Chapter 5. The Sensorimotor System

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 21 - 40 of 2582

Nancy Shute Erik Vance didn't go to a doctor until he was 18; he grew up in California in a family that practiced Christian Science. "For the first half of my life, I never questioned the power of God to heal me," Vance writes in his new book, Suggestible You: Placebos, False Memories, Hypnosis, and the Power of Your Astonishing Brain. As a young man, Vance left the faith behind, but as he became a science journalist he didn't stop thinking about how people's beliefs and expectations affect their health, whether it's with placebo pills, mystical practices or treatments like acupuncture. The answer, he found, is in our brains. Erik and I chatted about the book while attending a recent meeting of the National Association of Science Writers. Here are highlights of our conversation, edited for length and clarity. You point out that even though most of us didn't grow up Christian Scientist, we often use belief to manage our health. I've learned from writing this book that there are a lot of people around the world who really rely on expectation and placebos. And I grew up in the most extreme possible group, but it's not that different from seeing a homeopath. You're using faith to manage your body; what a psychologist would call expectation. Having had that experience really prepared me to ask some of these questions. How would your mom take care of you when you were sick? As a kid we might have 7UP with orange juice; we might go that far because it made you feel better. But the treatment was to call a practitioner, to call a healer. © 2016 npr

Keyword: Pain & Touch
Link ID: 22847 - Posted: 11.09.2016

By Simon Oxenham Isy Suttie has felt “head squeezing” since she was young. The comedian, best known for playing Dobbie in the BBC sitcom Peep Show, is one of many people who experience autonomous sensory meridian response (ASMR) – a tingly feeling often elicited by certain videos or particular mundane interactions. Growing up, Suttie says she had always assumed everyone felt it too. Not everyone feels it, but Suttie is by no means alone. On Reddit, a community of more than 100,000 members share videos designed to elicit the pleasurable sensation. The videos, often described as “whisper porn”, typically consist of people role-playing routine tasks, whispering softly into a microphone or making noises by crinkling objects such as crisp packets. The most popular ASMR YouTuber, “Gentle Whispering”, has over 250 million views. To most of us, the videos might seem strange or boring, but the clips frequently garner hundreds of thousands of views. These videos often mimic real-life situations that provoke ASMR in susceptible people. Suttie says her strongest real-world triggers occur during innocuous interactions with strangers, like talking about the weather – “it’s almost as if the more superficial the subject the better,” Suttie says. She feels the sensation particularly strongly when someone brushes past her. For Suttie, the feelings are so powerful that she often feels floored by them, and they even overcome pain and emotional distress. During a trip to the dentist, she still experiences the pleasurable tingles when the assistant brushes past her, she says. © Copyright Reed Business Information Ltd.

Keyword: Vision; Sexual Behavior
Link ID: 22843 - Posted: 11.08.2016

By LISA SANDERS, M.D. Yesterday we challenged Well readers to take on the case of a 63-year-old artist who, over the course of several months, developed excruciating headaches, along with changes in his personality, his thinking, even in the way he painted. We provided you with some of the doctor’s notes and medical imaging results that led the doctor who finally made the diagnosis in the right direction. After an extensive evaluation, that doctor asked a single question that led him to make the diagnosis. We asked Well readers to figure out the question the doctor asked and the diagnosis it suggested. It must have been a tough case — or else you were all too worried about the coming election to rise to the challenge — because we got just over 200 responses, fewer than usual. Of those, only six of you figured out the right diagnosis, and only three of you got the question right as well. Despite that, I was very impressed by the thinking of even those who didn’t come up with the right diagnosis. Many of you thought about environmental factors like his recent retirement and his exposure to possible toxins from his painting, and that kind of thinking was, in my opinion, the very essence of thinking like a doctor. Strong work, all of you. The question the doctor asked that led him to the correct diagnosis was: Can you hear your heartbeat in your ears? The patient could. And that suggested the diagnosis: A dural-arteriovenous fistula, or DAVF © 2016 The New York Times Company

