Links for Keyword: Intelligence

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 244

By Emily Underwood Old age may make us wiser, but it rarely makes us quicker. In addition to slowing down physically, most people lose points on intelligence tests as they enter their golden years. Now, new research suggests the loss of certain types of cognitive skills with age may stem from problems with basic sensory tasks, such as making quick judgments based on visual information. Although there’s no clear causal link between the two types of thinking yet, the new work could provide a simple, affordable way to track mental decline in senior citizens, scientists say. Since the 1970s, researchers who study intelligence have hypothesized that smartness, as measured on standard IQ tests, may hinge on the ability to quickly and efficiently sample sensory information from the environment, says Stuart Ritchie, a psychologist at the University of Edinburgh in the United Kingdom. Today it’s well known that people who score high on such tests do, indeed, tend to process such information more quickly than those who do poorly, but it’s not clear how these measures change with age, Ritchie says. Studying older people over time can be challenging given their uncertain health, but Ritchie and his colleagues had an unusual resource in the Lothian Birth Cohort, a group of people born in 1936 whose mental function has been periodically tested by the Scottish government since 1947—their first IQ test was at age 11. After recruiting more than 600 cohort members for their study, Ritchie and colleagues tracked their scores on a simple visual task three times over 10 years, repeating the test at the mean ages of 70, 73, and 76. © 2014 American Association for the Advancement of Science

Related chapters from BP7e: Chapter 10: Vision: From Eye to Brain; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 7: Vision: From Eye to Brain; Chapter 13: Memory, Learning, and Development
Link ID: 19917 - Posted: 08.05.2014

Posted by Katie Langin In a battle of wits, could a bird outsmart a kindergartner? Don’t be too quick to say no: One clever young bird solved a problem that has stumped 5-year-old children, according to a new study. The bird—a New Caledonian crow named Kitty—figured out that dropping rocks in one water-filled tube was the key to raising the water level in another, seemingly unconnected tube, giving her access to a floating morsel of meat. To solve this problem, Kitty needed to decipher a confusing cause-and-effect relationship, basically akin to figuring out that if you flip a switch on the wall, a ceiling light will turn on. This mental ability was once thought to be restricted to humans, but causal reasoning—the ability to understand cause and effect—has now been identified in a handful of animals, from chimpanzees to rats. Crows are the Einsteins of the bird world, renowned for their ability to make tools and solve complex puzzles. (Watch a video of a New Caledonian crow solving problems.) Their impressive mental capacity was even apparent to the ancient Greeks. In one of Aesop’s fables, a thirsty crow is presented with a dilemma when he cannot reach the water at the bottom of a pitcher. He figures out that the water level rises when he drops pebbles into the pitcher, and many pebbles later he is rewarded with a drink. As it turns out, there’s some truth to this fictional story. A study published earlier this year reported that New Caledonian crows will place rocks in water-filled tubes if they can’t reach a piece of meat that is attached to a floating cork. © 1996-2013 National Geographic Society.

Related chapters from BP7e: Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 14: Attention and Consciousness
Link ID: 19878 - Posted: 07.26.2014

Sara Reardon For chimps, nature and nurture appear to contribute equally to intelligence. Smart chimpanzees often have smart offspring, researchers suggest in one of the first analyses of the genetic contribution to intelligence in apes. The findings, published online today in Current Biology1, could shed light on how human intelligence evolved, and might even lead to discoveries of genes associated with mental capacity. A team led by William Hopkins, a psychologist at Georgia State University in Atlanta, tested the intelligence of 99 chimpanzees aged 9 to 54 years old, most of them descended from the same group of animals housed at the Yerkes National Primate Research Center in Atlanta. The chimps faced cognitive challenges such as remembering where food was hidden in a rotating object, following a human’s gaze and using tools to solve problems. A subsequent statistical analysis revealed a correlation between the animals' performance on these tests and their relatedness to other chimpanzees participating in the study. About half of the difference in performance between individual apes was genetic, the researchers found. In humans, about 30% of intelligence in children can be explained by genetics; for adults, who are less vulnerable to environmental influences, that figure rises to 70%. Those numbers are comparable to the new estimate of the heritability of intelligence across a wide age range of chimps, says Danielle Posthuma, a behavioural geneticist at VU University in Amsterdam, who was not involved in the research. “This study is much overdue,” says Rasmus Nielsen, a computational biologist at the University of California, Berkeley. “There has been enormous focus on understanding heritability of intelligence in humans, but very little on our closest relatives.” © 2014 Nature Publishing Group

