Links for Keyword: Brain imaging

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 41 - 60 of 362

Sara Reardon The researchers' technique shows neurons throughout the body twinkling with activity. Researchers have for the first time imaged all of the neurons firing in a living organism, the nematode worm Caenorhabditis elegans. The achievement, reported today in Nature Methods1 shows how signals travel through the body in real time. Scientists mapped the connections among all 302 of the nematode's neurons in 19862 — a first that has not been repeated with any other organism. But this wiring diagram, or 'connectome', does not allow researchers to determine the neuronal pathways that lead to a particular action. Nor does it allow researchers to predict what the nematode will do at any point in time, says neuroscientist Alipasha Vaziri of the University of Vienna. By providing a means of displaying signaling activity between neurons in three dimensions and in real-time, the new technique should allow scientists to do both. Vaziri and his colleagues engineered C. elegans so that when a neuron fires and calcium ions pass through its cell membranes, the neuron lights up. To capture those signals, they imaged the whole worm using a technique called light-field deconvolution microscopy, which combines images from a set of tiny lenses and analyses them using an algorithm to give a high-resolution three-dimensional image. The researchers took as many as 50 images per second of the entire worm, enabling them to watch the neurons firing in the brain, ventral cord, and tail (see video). Next, the group applied the technique to the transparent larvae of the zebrafish (Danio rerio), imaging the entire brain as the fish responded to the odours of chemicals pumped into their water. They were able to capture the activity of about 5,000 neurons simultaneously (the zebrafish has about 100,000 total neurons). © 2014 Nature Publishing Group

Related chapters from BP7e: Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 13: Memory, Learning, and Development
Link ID: 19631 - Posted: 05.18.2014

By Melissa Hogenboom Science reporter, BBC Radio Science Neuroscience is a fast growing and popular field, but despite advances, when an area of the brain 'lights up" it does not tell us as much as we'd like about the inner workings of the mind. Many of us have seen the pictures and read the stories. A beautiful picture of the brain where an area is highlighted and found to be fundamental for processes like fear, disgust or impaired social ability. There are so many stories it can be easy to be swayed into thinking that much more of the brain's mystery has been solved than is the case. The technology is impressive but one of the most popular scanning methods - functional magnetic resonance imaging (fMRI) actually measures regional regional changes of blood flow to areas of the brain, not our neurons directly. Researchers use it when they want to understand what part of the brain is involved in a particular task. They can place a person in a brain scanner and see which areas become active. The areas that light up are then inferred to be important for that task, but the resulting images and phrase "lighting up the brain" can lead to over interpretation. Neuroscientist Molly Crocket from University College London explains that while fMRI is extremely useful, we are still very far from being able to read an individual's mind from a scan. "There's a misconception that's still rather common that you can look at someone's brain imaging data and be able to read off what they're thinking and feeling. This is certainly not the case," Dr Crocket told the BBC's Inside Science programme. 19th Century brain "A study will have been done which tells us something about the brain, but what [the public] really want to do is make the leap and understand the mind." She cites an article with the headline, "You love your iPhone, literally". In this case a team saw an area previously associated with love - the insula - was active when participants watched videos of a ringing iPhone. BBC © 2014

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior; Chapter 10: Vision: From Eye to Brain
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System; Chapter 7: Vision: From Eye to Brain
Link ID: 19574 - Posted: 05.05.2014

By Greg Miller As a journalist who writes about neuroscience, I’ve gotten a lot of super enthusiastic press releases touting a new breakthrough in using brain scans to read people’s minds. They usually come from a major university or a prestigious journal. They make it sound like a brave new future has suddenly arrived, a future in which brain scans advance the cause of truth and justice and help doctors communicate with patients whose minds are still active despite their paralyzed bodies. Amazing, right? Drop everything and write a story! Well, not so fast. Whenever I read these papers and talk to the scientists, I end up feeling conflicted. What they’ve done–so far, anyway–really doesn’t live up to what most people have in mind when they think about mind reading. Then again, the stuff they actually can do is pretty amazing. And they’re getting better at it, little by little. In pop culture, mind reading usually looks something like this: Somebody wears a goofy-looking cap with lots of wires and blinking lights while guys in white lab coats huddle around a monitor in another room to watch the movie that’s playing out in the person’s head, complete with cringe-inducing internal monologue. We are not there yet. “We can decode mental states to a degree,” said John-Dylan Haynes, a cognitive neuroscientist at Charité-Universitätsmedizin Berlin. “But we are far from a universal mind reading machine. For that you would need to be able to (a) take an arbitrary person, (b) decode arbitrary mental states and (c) do so without long calibration.” © 2014 Condé Nast.