Keyword: Pain & Touch
Link ID: 22839 - Posted: 11.07.2016

By Neuroskeptic A new paper could prompt a rethink of a basic tenet of neuroscience. It is widely believed that the motor cortex, a region of the cerebral cortex, is responsible for producing movements, by sending instructions to other brain regions and ultimately to the spinal cord. But according to neuroscientists Christian Laut Ebbesen and colleagues, the truth may be the opposite: the motor cortex may equally well suppress movements. Ebbesen et al. studied the vibrissa motor cortex (VMC) of the rat, an area which is known to be involved in the movement of the whiskers. First, they determined that neurons within the VMC are more active during periods when the rat’s whiskers are resting: for instance, like this: whiskerThe existence of cells whose firing negatively correlates with movement is interesting, but by itself it doesn’t prove that much. Maybe those cells are just doing something else than controlling movement? However, Ebbesen et al. went on to show that electrical stimulation of the VMC caused whiskers to stop moving, while applying a drug (lidocaine) to suppress VMC activity caused the rat’s whiskers to whisk harder. Ebbesen et al. go on to say that the inhibitory role of VMC may extend to other regions of the rat motor cortex, and to other movements beyond the whiskers: Rats can perform long sequences of skilled, learned motor behaviors after motor cortex ablation, but motor cortex is required for them to learn a task of behavioral inhibition (they must learn to postpone lever presses)35. When swimming, intact rats hold their forelimbs still and swim with only their hindlimbs. After forelimb motor cortex lesions, however, rats swim with their forelimbs also36.

Keyword: Movement Disorders
Link ID: 22837 - Posted: 11.07.2016

Laura Sanders A protein that can switch shapes and accumulate inside brain cells helps fruit flies form and retrieve memories, a new study finds. Such shape-shifting is the hallmark move of prions — proteins that can alternate between two forms and aggregate under certain conditions. In fruit flies’ brain cells, clumps of the prionlike protein called Orb2 stores long-lasting memories, report scientists from the Stowers Institute for Medical Research in Kansas City, Mo. Figuring out how the brain forms and calls up memories may ultimately help scientists devise ways to restore that process in people with diseases such as Alzheimer’s. The new finding, described online November 3 in Current Biology, is “absolutely superb,” says neuroscientist Eric Kandel of Columbia University. “It fills in a lot of missing pieces.” People possess a version of the Orb2 protein called CPEB, a commonality that suggests memory might work in a similar way in people, Kandel says. It’s not yet known whether people rely on the prion to store long-term memories. “We can’t be sure, but it’s very suggestive,” Kandel says. When neuroscientist Kausik Si and colleagues used a genetic trick to inactivate Orb2 protein, male flies were worse at remembering rejection. These lovesick males continued to woo a nonreceptive female long past when they should have learned that courtship was futile. In different tests, these flies also had trouble remembering that a certain odor was tied to food. |© Society for Science & the Public 2000 - 2016. All rights reserved.

Keyword: Learning & Memory; Prions
Link ID: 22833 - Posted: 11.04.2016

By Dan Hurley The Centers for Disease Control and Prevention has confirmed 89 cases of the paralyzing disease in the United States through September. A 6-year-old boy suspected of having AFM died in Seattle on Sunday, the first death believed to be caused by the disease. One of the drugs in development, pocapavir, was used briefly on a few patients during a 2014 outbreak of AFM under a compassionate-use exception that allows extremely sick patients to be given unapproved drugs without the usual kinds of placebo-controlled trials required by the Food and Drug Administration. “There were a couple of kids who got pocapavir in the Colorado outbreaks,” said Benjamin Greenberg, a neurologist who has treated children with AFM at the University of Texas Southwestern in Dallas. “It had relatively weak but measurable impact on viral replication. A larger study would definitely be warranted. We'll take anything we can get.” Although the CDC says no cause has been conclusively linked to AFM, many researchers suspect a family of viruses known as enteroviruses. “I have been studying enteroviruses for 40 years now,” said John Modlin, deputy director of the polio eradication program at the Bill and Melinda Gates Foundation. “If I had a child with acute flaccid myelitis, I would be on the phone in a second to the companies making these drugs.” © 1996-2016 The Washington Post