Related chapters from BP7e: Chapter 18: Attention and Higher Cognition; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 14: Attention and Consciousness
Link ID: 19820 - Posted: 07.12.2014

By Neuroskeptic Nothing that modern neuroscience can detect, anyway. This is the message of a provocative article by Pace University psychologist Terence Hines, just published in Brain and Cognition: Neuromythology of Einstein’s brain As Hines notes, the story of how Einstein’s brain was preserved is well known. When the physicist died in 1955, his wish was to be cremated, but the pathologist who performed the autopsy decided to save his brain for science. Einstein’s son Hans later gave his blessing to this fait accompli. Samples and photos of the brain were then made available to neuroscientists around the world, who hoped to discover the secret of the great man’s genius. Many have claimed to have found it. But Hines isn’t convinced. Some researchers, for instance, have used microscopy to examine Einstein’s brain tissue on a histological (cellular) level. Most famous amongst these studies is Diamond et al, who in 1985 reported that Einstein’s brain had a significantly higher proportion of glial cells than those of matched, normal control brains. However, Hines points out that this ‘finding’ may have been a textbook example of the multiple-comparisons problem: Diamond et al. (1985) reported four different t-tests, each comparing Einstein’s brain to the brains of the controls. Only one of the four tests performed was significant at the .05 level. Although only the results of the neuron to glial cell ratios were reported by Diamond et al. (1985), the paper makes it clear that at least six other dependent measures were examined: (1) number of neurons, (2) total number of glial cells, (3) number of astrocytes, (4) number of oligodendrocytes, (5) neuron to astrocyte ratio and (6) neuron to oligodendrocyte ratio. Thus a total of seven different dependent measures were examined in four different brain areas for a total of 28 comparisons… one p less than 0.05 result out of 28 is not surprising. Other histological studies followed from other researchers, but Hines says that they do not present a coherent picture of clear differences:

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 19654 - Posted: 05.25.2014

|By Andrea Anderson Our knack for language helps us structure our thinking. Yet the ability to wax poetic about trinkets, tools or traits may not be necessary to think about them abstractly, as was once suspected. A growing body of evidence suggests nonhuman animals can group living and inanimate things based on less than obvious shared traits, raising questions about how creatures accomplish this task. In a study published last fall in the journal PeerJ, for example, Oakland University psychology researcher Jennifer Vonk investigated how well four orangutans and a western lowland gorilla from the Toronto Zoo could pair photographs of animals from the same biological groups. Vonk presented the apes with a touch-screen computer and got them to tap an image of an animal—for instance, a snake—on the screen. Then she showed each ape two side-by-side animal pictures: one from the same category as the animal in the original image and one from another—for example, images of a different reptile and a bird. When they correctly matched animal pairs, they received a treat such as nuts or dried fruit. When they got it wrong, they saw a black screen before beginning the next trial. After hundreds of such trials, Vonk found that all five apes could categorize other animals better than expected by chance (although some individuals were better at it than others). The researchers were impressed that the apes could learn to classify mammals of vastly different visual characteristics together—such as turtles and snakes—suggesting the apes had developed concepts for reptiles and other categories of animals based on something other than shared physical traits. Dogs, too, seem to have better than expected abstract-thinking abilities. They can reliably recognize pictures of other dogs, regardless of breed, as a study in the July 2013 Animal Cognition showed. The results surprised scientists not only because dog breeds vary so widely in appearance but also because it had been unclear whether dogs could routinely identify fellow canines without the advantage of smell and other senses. Other studies have found feats of categorization by chimpanzees, bears and pigeons, adding up to a spate of recent research that suggests the ability to sort things abstractly is far more widespread than previously thought. © 2014 Scientific American

Related chapters from BP7e: Chapter 6: Evolution of the Brain and Behavior; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 14: Attention and Consciousness
Link ID: 19614 - Posted: 05.15.2014