Related chapters from BP7e: Chapter 10: Vision: From Eye to Brain; Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 7: Vision: From Eye to Brain; Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 19558 - Posted: 04.30.2014

Scientists have bioengineered, in neurons cultured from rats, an enhancement to a cutting edge technology that provides instant control over brain circuit activity with a flash of light. The research funded by the National Institutes of Health adds the same level of control over turning neurons off that, until now, had been limited to turning them on. “What had been working through a weak pump can now work through a highly responsive channel with many orders of magnitude more impact on cell function,” explained Karl Deisseroth, M.D., Ph.D., It is like going from a squirt to a gushing hose. Deisseroth and colleagues report on what is being hailed as a marvel of genetic engineering in the April 25, 2014 issue of the journal Science. Deisseroth’s team had pioneered the use of light pulses to control brain circuitry in animals genetically engineered to be light-responsive — optogenetics. Genes that allow the sun to control light-sensitive primitive organisms like algae, melded with genes that make fluorescent marker proteins, are fused with a deactivated virus that delivers them to specific types of neurons which they become part of — allowing pulses of light to similarly commandeer brain cells.

Related chapters from BP7e: Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 19537 - Posted: 04.26.2014

By JAMES GORMAN SAN DIEGO — Dr. Karl Deisseroth is having a very early breakfast before the day gets going at the annual meeting of the Society for Neuroscience. Thirty thousand people who study the brain are here at the Convention Center, a small city’s worth of badge-wearing, networking, lecture-attending scientists. For Dr. Deisseroth, though, this crowd is a bit like the gang at Cheers — everybody knows his name. He is a Stanford psychiatrist and a neuroscientist, and one of the people most responsible for the development of optogenetics, a technique that allows researchers to turn brain cells on and off with a combination of genetic manipulation and pulses of light. He is also one of the developers of a new way to turn brains transparent, though he was away when some new twists on the technique were presented by his lab a day or two earlier. “I had to fly home to take care of the kids,” he explained. He went home to Palo Alto to be with his four children, while his wife, Michelle Monje, a neurologist at Stanford, flew to the conference for a presentation from her lab. Now she was home and, here he was, back at the conference, looking a bit weary, eating eggs, sunny side up, and talking about the development of new technologies in science. A year ago, President Obama announced an initiative to invest in new research to map brain activity, allocating $100 million for the first year. The money is a drop in the bucket compared with the $4.5 billion the National Institutes of Health spends annually on neuroscience, but it is intended to push the development of new techniques to investigate the brain and map its pathways, starting with the brains of small creatures like flies. Cori Bargmann of Rockefeller University, who is a leader of a committee at the National Institutes of Health setting priorities for its piece of the brain initiative, said optogenetics was a great example of how technology could foster scientific progress. © 2014 The New York Times Company