Keyword: Movement Disorders
Link ID: 22830 - Posted: 11.04.2016

By Kelly Servick Mark Hutchinson could read the anguish on the participants’ faces in seconds. As a graduate student at the University of Adelaide in Australia in the late 1990s, he helped with studies in which people taking methadone to treat opioid addiction tested their pain tolerance by dunking a forearm in ice water. Healthy controls typically managed to stand the cold for roughly a minute. Hutchinson himself, “the young, cocky, Aussie bloke chucking my arm in the water,” lasted more than 2 minutes. But the methadone patients averaged only about 15 seconds. “These aren’t wimps. These people are injecting all sorts of crazy crap into their arms. … But they were finding this excruciating,” Hutchinson says. “It just fascinated me.” The participants were taking enormous doses of narcotics. How could they experience such exaggerated pain? The experiment was Hutchinson’s first encounter with a perplexing phenomenon called opioid-induced hyperalgesia (OIH). At high doses, opioid painkillers actually seem to amplify pain by changing signaling in the central nervous system, making the body generally more sensitive to painful stimuli. “Just imagine if all the diabetic medications, instead of decreasing blood sugar, increased blood sugar,” says Jianren Mao, a physician and pain researcher at Massachusetts General Hospital in Boston who has studied hyperalgesia in rodents and people for more than 20 years. © 2016 American Association for the Advancement of Science

Keyword: Pain & Touch
Link ID: 22829 - Posted: 11.04.2016

A snake with the largest venom glands in the world could hold the answer to pain relief, scientists have found. Dubbed the "killer of killers", the long-glanded blue coral snake is known to prey on the likes of king cobras. The venom of the two-metre-long snake native to South East Asia acts "almost immediately" and causes prey to spasm. New research published in the journal Toxin found it targets receptors which are critical to pain in humans and could be used as a method of treatment. "Most snakes have a slow-acting venom that works like a powerful sedative. You get sleepy, slow, before you die," said Dr Bryan Fry of the University of Queensland who is one of a team of researchers working on a study into the effect of the snake's venom. "This snake's venom however, works almost immediately because it usually preys on very dangerous animals that need to be quickly killed before they can retaliate. It's the killer of killers." Turning into medicine? Cone snails and scorpions are some of a handful of invertebrates whose venom has been studied for its medical use. However, as a vertebrate, the snake is evolutionarily closer to humans, and so a medicine developed from its venom could potentially be more effective, says Dr Fry. "The venom targets our sodium channels, which are central to our transmission of pain. We could potentially turn this into something that could help relieve pain, and which might work better on us." The snake's venom glands extend to up to one-quarter of its body length. "It's got freaky venom glands, the longest of any in the world, but it's so beautiful. It's easily my favourite species of snake," said Dr Fry. © 2016 BBC.

Keyword: Pain & Touch; Neurotoxins
Link ID: 22809 - Posted: 10.31.2016

By CATHERINE SAINT LOUIS Neither of the two drugs used most frequently to prevent migraines in children is more effective than a sugar pill, according to a study published on Thursday in The New England Journal of Medicine. Researchers stopped the large trial early, saying the evidence was clear even though the drugs — the antidepressant amitriptyline and the epilepsy drug topiramate — had been shown to prevent migraines in adults. “The medication didn’t perform as well as we thought it would, and the placebo performed better than you would think,” said Scott Powers, the lead author of the study and a director of the Headache Center at Cincinnati Children’s Hospital Medical Center. A migraine is a neurological illness characterized by pulsating headache pain, sometimes accompanied by nausea, vomiting and sensitivity to light and noise. It’s a common childhood condition. Up to 11 percent of 7- to 11-year-olds and 23 percent of 15-year-olds have migraines. At 31 sites nationwide, 328 migraine sufferers aged 8 to 17 were randomly assigned to take amitriptyline, topiramate or a placebo pill for 24 weeks. Patients with episodic migraines (fewer than 15 headache days a month) and chronic migraines (15 or more headache days a month) were included. The aim was to figure out which drug was more effective at reducing the number of headache days, and to gauge which one helped children to stop missing school or social activities. © 2016 The New York Times Company