By David Grimm “We did one study on cats—and that was enough!” Those words effectively ended my quest to understand the feline mind. I was a few months into writing Citizen Canine: Our Evolving Relationship With Cats and Dogs, which explores how pets are blurring the line between animal and person, and I was gearing up for a chapter on pet intelligence. I knew a lot had been written about dogs, and I assumed there must be at least a handful of studies on cats. But after weeks of scouring the scientific world for someone—anyone—who studied how cats think, all I was left with was this statement, laughed over the phone to me by one of the world’s top animal cognition experts, a Hungarian scientist named Ádám Miklósi. We are living in a golden age of canine cognition. Nearly a dozen laboratories around the world study the dog mind, and in the past decade scientists have published hundreds of articles on the topic. Researchers have shown that Fido can learn hundreds of words, may be capable of abstract thought, and possesses a rudimentary ability to intuit what others are thinking, a so-called theory of mind once thought to be uniquely human. Miklósi himself has written an entire textbook on the canine mind—and he’s a cat person. I knew I was in trouble even before I got Miklósi on the phone. After contacting nearly every animal cognition expert I could find (people who had studied the minds of dogs, elephants, chimpanzees, and other creatures), I was given the name of one man who might, just might, have done a study on cats. His name was Christian Agrillo, and he was a comparative psychologist at the University of Padova in Italy. When I looked at his website, I thought I had the wrong guy. A lot of his work was on fish. But when I talked to him he confirmed that, yes, he had done a study on felines. Then he laughed. “I can assure you that it’s easier to work with fish than cats,” he said. “It’s incredible.” © 2014 The Slate Group LLC.

Related chapters from BP7e: Chapter 1: Biological Psychology: Scope and Outlook; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 1: An Introduction to Brain and Behavior
Link ID: 19522 - Posted: 04.23.2014

By David Z. Hambrick and Christopher Chabris The College Board—the standardized testing behemoth that develops and administers the SAT and other tests—has redesigned its flagship product again. Beginning in spring 2016, the writing section will be optional, the reading section will no longer test “obscure” vocabulary words, and the math section will put more emphasis on solving problems with real-world relevance. Overall, as the College Board explains on its website, “The redesigned SAT will more closely reflect the real work of college and career, where a flexible command of evidence—whether found in text or graphic [sic]—is more important than ever.” A number of pressures may be behind this redesign. Perhaps it’s competition from the ACT, or fear that unless the SAT is made to seem more relevant, more colleges will go the way of Wake Forest, Brandeis, and Sarah Lawrence and join the “test optional admissions movement,” which already boasts several hundred members. Or maybe it’s the wave of bad press that standardized testing, in general, has received over the past few years. Critics of standardized testing are grabbing this opportunity to take their best shot at the SAT. They make two main arguments. The first is simply that a person’s SAT score is essentially meaningless—that it says nothing about whether that person will go on to succeed in college. Leon Botstein, president of Bard College and longtime standardized testing critic, wrote in Time that the SAT “needs to be abandoned and replaced,” © 2014 The Slate Group LLC.

Related chapters from BP7e: Chapter 1: Biological Psychology: Scope and Outlook
Related chapters from MM:Chapter 1: An Introduction to Brain and Behavior
Link ID: 19508 - Posted: 04.19.2014

James Gorman Crows and their relatives, like jays and rooks, are definitely in the gifted class when it comes to the kinds of cognitive puzzles that scientists cook up. They recognize human faces. They make tools to suit a given problem. Sometimes they seem, as humans like to say, almost human. But the last common ancestor of humans and crows lived perhaps 300 million years ago, and was almost certainly no intellectual giant. So the higher levels of crow and primate intelligence evolved on separate tracks, but somehow reached some of the same destinations. And scientists are now asking what crows can’t do, as one way to understand how they learn and how their intelligence works. One very useful tool for this research comes from an ancient Greek (or perhaps Ethiopian), the fabulist known as Aesop. One of his stories is about a thirsty crow that drops pebbles into a pitcher to raise the level of water high enough that it can get a drink. Researchers have modified this task by adding a floating morsel of food to a tube with water and seeing which creatures solve the problem of using stones to raise the water enough to get the food. It can be used for a variety of species because it’s new to all of them. “No animal has a natural predisposition to drop stones to change water levels,” said Sarah Jelbert, a Ph.D. student at Auckland University in New Zealand, who works with crows. But in the latest experiment to test the crows, Ms. Jelbert, working with Alex Taylor and Russell Gray of Auckland and Lucy Cheke and Nicola Clayton of the University of Cambridge in England, found some clear limitations to what the crows can learn. And those limitations provide some hints to how they think. © 2014 The New York Times Company

Related chapters from BP7e: Chapter 1: Biological Psychology: Scope and Outlook; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 1: An Introduction to Brain and Behavior
Link ID: 19476 - Posted: 04.12.2014