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 19520 - Posted: 04.22.2014

By JAMES GORMAN As the Brain Initiative announced by President Obama a year ago continues to set priorities and gear up for what researchers hope will be a decade-long program to understand how the brain works, two projects independent of that effort reached milestones in their brain mapping work. Both projects, one public and one private, are examples of the widespread effort in neuroscience to create databases and maps of brain structure and function that can serve as a foundation for research. While the Obama initiative is concentrating on the development of new tools, that research will build on and use the data being acquired in projects like these. One group of 80 researchers, working as part of a consortium of institutions funded by the National Institute of Mental Health, reported that it had mapped the genetic activity of the human fetal brain. Among other initial findings, the map, the first installment of an atlas of the developing human brain called BrainSpan, confirmed the significance of areas thought to be important in the development of autism. A group of 33 researchers, all but one at the Allen Institute for Brain Science, announced an atlas of the mouse brain showing the connections among 295 different regions. Ed Lein, an investigator at Allen, was the senior author on the fetal brain paper. He said the research required making sections only 20 microns thick, up to 3,500 for each of four brains, two from fetuses at 15 weeks of development and two from about 21 weeks. The researchers measured the activity of 20,000 genes in 300 different brain structures. One interesting finding, Dr. Lein said, was that “95 percent of the genome was used,” meaning almost all of the genes were active during brain development, significantly more than in adult brains. The team also found many differences from the mouse brain, underscoring the findings that, despite the many similarities in all mammalian brains, only so much can be extrapolated to humans from other animals. © 2014 The New York Times Company

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System; Chapter 13: Memory, Learning, and Development
Link ID: 19515 - Posted: 04.22.2014

By Melissa Hogenboom Artists have structurally different brains compared with non-artists, a study has found. Participants' brain scans revealed that artists had increased neural matter in areas relating to fine motor movements and visual imagery. The research, published in NeuroImage, suggests that an artist's talent could be innate. But training and environmental upbringing also play crucial roles in their ability, the authors report. As in many areas of science, the exact interplay of nature and nurture remains unclear. Lead author Rebecca Chamberlain from KU Leuven University, Belgium, said she was interested in finding out how artists saw the world differently. "The people who are better at drawing really seem to have more developed structures in regions of the brain that control for fine motor performance and what we call procedural memory," she explained. In their small study, researchers peered into the brains of 21 art students and compared them to 23 non-artists using a scanning method called voxel-based morphometry. Detail of 'Giant Lobster' from NHM specimen collection One artist who has practised for many years is Alice Shirley - here is a detail of her Giant Lobster These detailed scans revealed that the artist group had significantly more grey matter in an area of the brain called the precuneus in the parietal lobe. "This region is involved in a range of functions but potentially in things that could be linked to creativity, like visual imagery - being able to manipulate visual images in your brain, combine them and deconstruct them," Dr Chamberlain told the BBC's Inside Science programme. BBC © 2014

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System; Chapter 11: Emotions, Aggression, and Stress
Link ID: 19504 - Posted: 04.17.2014

A high-resolution map of the human brain in utero is providing hints about the origins of brain disorders including schizophrenia and autism. The map shows where genes are turned on and off throughout the entire brain at about the midpoint of pregnancy, a time when critical structures are taking shape, researchers Wednesday in the journal Nature. "It's a pretty big leap," says , an investigator at the in Seattle who played a central role in creating the map. "Basically, there was no information of this sort prior to this project." Having a map like this is important because many psychiatric and behavioral problems appear to begin before birth, "even though they may not manifest until teenage years or even the early 20s," says , director of the . The human brain is often called the most complex object in the universe. Yet its basic architecture is created in just nine months, when it grows from a single cell to more than 80 billion cells organized in a way that will eventually let us think and feel and remember. "We're talking about a remarkable process," a process controlled by our genes, Lein says. So he and a large team of researchers decided to use genetic techniques to create a map that would help reveal this process. Funding came from the 2009 federal stimulus package. The massive effort required tens of thousands of brain tissue samples so small that they had to be cut out with a laser. Researchers used brain tissue from aborted fetuses, which the Obama administration has authorized over the objections of abortion opponents. ©2014 NPR