Keyword: Pain & Touch
Link ID: 22801 - Posted: 10.28.2016

Katherine Hobson Placebos can't cure diseases, but research suggests that they seem to bring some people relief from subjective symptoms, such as pain, nausea, anxiety and fatigue. But there's a reason your doctor isn't giving you a sugar pill and telling you it's a new wonder drug. The thinking has been that you need to actually believe that you're taking a real drug in order to see any benefits. And a doctor intentionally deceiving a patient is an ethical no-no. So placebos have pretty much been tossed in the "garbage pail" of clinical practice, says Ted Kaptchuk, director of the Program for Placebo Studies and the Therapeutic Encounter at Beth Israel Deaconess Medical Center. In an attempt to make them more useful, he has been studying whether people might see a benefit from a placebo even if they knew it was a placebo, with no active ingredients. An earlier study found that so-called "open-label" or "honest" placebos improved symptoms among people with irritable bowel syndrome. And Kaptchuk and his colleagues found the same effect among people with garden-variety lower back pain, the most common kind of pain reported by American adults. The study included 83 people in Portugal, all of whom had back pain that wasn't caused by cancer, fractures, infections or other serious conditions. All the participants were told that the placebo was an inactive substance containing no medication. They were told that the body can automatically respond to placebos, that a positive attitude can help but isn't necessary and that it was important to take the pills twice a day for the full three weeks. © 2016 npr

Keyword: Pain & Touch
Link ID: 22800 - Posted: 10.28.2016

By Helen Thomson IN THE 2009 Bruce Willis movie Surrogates, people live their lives by embodying themselves as robots. They meet people, go to work, even fall in love, all without leaving the comfort of their own home. Now, for the first time, three people with severe spinal injuries have taken the first steps towards that vision by controlling a robot thousands of kilometres away, using thought alone. The idea is that people with spinal injuries will be able to use robot bodies to interact with the world. It is part of the European Union-backed VERE project, which aims to dissolve the boundary between the human body and a surrogate, giving people the illusion that their surrogate is in fact their own body. In 2012, an international team went some way to achieving this by taking fMRI scans of the brains of volunteers while they thought about moving their hands or legs. The scanner measured changes in blood flow to the brain area responsible for such thoughts. An algorithm then passed these on as instructions to a robot. “The feeling of embodying the robot was good, although the sensation varied over time“ The volunteers could see what the robot was looking at via a head-mounted display. When they thought about moving their left or right hand, the robot moved 30 degrees to the left or right. Imagining moving their legs made the robot walk forward. © Copyright Reed Business Information Ltd.

Keyword: Robotics
Link ID: 22795 - Posted: 10.27.2016

Richard Harris Researchers have launched an innovative medical experiment that's designed to provide quick answers while meeting the needs of patients, rather than drug companies. Traditional studies can cost hundreds of millions of dollars, and can take many years. But patients with amyotrophic lateral sclerosis, or Lou Gehrig's disease don't have the time to wait. This progressive muscle-wasting disease is usually fatal within a few years. Scientists in an active online patient community identified a potential treatment and have started to gather data from the participants virtually rather than requiring many in-person doctor's visits. How is that possible? In this case, doctors and patients alike got interested in an extraordinary ALS patient whose symptoms actually got better, which rarely occurs. He'd been taking a dietary supplement called lunasin, "and lo and behold six months later, [his] speech [was] back to normal, swallowing back to normal, doesn't use his feeding tube, [and he was] significantly stronger as measured by his therapists," said Richard Bedlack, a neurologist who runs the ALS clinic at Duke University. Of course, it could just be a coincidence that the man who got better happened to be taking these supplements. To find out, Bedlack teamed up to run a study with Paul Wicks, a neuropsychologist and vice president for innovation at a web-based patient organization called PatientsLikeMe. © 2016 npr

