone. BBC © 2014

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior; Chapter 10: Vision: From Eye to Brain
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System; Chapter 7: Vision: From Eye to Brain
Link ID: 19574 - Posted: 05.05.2014

By Greg Miller As a journalist who writes about neuroscience, I’ve gotten a lot of super enthusiastic press releases touting a new breakthrough in using brain scans to read people’s minds. They usually come from a major university or a prestigious journal. They make it sound like a brave new future has suddenly arrived, a future in which brain scans advance the cause of truth and justice and help doctors communicate with patients whose minds are still active despite their paralyzed bodies. Amazing, right? Drop everything and write a story! Well, not so fast. Whenever I read these papers and talk to the scientists, I end up feeling conflicted. What they’ve done–so far, anyway–really doesn’t live up to what most people have in mind when they think about mind reading. Then again, the stuff they actually can do is pretty amazing. And they’re getting better at it, little by little. In pop culture, mind reading usually looks something like this: Somebody wears a goofy-looking cap with lots of wires and blinking lights while guys in white lab coats huddle around a monitor in another room to watch the movie that’s playing out in the person’s head, complete with cringe-inducing internal monologue. We are not there yet. “We can decode mental states to a degree,” said John-Dylan Haynes, a cognitive neuroscientist at Charité-Universitätsmedizin Berlin. “But we are far from a universal mind reading machine. For that you would need to be able to (a) take an arbitrary person, (b) decode arbitrary mental states and (c) do so without long calibration.” © 2014 Condé Nast.

Related chapters from BP7e: Chapter 10: Vision: From Eye to Brain; Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 7: Vision: From Eye to Brain; Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 19558 - Posted: 04.30.2014

Scientists have bioengineered, in neurons cultured from rats, an enhancement to a cutting edge technology that provides instant control over brain circuit activity with a flash of light. The research funded by the National Institutes of Health adds the same level of control over turning neurons off that, until now, had been limited to turning them on. “What had been working through a weak pump can now work through a highly responsive channel with many orders of magnitude more impact on cell function,” explained Karl Deisseroth, M.D., Ph.D., It is like going from a squirt to a gushing hose. Deisseroth and colleagues report on what is being hailed as a marvel of genetic engineering in the April 25, 2014 issue of the journal Science. Deisseroth’s team had pioneered the use of light pulses to control brain circuitry in animals genetically engineered to be light-responsive — optogenetics. Genes that allow the sun to control light-sensitive primitive organisms like algae, melded with genes that make fluorescent marker proteins, are fused with a deactivated virus that delivers them to specific types of neurons which they become part of — allowing pulses of light to similarly commandeer brain cells.

Related chapters from BP7e: Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 19537 - Posted: 04.26.2014

By JAMES GORMAN SAN DIEGO — Dr. Karl Deisseroth is having a very early breakfast before the day gets going at the annual meeting of the Society for Neuroscience. Thirty thousand people who study the brain are here at the Convention Center, a small city’s worth of badge-wearing, networking, lecture-attending scientists. For Dr. Deisseroth, though, this crowd is a bit like the gang at Cheers — everybody knows his name. He is a Stanford psychiatrist and a neuroscientist, and one of the people most responsible for the development of optogenetics, a technique that allows researchers to turn brain cells on and off with a combination of genetic manipulation and pulses of light. He is also one of the developers of a new way to turn brains transparent, though he was away when some new twists on the technique were presented by his lab a day or two earlier. “I had to fly home to take care of the kids,” he explained. He went home to Palo Alto to be with his four children, while his wife, Michelle Monje, a neurologist at Stanford, flew to the conference for a presentation from her lab. Now she was home and, here he was, back at the conference, looking a bit weary, eating eggs, sunny side up, and talking about the development of new technologies in science. A year ago, President Obama announced an initiative to invest in new research to map brain activity, allocating $100 million for the first year. The money is a drop in the bucket compared with the $4.5 billion the National Institutes of Health spends annually on neuroscience, but it is intended to push the development of new techniques to investigate the brain and map its pathways, starting with the brains of small creatures like flies. Cori Bargmann of Rockefeller University, who is a leader of a committee at the National Institutes of Health setting priorities for its piece of the brain initiative, said optogenetics was a great example of how technology could foster scientific progress. © 2014 The New York Times Company