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 19443 - Posted: 04.03.2014

A new study has raised new questions about how MRI scanners work in the quest to understand the brain. The research, led by Professor Brian Trecox and a team of international researchers, used a brand new technique to assess fluctuations in the performance of brain scanners as they were being used during a series of basic experiments. The results are due to appear in the Journal of Knowledge in Neuroscience: General later today. “Most people think that we know a lot about how MRI scanners actually work. The truth is, we don’t,” says Trecox. “We’ve even been misleading the public about the name – we made up functional Magnetic Resonance Imaging in 1983 because it sounded scientific and technical. fMRI really stands for flashy, Magically Rendered Images. So we thought: why not put an MRI scanner in an MRI scanner, and figure out what’s going on inside?” To do this, Trecox and his team built a giant imaging machine – thought to be the world’s largest – using funds from a Kickstarter campaign and a local bake sale. They then took a series of scans of standard-sized MRI scanners while they were repeatedly switched on and off, in one of the largest and most robust neuroscience studies of its type. “We tested six different MRI scanners,” says Eric Salmon, a PhD student involved in the project. “We found activation in an area called insular cortex in four of the six machines when they were switched on,” he added. In humans, the insular cortex has previously been implicated in a wide range of functions, including consciousness and self-awareness. According to Trecox and his team, activation in this area has never been found in imaging machines before. While Salmon acknowledged that the results should be treated with caution – research assistants were found asleep in at least two of the machines – the results nevertheless provide a potentially huge step in our understanding of the tools we use to research the brain. © 2014 Guardian News and Media Limited

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 19435 - Posted: 04.01.2014

Matt Wall Given the media coverage brain imaging studies get, you might think that they are constantly revealing important secrets about this mysterious organ. Catherine Loveday thinks otherwise. She makes the point that using brain-scanning technology to understand what a diseased brain is doing is only of academic interest. It is the study of the mind through behaviour and other cognitive functions, she argues, that leads to useful insights about disorders and treatments. There is some truth here, but as a scientist who uses brain scans every day, I would argue that they contribute a lot more than Loveday gives them credit for. The main problem is that, when it comes to the brain, all analogies are hopelessly crude. The distinction between hardware and software – or the brain and the mind – only has limited practical usefulness. Since all mental processes arise as a result of brain processes, it follows that all mental problems are also a result of dysfunctions in the physical brain. This will be seen by many as an extreme and reductionist position, but a specific example should help to show that it has some value. Parkinson’s disease is a degenerative disorder that causes a variety of symptoms including motor problems, sleep disturbance, various cognitive issues, and often depression. This variety of symptoms might suggest that the underlying problem in Parkinson’s is quite broad and complex, affecting several brain systems. However, it turns out the cause of all these symptoms is quite specific: a loss of neurons in a region of the brain called the substantia nigra. © 2014 Guardian News and Media Limited

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 19414 - Posted: 03.27.2014

Sara Reardon The US brain-research programme aims to create tools to image and control brain activity, while its European counterpart hopes to create a working computational model of the organ. It seems a natural pairing, almost like the hemispheres of a human brain: two controversial and ambitious projects that seek to decipher the body's control center are poised to join forces. The European Union’s €1-billion (US$1.3-billion) Human Brain Project (HBP) and the United States’ $1-billion Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative will launch a collaboration later this year, according to government officials involved in both projects. Representative Chaka Fattah (Democrat, Pennslyvania) hinted at the plan in a speech on 12 March. The brain, he says, ”is something that has defied understanding. You can't imagine a more important scientific cooperation”, says Fattah, the highest-ranking Democratic member of a House of Representatives panel that oversees funding for several US science agencies. Details about how closely the US and European programmes will coordinate are still nebulous, but US government officials say that the effort will include all of the BRAIN Initiative's government partners — the US National Institutes of Health (NIH), the National Science Foundation and Defense Advanced Research Projects Agency. Henry Markram, a neuroscientist at the Swiss Federal Institute of Technology in Lausanne (EPFL), who directs the HBP, says that Israel's brain initiative will also be involved. © 2014 Nature Publishing Group