Keyword: ALS-Lou Gehrig's Disease
Link ID: 22788 - Posted: 10.26.2016

Ian Sample Science editor Experiments with a fake body part have revealed how the brain becomes confused during a party trick known as the rubber hand illusion. Researchers in Italy performed the trick on a group of volunteers to explore how the mind combines information from the senses to create a feeling of body ownership. Under the illusion, people feel that a rubber hand placed on the table before them is their own, a bizarre but convincing shift in perception that is accompanied by a sense of disowning their real hand. The scientists launched the study after noticing that some stroke patients in their care experienced similar sensations, at times becoming certain that a paralysed limb was not their own, and even claiming ownership over other people’s appendages. “It is a very strong belief,” said Francesca Garbarini at the University of Turin. “We know that the feeling of body ownership can be dramatically altered after brain damage.” For the study, healthy volunteers sat with their forearms resting on a table and their right hand hidden inside a box. A lifelike rubber hand was then placed in front of them and lined up with their right shoulder. A cloth covered the stump of the hand, but the fingers remained visible. To induce the illusion, one of the researchers stroked the middle finger of the participant’s real hand while simultaneously stroking the same finger on the rubber hand. © 2016 Guardian News and Media Limited

Keyword: Pain & Touch
Link ID: 22780 - Posted: 10.24.2016

Laura Sanders Pain is contagious, at least for mice. After encountering bedding where mice in pain had slept, other mice became more sensitive to pain themselves. The experiment, described online October 19 in Science Advances, shows that pain can move from one animal to another — no injury or illness required. The results “add to a growing body of research showing that animals communicate distress and are affected by the distress of others,” says neuroscientist Inbal Ben-Ami Bartal of the University of California, Berkeley. Neuroscientist Andrey Ryabinin and colleagues didn’t set out to study pain transfer. But the researchers noticed something curious during their experiments on mice who were undergoing alcohol withdrawal. Mice in the throes of withdrawal have a higher sensitivity to pokes on the foot. And surprisingly, so did these mice’s perfectly healthy cagemates. “We realized that there was some transfer of information about pain” from injured mouse to bystander, says Ryabinin, of Oregon Health & Sciences University in Portland. When mice suffered from alcohol withdrawal, morphine withdrawal or an inflaming injection, they become more sensitive to a poke in the paw with a thin fiber — a touchy reaction that signals a decreased pain tolerance. Mice that had been housed in the same cage with the mice in pain also grew more sensitive to the poke, Ryabinin and colleagues found. These bystander mice showed other signs of heightened pain sensitivity, such as quickly pulling their tails out of hot water and licking a paw after an irritating shot. |© Society for Science & the Public 2000 - 20

Keyword: Chemical Senses (Smell & Taste); Pain & Touch
Link ID: 22773 - Posted: 10.20.2016

Hannah Devlin Science correspondent Migraine sufferers have a different mix of gut bacteria that could make them more sensitive to certain foods, scientists have found. The study offers a potential explanation for why some people are more susceptible to debilitating headaches and why some foods appear to act as triggers for migraines. The research showed that migraine sufferers had higher levels of bacteria that are known to be involved in processing nitrates, which are typically found in processed meats, leafy vegetables and some wines. The latest findings raise the possibility that migraines could be triggered when nitrates in food are broken down more efficiently, causing vessels in the brain and scalp to dilate. Antonio Gonzalez, a programmer analyst at the University of California San Diego and the study’s first author, said: “There is this idea out there that certain foods trigger migraines - chocolate, wine and especially foods containing nitrates. We thought that perhaps there are connections between what people are eating, their microbiomes and their experiences with migraines.” When nitrates in food are broken down by bacteria in the mouth and gut they are eventually converted into nitric oxide in the blood stream, a chemical that dilates blood vessels and can aid cardiovascular health by boosting circulation. © 2016 Guardian News and Media Limited