By KENNETH CHANG This occasional column explores topics covered in Science Times 25 years ago to see what has changed — and what has not. The claim about babies was startling: A test administered to infants as young as 6 months could predict their score on an intelligence test years later, when they started school. “Why not test infants and find out which of them could take more in terms of stimulation?” Joseph F. Fagan III, the psychologist at Case Western Reserve University in Cleveland who developed the test, was quoted as saying in an article by Gina Kolata on April 4, 1989. “It’s not going to hurt anybody, that’s for sure.” In the test, the infant looks at a series of photographs — first a pair of identical faces, then the same face paired with one the baby hasn’t seen. The researchers measure how long the baby looks at the new face. “On the surface, it tests novelty preference,” said Douglas K. Detterman, a colleague of Dr. Fagan’s at Case Western. For reasons not quite understood, babies of below-average intelligence do not exhibit the same attraction to novelty. Dr. Fagan suggested that the test could be used to identify children with above-average intelligence in poorer families so they could be exposed to enrichment programs more readily available to wealthier families. But his primary motivation, said Cynthia R. Holland, his wife and longtime collaborator, was to look for babies at the other end of the intelligence curve, those who would fall behind as they grew up. “His hope was always was to identify early on, in the first year of life, kids who were at risk, cognitively, so we could focus our resources on them and help them out,” said Dr. Holland, a professor of psychology at Cuyahoga Community College. 25 YEARS LATER For the most part, the validity of the Fagan test holds up. Indeed, Dr. Fagan (who died last August) and Dr. Holland revisited infants they had tested in the 1980s, and found that the Fagan scores were predictive of the I.Q. and academic achievement two decades later when these babies turned 21. © 2014 The New York Times Company

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 19456 - Posted: 04.08.2014

by Aviva Rutkin Eureka! Like Archimedes in his bath, crows know how to displace water, showing that Aesop's fable The Crow and the Pitcher isn't purely fictional. To see if New Caledonian crows could handle some of the basic principles of volume displacement, Sarah Jelbert at the University of Auckland in New Zealand and her colleagues placed scraps of meat just out of a crow's reach, floating in a series of tubes that were part-filled with water. Objects potentially useful for bringing up the water level, like stones or heavy rubber erasers, were left nearby. The crows successfully figured out that heavy and solid objects would help them get a treat faster. They also preferred to drop objects in tubes where they could access a reward more easily, picking out tubes with higher water levels and choosing tubes of water over sand-filled ones. However, the crows failed at more challenging tasks that required an understanding of the effect of tube width or the ability to infer a hidden connection between two linked tubes. The crows displayed reasoning skills equivalent to an average 5 to 7 year old human child, the researchers claim. Previously, Eurasian jays have shown some understanding of water displacement, as have chimpanzees and orang-utans, but using similar experiments could assess and compare their skill levels. "Any animal capable of picking up stones could potentially participate," write the researchers. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 1: Biological Psychology: Scope and Outlook; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 1: An Introduction to Brain and Behavior
Link ID: 19413 - Posted: 03.27.2014

Matt Kaplan Humans are among the very few animals that constitute a threat to elephants. Yet not all people are a danger — and elephants seem to know it. The giants have shown a remarkable ability to use sight and scent to distinguish between African ethnic groups that have a history of attacking them and groups that do not. Now a study reveals that they can even discern these differences from words spoken in the local tongues. Biologists Karen McComb and Graeme Shannon at the University of Sussex in Brighton, UK, guessed that African elephants (Loxodonta africana) might be able to listen to human speech and make use of what they heard. To tease out whether this was true, they recorded the voices of men from two Kenyan ethnic groups calmly saying, “Look, look over there, a group of elephants is coming,” in their native languages. One of these groups was the semi-nomadic Maasai, some of whom periodically kill elephants during fierce competition for water or cattle-grazing space. The other was the Kamba, a crop-farming group that rarely has violent encounters with elephants. The researchers played the recordings to 47 elephant family groups at Amboseli National Park in Kenya and monitored the animals' behaviour. The differences were remarkable. When the elephants heard the Maasai, they were much more likely to cautiously smell the air or huddle together than when they heard the Kamba. Indeed, the animals bunched together nearly twice as tightly when they heard the Maasai. “We knew elephants could distinguish the Maasai and Kamba by their clothes and smells, but that they can also do so by their voices alone is really interesting,” says Fritz Vollrath, a zoologist at the University of Oxford, UK (see video below). © 2014 Nature Publishing Group