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 19384 - Posted: 03.19.2014

By BENEDICT CAREY Jack Belliveau, a Harvard scientist whose quest to capture the quicksilver flare of thought inside a living brain led to the first magnetic resonance image of human brain function, died on Feb. 14 in San Mateo, Calif. He was 55. The cause was complications of a gastrointestinal disorder, said his wife, Brigitte Poncelet-Belliveau, a researcher who worked with him at the Athinoula A. Martinos Center for Biomedical Imaging at Massachusetts General Hospital. He lived in Boston. His wife said he died suddenly while visiting an uncle at his childhood home, which he owned. Dr. Belliveau was a 30-year-old graduate student at the Martinos Center when he hatched a scheme to “see” the neural trace of brain activity. Doctors had for decades been taking X-rays and other images of the brain to look for tumors and other lesions and to assess damage from brain injuries. Researchers had also mapped blood flow using positron emission tomography scans, but that required making and handling radioactive trace chemicals, whose signature vanished within minutes. Very few research centers had the technical knowledge or the machinery to pull it off. Dr. Belliveau tried a different approach. He had developed a technique to track blood flow, called dynamic susceptibility contrast, using an M.R.I. scanner that took split-second images, faster than was usual at the time. This would become a standard technique for assessing blood perfusion in stroke patients and others, but Dr. Belliveau thought he would try it to spy on a normal brain in the act of thinking or perceiving. “He went out to RadioShack and bought a strobe light, like you’d see in a disco,” said Dr. Bruce Rosen, director of the Martinos Center and one of Dr. Belliveau’s advisers at the time. “He thought the strobe would help image the visual areas of the brain, where there was a lot of interest.” © 2014 The New York Times Company

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 19337 - Posted: 03.10.2014

by Laura Sanders When the president of the United States makes a request, scientists usually listen. Physicists created the atomic bomb for President Roosevelt. NASA engineers put men on the moon for President Kennedy. Biologists presented their first draft of the human genetic catalog to an appreciative President Clinton. So when President Obama announced an ambitious plan to understand the brain in April 2013, people were quick to view it as the next Manhattan Project, or Human Genome Project, or moon shot. But these analogies may not be so apt. Compared with understanding the mysterious inner workings of the brain, those other endeavors started with an end in sight. In a human brain, 85 billion nerve cells communicate via trillions of connections using complex patterns of electrical jolts and more than 100 different chemicals. A pea-sized lump of brain tissue contains more information than the Library of Congress. But unlike those orderly shelved and cataloged books, the organization of the brain remains mostly indecipherable, concealing the mysteries underlying thought, learning, emotion and memory. Still, as with other challenging enterprises prompted by presidential initiatives, success would change the world. A deep understanding of how the brain works, and what goes wrong when it doesn’t, could lead to a dazzling array of treatments for brain disorders — from autism and Alzheimer’s disease to depression and drug addiction — that afflict millions of people around the world. |© Society for Science & the Public 2000 - 2013.

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 19223 - Posted: 02.08.2014

By ABIGAIL ZUGER, M.D. In history’s long parade of pushy mothers and miserably obedient children, no episode beats Dr. Frank H. Netter’s for a happy ending. Both parties got the last laugh. Netter was born to immigrant parents in New York in 1906. He was an artist from the time he could grab a pencil, doodling through high school, winning a scholarship to art school, and enunciating intentions of making his living as an illustrator. Then his mother stepped in, and with an iron hand, deflected him to medicine. Frank’s siblings and cousins all had respectable careers, she informed him, and he would, too. To his credit, he lasted quite a while: through medical school, hospital training and almost an entire year as a qualified doctor. But he continued drawing the whole time, making sketches in his lecture notes to clarify abstruse medical concepts for himself, then doing the same for classmates and even professors. Then, fatefully, his work attracted the notice of advertising departments at pharmaceutical companies. In the midst of the Depression, he demanded and received $7,500 for a series of five drawings, many times what he might expect to earn from a full year of medical practice. He put down his scalpel for good. Thanks to a five-decade exclusive contract with Ciba (now Novartis), he ultimately became possibly the best-known medical illustrator in the world, creating thousands of watercolor plates depicting every aspect of 20th-century medicine. His illustrations were virtually never used to market specific products, but distributed free of charge to doctors as a public service, and collected into popular textbooks. © 2014 The New York Times Company