Keyword: Pain & Touch; Obesity
Link ID: 22769 - Posted: 10.19.2016

Linda Geddes For the first time, a paralysed man has gained a limited sense of touch, thanks to an electric implant that stimulates his brain and allows him to feel pressure-like sensations in the fingers of a robotic arm. The advance raises the possibility of restoring limited sensation to various areas of the body, as well as giving people with spinal-cord injuries better control over prosthetic limbs. But restoring human-like feeling, such as sensations of heat or pain, will prove more challenging, the researchers say. Nathan Copeland had not been able to feel or move his legs and lower arms since a car accident snapped his neck and injured his spinal cord when he was 18. Now, some 12 years later, he can feel when a robotic arm has its fingers touched, because sensors on the fingers are linked to an implant in his brain. Brain implant restores paralysed man's sense of touch Rob Gaunt, a biomedical engineer at the University of Pittsburgh, performs a sensory test on a blindfolded Nathan Copeland. Nathan, who is paralysed, demonstrates his ability to feel by correctly identifying different fingers through a mind-controlled robotic arm. Video credit: UPMC/Pitt Health Sciences. “He says the sensations feel like they’re coming from his own hand,” says Robert Gaunt, a biomedical engineer at the University of Pittsburgh who led the study. © 2016 Macmillan Publishers Limited

Keyword: Robotics; Pain & Touch
Link ID: 22759 - Posted: 10.15.2016

By Elizabeth Pennisi Although it has a face—and body—that only a mother could love, the naked mole rat has a lot to offer biomedical science. It lives 10 times longer than a mouse, almost never gets cancer, and doesn’t feel pain from injury and inflammation. Now, researchers say they’ve figured out how the rodents keep this pain away. “It’s an amazing result,” says Harold Zakon, an evolutionary neurobiologist at the University of Texas, Austin, who was not involved with the work. “This study points us to important areas … that might be targeted to reduce this type of pain.” Naked mole rats are just plain weird. They live almost totally underground in colonies structured like honey bee hives, with hundreds of workers servicing a single queen and her few consorts. To survive, they dig kilometers of tunnels in search of large underground tubers for food. It’s such a tough life that—to conserve energy—this member of the rodent family gave up regulating its temperature, and they are able to thrive in a low-oxygen, high–carbon dioxide environment that would suffocate or be very painful to humans. “They might as well be from another planet,” says Thomas Park, a neuroscientist at the University of Illinois, Chicago. Gary Lewin, a neuroscientist at the Max Delbrück Center for Molecular Medicine in the Helmholtz Association in Berlin, began working with naked mole rats because a friend in Chicago was finding that the rodent's pain fibers were not the same as other mammals'. In 2008, the studies led to the finding that naked mole rats didn’t feel pain when they came into contact with acid and didn’t get more sensitive to heat or touch when injured, like we and other mammals do. Lewin was hooked and has been raising the rodents in his lab ever since. They are a little more challenging than rats or mice, he notes, because with just one female per colony producing young, he never really has quite enough individuals for his studies. © 2016 American Association for the Advancement of Science