Related chapters from BP7e: Chapter 19: Language and Hemispheric Asymmetry; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 15: Language and Our Divided Brain
Link ID: 19349 - Posted: 03.11.2014

Sara Reardon Freddie Lee Hall loved to gamble, although he usually lost. Winning was better: then he gladly gave the money back to the friends he'd won it from, along with all the wages he earned picking fruit in rural Florida. His friends praised him for this. It made him feel good. And Hall needed to feel good — as court documents make abundantly clear. As a child growing up in the impoverished town of Webster, Florida, he had struggled to keep up with 16 brothers and sisters, who were much smarter than he was. If he failed to understand something, his mother beat him, once while he was tied up in a bag strung over a fire. He stuttered, never learned to read and feared the dark. He was unable to live alone. “Even though he was full grown, mentally he was a child,” his sister Diana told the court. “I had hoped to protect Freddie Lee from the outside world.” But the outside world found him. In 1978, Hall and his friend Mack Ruffin decided to rob a convenience store. They needed a car, so they forced 21-year-old Karol Hurst, who was pregnant, to drive into the woods, where they raped and killed her. Later, one of the pair also shot and killed a sheriff's deputy. When the two men were caught, tried and convicted of murder, the court decided that Hall was the likely ringleader. Ruffin was eventually sentenced to life in prison; Hall was sentenced to death. Next month, after 35 years of failed appeals to have that death sentence commuted to life imprisonment, Hall will have his case heard before the US Supreme Court. His guilt is not in question: the issue is Florida's use of IQ test scores in sentencing him to death. © 2014 Nature Publishing Group,

Related chapters from BP7e: Chapter 18: Attention and Higher Cognition; Chapter 16: Psychopathology: Biological Basis of Behavior Disorders
Related chapters from MM:Chapter 14: Attention and Consciousness; Chapter 12: Psychopathology: Biological Basis of Behavioral Disorders
Link ID: 19285 - Posted: 02.24.2014

By Roy H. Hamilton and Jihad Zreik It's hard to imagine anyone, no matter how brilliant, who doesn't yearn to be even smarter. Thanks to recent advances in neural science, that wish may come true. Researchers are finding ways to rev up the human brain like never before. There would be just one question: Do we really want to inhabit that world? It may be too late to ask. Modern society has already embraced the basic idea of fine-tuning our intellects via artificial procedures—what might be termed “cosmetic” neurology. Schoolchildren take Adderall, Concerta and other attention-focusing medications. Parents and teachers rely on antidepressants and antianxiety drugs. And self-help books offer the latest advances in neuroscience to help ordinary people think faster and sharper. Add to those advances another cognitive-enhancement method: transcranial direct-current stimulation (tDCS). With this technique, electrodes applied to the scalp deliver minuscule amperages of current to the brain. This trickle of electricity seems to cause incremental adjustments in the electrical potentials of membranes in the neurons closest to the electrodes, increasing or decreasing their likelihood of firing. And that, in turn, induces measurable changes in memory, language, mood, motor function, attention and other cognitive domains. Investigators still aren't sure whether tDCS can cause long-term neural changes. Although most tests show only transient effects, there is limited evidence that repeated applications might have more persistent results. The procedure is not approved by the U.S. Food and Drug Administration, and the consensus among experts is that it should be performed only under qualified supervision. Nevertheless, if used properly, it is safe, portable, easy to implement and inexpensive. © 2014 Scientific American

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 14: Attention and Consciousness
Link ID: 19242 - Posted: 02.12.2014

| by Isaac Saul Multi-step puzzles can be difficult for humans, but what if I told you there was a bird that could solve them on its own? In this BBC special, Dr. Alex Taylor has set up an eight-step puzzle to try and stump one of the smartest crows he's seen in captivity. They describe the puzzle as "one of the most complex tests of the animal mind ever." This isn't the first time crows' intelligence has been tested, either. Along with being problem solvers, these animals have an eerie tendency towards complex human-like memory skills. Through several different studies, we've learned that crows can recognize faces, communicate details of an event to each other and even avoid places they recognize as dangerous. This bird, dubbed "007" for its crafty mind, flies into the caged puzzle and spends only seconds analyzing the puzzle before getting down to business. Despite the puzzle's difficulty, the bird only seems to be stumped momentarily. At the end of the puzzle is a food reward, but how he gets there is what will really blow your mind. © 2014 TheHuffingtonPost.com, Inc