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 19197 - Posted: 02.04.2014

By Jennifer Ouellette It was a brisk October day in a Greenwich Village café when New York University neuroscientist David Poeppel crushed my dream of writing the definitive book on the science of the self. I had naively thought I could take a light-hearted romp through genotyping, brain scans, and a few personality tests and explain how a fully conscious unique individual emerges from the genetic primordial ooze. Instead, I found myself scrambling to navigate bumpy empirical ground that was constantly shifting beneath my feet. How could a humble science writer possibly make sense of something so elusively complex when the world’s most brilliant thinkers are still grappling with this marvelous integration that makes us us? “You can’t. Why should you?” Poeppel asked bluntly when I poured out my woes. “We work for years and years on seemingly simple problems, so why should a very complicated problem yield an intuition? It’s not going to happen that way. You’re not going to find the answer.” Well, he was right. Darn it. But while I might not have found the Ultimate Answer to the source of the self, it proved to be an exciting journey and I learned some fascinating things along the way. 1. Genes are deterministic but they are not destiny. Except for earwax consistency. My earwax is my destiny. We tend to think of our genome as following a “one gene for one trait” model, but the real story is far more complicated. True, there is one gene that codes for a protein that determines whether you will have wet or dry earwax, but most genes serve many more than one function and do not act alone. Height is a simple trait that is almost entirely hereditary, but there is no single gene helpfully labeled height. Rather, there are several genes interacting with one another that determine how tall we will be. Ditto for eye color. It’s even more complicated for personality traits, health risk factors, and behaviors, where traits are influenced, to varying degrees, by parenting, peer pressure, cultural influences, unique life experiences, and even the hormones churning around us as we develop in the womb.

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System; Chapter 13: Memory, Learning, and Development
Link ID: 19191 - Posted: 02.01.2014

By JAMES GORMAN ST. LOUIS — Deanna Barch talks fast, as if she doesn’t want to waste any time getting to the task at hand, which is substantial. She is one of the researchers here at Washington University working on the first interactive wiring diagram of the living, working human brain. To build this diagram she and her colleagues are doing brain scans and cognitive, psychological, physical and genetic assessments of 1,200 volunteers. They are more than a third of the way through collecting information. Then comes the processing of data, incorporating it into a three-dimensional, interactive map of the healthy human brain showing structure and function, with detail to one and a half cubic millimeters, or less than 0.0001 cubic inches. Dr. Barch is explaining the dimensions of the task, and the reasons for undertaking it, as she stands in a small room, where multiple monitors are set in front of a window that looks onto an adjoining room with an M.R.I. machine, in the psychology building. She asks a research assistant to bring up an image. “It’s all there,” she says, reassuring a reporter who has just emerged from the machine, and whose brain is on display. And so it is, as far as the parts are concerned: cortex, amygdala, hippocampus and all the other regions and subregions, where memories, fear, speech and calculation occur. But this is just a first go-round. It is a static image, in black and white. There are hours of scans and tests yet to do, though the reporter is doing only a demonstration and not completing the full routine. Each of the 1,200 subjects whose brain data will form the final database will spend a good 10 hours over two days being scanned and doing other tests. The scientists and technicians will then spend at least another 10 hours analyzing and storing each person’s data to build something that neuroscience does not yet have: a baseline database for structure and activity in a healthy brain that can be cross-referenced with personality traits, cognitive skills and genetics. And it will be online, in an interactive map available to all. © 2014 The New York Times Company

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 19106 - Posted: 01.07.2014

After nearly a year of meetings and public debate, the National Institutes of Health (NIH) today announced how it intends to spend its share of funding for the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative, a $110 million U.S. effort to jump-start the development of new technologies that can map the brain’s vast and intricate neural circuits in action. In short, it’s looking for big ideas, such as taking a census of all the cells in the brain, even if there’s little data so far on how to accomplish them. The agency is calling for grant applications in six “high-priority” research areas drawn from a September report by its 15-member scientific advisory committee for the project. The agency is committing to spend roughly $40 million per year for 3 years on these areas, says Story Landis, director of the National Institute of Neurological Disorders and Stroke. “We hope that there will be additional funds that will become available, but obviously that depends upon what our budget is,” she says. The six funding streams center almost exclusively on proof-of-concept testing and development of new technologies and novel approaches for tasks considered fundamental to understanding how neurons work together to produce behavior in the brain; for example, classifying different types of brain cells, and determining how they contribute to specific neural circuits. NIH’s focus on innovation means that most grant applicants will not have to supply preliminary data for their proposals—a departure from “business as usual” that will likely startle many scientists and reviewers but is necessary to give truly innovative ideas a fair shot, Landis says. Only one call for funding, aimed at optimizing existing technologies for recording and manipulating large numbers of neurons that “aren’t ready for prime time,” will require such background, she says. © 2013 American Association for the Advancement of Science.