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 19520 - Posted: 04.22.2014

By JAMES GORMAN As the Brain Initiative announced by President Obama a year ago continues to set priorities and gear up for what researchers hope will be a decade-long program to understand how the brain works, two projects independent of that effort reached milestones in their brain mapping work. Both projects, one public and one private, are examples of the widespread effort in neuroscience to create databases and maps of brain structure and function that can serve as a foundation for research. While the Obama initiative is concentrating on the development of new tools, that research will build on and use the data being acquired in projects like these. One group of 80 researchers, working as part of a consortium of institutions funded by the National Institute of Mental Health, reported that it had mapped the genetic activity of the human fetal brain. Among other initial findings, the map, the first installment of an atlas of the developing human brain called BrainSpan, confirmed the significance of areas thought to be important in the development of autism. A group of 33 researchers, all but one at the Allen Institute for Brain Science, announced an atlas of the mouse brain showing the connections among 295 different regions. Ed Lein, an investigator at Allen, was the senior author on the fetal brain paper. He said the research required making sections only 20 microns thick, up to 3,500 for each of four brains, two from fetuses at 15 weeks of development and two from about 21 weeks. The researchers measured the activity of 20,000 genes in 300 different brain structures. One interesting finding, Dr. Lein said, was that “95 percent of the genome was used,” meaning almost all of the genes were active during brain development, significantly more than in adult brains. The team also found many differences from the mouse brain, underscoring the findings that, despite the many similarities in all mammalian brains, only so much can be extrapolated to humans from other animals. © 2014 The New York Times Company

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System; Chapter 13: Memory, Learning, and Development
Link ID: 19515 - Posted: 04.22.2014

By Melissa Hogenboom Artists have structurally different brains compared with non-artists, a study has found. Participants' brain scans revealed that artists had increased neural matter in areas relating to fine motor movements and visual imagery. The research, published in NeuroImage, suggests that an artist's talent could be innate. But training and environmental upbringing also play crucial roles in their ability, the authors report. As in many areas of science, the exact interplay of nature and nurture remains unclear. Lead author Rebecca Chamberlain from KU Leuven University, Belgium, said she was interested in finding out how artists saw the world differently. "The people who are better at drawing really seem to have more developed structures in regions of the brain that control for fine motor performance and what we call procedural memory," she explained. In their small study, researchers peered into the brains of 21 art students and compared them to 23 non-artists using a scanning method called voxel-based morphometry. Detail of 'Giant Lobster' from NHM specimen collection One artist who has practised for many years is Alice Shirley - here is a detail of her Giant Lobster These detailed scans revealed that the artist group had significantly more grey matter in an area of the brain called the precuneus in the parietal lobe. "This region is involved in a range of functions but potentially in things that could be linked to creativity, like visual imagery - being able to manipulate visual images in your brain, combine them and deconstruct them," Dr Chamberlain told the BBC's Inside Science programme. BBC © 2014

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System; Chapter 11: Emotions, Aggression, and Stress
Link ID: 19504 - Posted: 04.17.2014

A high-resolution map of the human brain in utero is providing hints about the origins of brain disorders including schizophrenia and autism. The map shows where genes are turned on and off throughout the entire brain at about the midpoint of pregnancy, a time when critical structures are taking shape, researchers Wednesday in the journal Nature. "It's a pretty big leap," says , an investigator at the in Seattle who played a central role in creating the map. "Basically, there was no information of this sort prior to this project." Having a map like this is important because many psychiatric and behavioral problems appear to begin before birth, "even though they may not manifest until teenage years or even the early 20s," says , director of the . The human brain is often called the most complex object in the universe. Yet its basic architecture is created in just nine months, when it grows from a single cell to more than 80 billion cells organized in a way that will eventually let us think and feel and remember. "We're talking about a remarkable process," a process controlled by our genes, Lein says. So he and a large team of researchers decided to use genetic techniques to create a map that would help reveal this process. Funding came from the 2009 federal stimulus package. The massive effort required tens of thousands of brain tissue samples so small that they had to be cut out with a laser. Researchers used brain tissue from aborted fetuses, which the Obama administration has authorized over the objections of abortion opponents. ©2014 NPR

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 19443 - Posted: 04.03.2014