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 19219 - Posted: 02.08.2014

Ian Sample, science correspondent Differences in children's exam results at secondary school owe more to genetics than teachers, schools or the family environment, according to a study published yesterday. The research drew on the exam scores of more than 11,000 16-year-olds who sat GCSEs at the end of their secondary school education. In the compulsory core subjects of English, maths and science, genetics accounted for on average 58% of the differences in scores that children achieved. Grades in the sciences, such as physics, biology and chemistry, were more heritable than those in humanities subjects, such as art and music, at 58% and 42% respectively. The findings do not mean that children's performance at school is determined by their genes, or that schools and the child's environment have no influence. The overall effect of a child's environment – including their home and school life – accounted for 36% of the variation seen in students' exam scores across all subjects, the study found. "The question we are asking is why do children differ in their GCSE scores? People immediately think it's schools. But if schools accounted for all the variance, then children in one classroom would all be the same," said Robert Plomin, an expert in behavioural genetics who led the study at King's College London. To tease out the genetic contribution to children's school grades, the researchers studied GCSE scores of identical twins (who share 100% of their genes) and non-identical twins (who share on average half of the genes that normally vary between people). Both groups share their environments to a similar extent. © 2013 Guardian News and Media Limited

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 1: Biological Psychology: Scope and Outlook
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 1: An Introduction to Brain and Behavior
Link ID: 19027 - Posted: 12.12.2013

by Sarah Zielinski If you put two birds together and gave them a problem, would they be any better at solving it than if they were alone? A study in Animal Behaviour of common mynas finds that not only are they no better at problem solving when in a pair than when on their own, the birds actually get a lot worse when put in a group. Andrea S. Griffin and her research team from the University of Newcastle in Callaghan, Australia, began by using dog food pellets as bait to capture common mynas (a.k.a. the Indian mynah, Acridotheres tristis) from around Newcastle. Then they gave each of the birds an innovation test, consisting of a box containing a couple of drawers and some Petri dishes. To get to the food hidden in spots in the box, the birds would have to get creative and figure out how to open one of the four containers by doing things like levering up a lid or pushing open a drawer. The scientists then ranked the birds by innovative ability before pairing them up. Half the pairs consisted of a high-innovation and a low-innovation myna, and the other half were pairs of medium-innovation birds. Then the pairs each received an innovation test similar to the one with boxes. Another experiment tested the birds in same-sex groups of five. On their own, 29 of 34 birds were able to access at least one container. But in pairs, only 15 of the 34 birds did so, and they took a lot longer. Performance dropped for both high- and medium-innovation birds, and it didn’t improve for the low-ranked ones, which had done so poorly the first time around that their results couldn’t get any worse. In groups of five, birds’ results fell even further: No mynas solved any of those tasks. © Society for Science & the Public 2000 - 2013

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 18900 - Posted: 11.09.2013

By Scott Barry Kaufman One of the longest standing assumptions about the nature of human intelligence has just been seriously challenged. According to the traditional “investment” theory, intelligence can be classified into two main categories: fluid and crystallized. Differences in fluid intelligence are thought to reflect novel, on-the-spot reasoning, whereas differences in crystallized intelligence are thought to reflect previously acquired knowledge and skills. According to this theory, crystallized intelligence develops through the investment of fluid intelligence in a particular body of knowledge. As far as genetics is concerned, this story has a very clear prediction: In the general population– in which people differ in their educational experiences– the heritability of crystallized intelligence is expected to be lower than the heritability of fluid intelligence. This traditional theory assumes that fluid intelligence is heavily influenced by genes and relatively fixed, whereas crystallized intelligence is more heavily dependent on acquired skills and learning opportunities. But is this story really true? In a new study, Kees-Jan Kan and colleagues analyzed the results of 23 independent twin studies conducted with representative samples, yielding a total sample of 7,852 people. They investigated how heritability coefficients vary across specific cognitive abilities. Importantly, they assessed the “Cultural load” of various cognitive abilities by taking the average percentage of test items that were adjusted when the test was adapted for use in 13 different countries. © 2013 Scientific American