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 19047 - Posted: 12.18.2013

At the Society for Neuroscience meeting earlier this month in San Diego, California, Science sat down with Geoffrey Ling, deputy director of the Defense Sciences Office at the Defense Advanced Research Projects Agency (DARPA), to discuss the agency’s plans for the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative, a neuroscience research effort put forth by President Barack Obama earlier this year. So far, DARPA has released two calls for grant applications, with at least one more likely: The first, called SUBNETS (Systems-Based Neurotechnology for Emerging Therapies), asks researchers to develop novel, wireless devices, such as deep brain stimulators, that can cure neurological disorders such as posttraumatic stress (PTS), major depression, and chronic pain. The second, RAM (Restoring Active Memory), calls for a separate wireless device that repairs brain damage and restores memory loss. Below is an extended version of a Q&A that appears in the 29 November issue of Science. Q: Why did DARPA get involved in the BRAIN project? G.L.: It’s really focused on our injured warfighters, but it has a use for civilians who have stress disorders and civilians who also have memory disorders from dementia and the like. But at the end of the day, it is still meeting [President Obama’s] directive. Of all the things he could have chosen—global warming, alternative fuels—he chose this, so in my mind the neuroscience community should be as excited as all get-up. Q: Why does SUBNETS focus on deep brain stimulation (DBS)? G.L.: We’ve opened the possibility of using DBS but we haven’t exclusively said that. We’re challenging people to go after neuropsychiatric disorders like PTS [and] depression. We’re challenging the community to come up with something in 5 years that’s clinically feasible. DBS is an area that has really been traditionally underfunded, so we thought what the heck, let’s give it a go—in this new BRAIN Initiative the whole idea is to go after the things that there aren’t 400 R01 grants for—and let’s be bold, and boy, if it works, fabulous. © 2013 American Association for the Advancement of Science

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior; Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System; Chapter 5: The Sensorimotor System
Link ID: 18982 - Posted: 11.30.2013

By Dwayne Godwin and Jorge Cham Dwayne Godwin is a neuroscientist at the Wake Forest University School of Medicine. His Twitter handle is @brainyacts. Jorge Cham draws the comic strip Piled Higher and Deeper at www.phdcomics.com. © 2013 Scientific American

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 18980 - Posted: 11.30.2013

By Neuroskeptic Claims that children with autism have abnormal brain white matter connections may just reflect the fact that they move about more during their MRI scans. So say a team of Harvard and MIT neuroscientists, including Nancy “Voodoo Correlations” Kanwisher, in a new paper: Spurious group differences due to head motion in a diffusion MRI study. Essentially, the authors show how head movement during a diffusion tensor imaging (DTI) scan causes apparant differences in the integrity of white matter tracts, like these ones: In comparisons of two randomized groups of healthy children – in whom no white matter differences ought to appear – spurious effects were seen whenever one group moved more than the other: As for autism, the authors found that kids with autism moved more, on average, than controls, and that matching the two groups by motion reduced the magnitude of the group differences in white matter (though many remained significant). Technically, the motion-related differences manifested as increases in RD and reductions in FA; these were localized: The pathways that exhibited the most substantial motion-induced group differences in our data were the corpus callosum and the cingulum bundle. Perhaps this is related to their proximity to non-brain voxels (such as the ventricles) … deeper brain areas appear to be more affected than more superficial ones, thus distance from the head coils may also be a factor. The good news is that there’s a simple fix: entering the motion parameters, extracted from the DTI data itself, as a covariate in the analysis. The authors show that this is extremely effective. The bad news is that most researchers don’t do this.

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 18977 - Posted: 11.27.2013