Keyword: Pain & Touch; Evolution
Link ID: 22749 - Posted: 10.12.2016

Urine could potentially be used for a quick and simple way to test for CJD or "human mad cow disease", say scientists in the journal JAMA Neurology. The Medical Research Council team say their prototype test still needs honing before it could be used routinely. Currently there is no easy test available for this rare but fatal brain condition. Instead, doctors have to take a sample of spinal fluid or brain tissue, or wait for a post-mortem after death. What they look for is tell-tale deposits of abnormal proteins called prions, which cause the brain damage. Building on earlier US work, Dr Graham Jackson and colleagues, from University College London, have now found it is also possible to detect prions in urine. This might offer a way to diagnose CJD rapidly and earlier, they say, although there is no cure. Creutzfeldt-Jakob disease (CJD): CJD is a rare, but fatal degenerative brain disorder caused by abnormal proteins called prions that damage brain cells. There are several forms of the disease: sporadic, which occurs naturally in the human population, and accounts for 85% of all CJD cases variant CJD, linked to eating beef infected by bovine spongiform encephalopathy (BSE) iatrogenic infection, caused by contamination during medical or surgical treatment In the 1990s it became clear that a brain disease could be passed from cows to humans. The British government introduced a ban on beef on the bone. Since then, officials have kept a close check on how many people have become sick or died from CJD. © 2016 BBC

Keyword: Prions
Link ID: 22724 - Posted: 10.05.2016

By Carl Luepker For the past 35 years, a relentless neurological disorder has taken over my body, causing often painful muscle spasms that make it hard for me to walk and write and that cause my speech to be garbled enough that people often can’t understand me I can live with my bad luck in getting this condition, which showed up when I was 10; what’s harder to accept is that I have passed on this disorder, carried in my genes, to my 11-year-old son, Liam. As a parent, you hope that your child’s life will follow an upward trend, one of emotional and physical growth toward an adulthood of wide-open possibilities where they can explore the world, challenge themselves emotionally and physically, and perhaps play on a sports team. And you hope that you can pass down to your child at least some of what was passed down to you. Yet my generalized dystonia, as my progressive condition is called, was one thing I had hoped would end with me. Liam poses for a photograph just months before his diagnosis with dystonia. He “has just moved into middle school,” his father writes, where “he will have to both advocate for himself and educate his new teachers and peers about this genetic disorder.” When my wife and I started thinking of having kids, the statistics were fairly reassuring: There was a 1-in-2 chance that our child would inherit the gene that causes the disorder, but most people who have the gene don’t go on to manifest dystonia. We wanted a family and rolled the dice — twice. Our daughter does not have the gene. © 1996-2016 The Washington Post

Keyword: Movement Disorders; Genes & Behavior
Link ID: 22720 - Posted: 10.02.2016

By Jessica Boddy Activity trackers like Fitbits and Jawbones help fitness enthusiasts log the calories they burn, their heart rates, and even how many flights of stairs they climb in a day. Biologist Cory Williams of Northern Arizona University in Flagstaff is using similar technology to track the energy consumption of arctic ground squirrels in Alaska—insight that may reveal how the animals efficiently forage for food while avoiding being picked off by golden eagles. This week, Williams published a study in Royal Society Open Science that compared the activity levels of male and female squirrels. He found that although males spend a lot more time outside of their burrows, they’re pretty lazy, and sometimes just bask in the sun during warmer months. Females, on the other hand, have limited time to spare when caring for their young, and use it to run around and forage for themselves and their babies. In addition to previous work on arctic ground squirrel hibernation and seasonal differences in behavior, the finding is helping his team figure out why males tend to be more susceptible to being eaten. Williams sat down with Science to talk about creating a squirrel Fitbit, catching the animals in the wild, and how technology is improving ecological research. This interview has been edited for brevity and clarity. Q: What got you interested in studying arctic ground squirrels? A: It’s one of the only arctic animals that keeps a rigid schedule even when there’s no light/dark cycle for 6 week—meaning, they emerge from and return to their burrows the same time every day and they eat the same time each day, even though the sun stays in the sky for weeks and weeks. So I started to deploy the energy tracking technologies to better understand how the squirrels use energy through the seasons. © 2016 American Association for the Advancement of Science

Keyword: Sexual Behavior
Link ID: 22714 - Posted: 09.30.2016