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 1: Biological Psychology: Scope and Outlook
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 1: An Introduction to Brain and Behavior
Link ID: 18821 - Posted: 10.22.2013

by Jack Flanagan Although dogs are said to be man's best friend, it doesn't mean they "get" us. At least, not like elephants seem to. Without any training, the giant herbivores can understand and follow our hand gestures – the first non-human animals known to be able to do so. Elephants have lived alongside humans for between 4000 and 8000 years. Despite their potential to be tamed, though, elephants have never been domesticated in the same way as dogs, cats and agricultural animals have. This hasn't prevented them from developing a number of human-like skills. In the wild, they are famously empathetic towards one another. In captivity, elephants have displayed a degree of self-awareness by being able to recognise themselves in a mirrorMovie Camera. Others have developed the teamwork necessary to coordinate and complete a task. In fact, one elephant has even learned some basic phrases in Korean – and another has been taught to paint by its parents. Arguably it was only a matter of time before they added another skill to their impressive repertoire. Hidden talent Pointing gestures are common enough among humans: from an early age babies naturally recognise the meaning behind them. We know that chimpanzees and even seals can do this too, but not without hours of training. It comes as a surprise, then, to discover that elephants can find hidden food once it is pointed out to them – without any prior lessons. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 6: Evolution of the Brain and Behavior; Chapter 1: Biological Psychology: Scope and Outlook
Related chapters from MM:Chapter 1: An Introduction to Brain and Behavior
Link ID: 18780 - Posted: 10.12.2013

By Justin Gregg Santino was a misanthrope with a habit of pelting tourists with rocks. As his reputation for mischief grew, he had to devise increasingly clever ways to ambush his wary victims. Santino learned to stash his rocks just out of sight and casually stand just a few feet from them in order to throw off suspicion. At the very moment that passersby were fooled into thinking that he meant them no harm, he grabbed his hidden projectiles and launched his attack. Santino was displaying an ability to learn from his past experiences and plan for future scenarios. This has long been a hallmark of human intelligence. But a recently published review paper by the psychologist Thomas Zentall from the University of Kentucky argues that this complex ability should no longer be considered unique to humans. Santino, you see, is not human. He’s a chimpanzee at Furuvik Zoo in Sweden. His crafty stone-throwing escapades have made him a global celebrity, and also caught the attention of researchers studying how animals, much like humans, might be able to plan their behavior. Santino is one of a handful of animals that scientists believe are showing a complex cognitive ability called episodic memory. Episodic memory is the ability to recall past events that one has the sense of having personally experienced. Unlike semantic memory, which involves recalling simple facts like “bee stings hurt,” episodic memory involves putting yourself at the heart of the memory; like remembering the time you swatted at a bee with a rolled up newspaper and it got angry and stung your hand. © 2013 Scientific American

Related chapters from BP7e: Chapter 6: Evolution of the Brain and Behavior; Chapter 1: Biological Psychology: Scope and Outlook
Related chapters from MM:Chapter 1: An Introduction to Brain and Behavior
Link ID: 18764 - Posted: 10.09.2013

By John Horgan Last spring, I kicked up a kerfuffle by proposing that research on race and intelligence, given its potential for exacerbating discrimination, should be banned. Now Nature has expanded this debate with “Taboo Genetics.” The article “looks at four controversial areas of behavioral genetics”—intelligence, race, violence and sexuality—”to find out why each field has been a flashpoint, and whether there are sound scientific reasons for pursuing such studies.” Behavioral genetics has failed to produce robust evidence linking complex traits and disorders to specific genes. The essay provides a solid overview, including input from both defenders of behavioral genetics and critics. The author, Erika Check Hayden, quotes me saying that research on race and intelligence too often bolsters “racist ideas about the inferiority of certain groups, which plays into racist policies.” I only wish that Hayden had repeated my broader complaint against behavioral genetics, which attempts to explain human behavior in genetic terms. The field, which I’ve been following since the late 1980s, has a horrendous track record. My concerns about the potential for abuse of behavioral genetics are directly related to its history of widely publicized, erroneous claims. I like to call behavioral genetics “gene whiz science,” because “advances” so often conform to the same pattern. Researchers, or gene-whizzers, announce: There’s a gene that makes you gay! That makes you super-smart! That makes you believe in God! That makes you vote for Barney Frank! The media and the public collectively exclaim, “Gee whiz!” © 2013 Scientific American

Related chapters from BP7e: Chapter 1: Biological Psychology: Scope and Outlook; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 1: An Introduction to Brain and Behavior; Chapter 13: Memory, Learning, and Development
Link ID: 18753 - Posted: 10.07.2013