Links for Keyword: Autism

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 21 - 40 of 573

By Suzanne Allard Levingston, Playing with bubble wrap is a silly activity that delights most preschoolers. But for one 21 / 2-year-old from Silver Spring, loud noises such as the pop of plastic bubbles were so upsetting that he would cover his ears and run away. Some days the sound of a vacuum cleaner would make him scream. The child so persistently avoided activities with too much noise and motion that his preschool’s administrators asked to meet with his family — and soon an assessment led to a diagnosis of sensory processing disorder, or SPD. SPD is a clinical label for people who have abnormal behavioral responses to sensory input such as sound and touch. Some children with SPD seem oversensitive to ordinary stimuli such as a shirt label’s scratching their skin. Others can be underresponsive — seemingly unaffected by the prick of a needle. A third group have motor problems that make holding a pencil or riding a bike seem impossible. Whatever the difficulty, such kids are often described as “out-of-sync,” a term popularized by Carol Stock Kranowitz’s 1998 book “The Out-of-Sync Child,” which has sold nearly 700,000 copies. As many as 16 percent of school-age kids in the United States may face sensory processing challenges. And yet there’s debate over whether these challenges constitute a discrete medical disorder. Some experts contend that SPD may be merely a symptom of some other ailment — autism, attention-deficit hyperactivity disorder, anxiety disorder or fragile X syndrome, for example — while others insist it is a separate condition that should be labeled a disorder when it interferes with daily life. The debate over how to classify SPD is not merely matter of semantics. Such discussions can affect research funding and can guide whether insurers will reimburse therapy costs. © 1996-2014 The Washington Post

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 5: The Sensorimotor System
Link ID: 19607 - Posted: 05.13.2014

Autism was formally described for the first time 71 years ago. The medical notes for "Case one", a 10-year-old from Mississippi, US, referred to as Donald T, describe a perplexing condition that was different from "anything reported so far". In 1943, when Donald Triplett was diagnosed, autism was considered extremely rare and treatment consisted of institutionalisation and – all too often – isolation. Today we know "autism disorder" as one of a number of autism spectrum disorders alongside Asperger's syndrome, pervasive developmental disorder and single gene disorders such as Rett syndrome. But of all neuropsychiatric conditions, autism remains one of the least understood. We now know that genetics almost certainly plays a key role, with researchers finding that if a family has one child with autism, then the likelihood of a future child having the condition is as high as 25%. But to what extent autism is defined by genes remains a mystery. "Everyone recognises that genes are part of the story but autism isn't 100% genetic," says Professor Simon Baron-Cohen of the Autism Research Centre at the University of Cambridge. "Even if you have identical twins who share all their genes, you can find that one has autism and one doesn't. That means that there must be some non-genetic factors." One of the most controversial theories about how autism develops is neuroinflammation. MRI scans of autistic patients have revealed abnormalities in the white matter – the wiring tissue responsible for connecting brains areas. Some scientists have drawn comparisons with multiple sclerosis, in which inflammatory processes attack the myelin sheath around the axons of brain cells, slowing down signalling and making it less efficient. © 2014 Guardian News and Media Limited

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 19573 - Posted: 05.05.2014

by Simon Makin Could drama workshops help children with autism-spectrum disorders? Results from a pilot study called Imagining Autism suggests this might be the case. The research involved 22 children aged between 7 and 12 and consisted of one 45-minute session every week for 10 weeks. During this time, groups of four children entered an enclosed themed environment, such as a forest or outer space. These environments were designed to engage all senses simultaneously, using lights, sounds, puppetry and interactive digital elements. Trained performers used improvisation techniques to encourage the children to engage creatively with the environment and each other, both physically and verbally. The hope was that the sessions would help develop the children's communication, social interaction, and imagination skills – the "triad of impairments" seen in autism. Children were assessed before the intervention, and again between two and six weeks after the sessions ended. As well as looking at whether behaviours used to diagnose autism changed after the drama sessions, the researchers also assessed emotion recognition, imitation, IQ and theory of mind – the ability to infer what others are thinking and feeling. Subjective ratings were also gathered from parents and teachers and follow-up assessments were conducted up to a year later. At the early assessments, all children showed some improvement. The most significant change was in the number of facial expressions recognised, a key communication skill. Nine children improved on this. Six children improved on their level of social interaction. The majority of these changes were also seen at the follow-up assessments. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 19494 - Posted: 04.16.2014

Simon Baron-Cohen, professor of developmental psychopathology at the University of Cambridge and director of the Autism Research Center, replies: Your mother is correct that the scientific evidence points to the brain of people with autism and Asperger's syndrome as being different but not necessarily “disordered.” Studies have shown that the brain in autism develops differently, in terms of both structure and function, compared with more typical patterns of development, and that certain parts of the brain are larger or smaller in people who have autism compared with those who have a more typical brain. One structural difference resides in the brain's corpus callosum, which connects the right and left hemispheres. Most studies show that the corpus callosum is smaller in certain sections in people with autism, which can limit connectivity among brain regions and help explain why people with autism have difficulty integrating complex ideas. An example of a functional difference is in the activity of the ventromedial prefrontal cortex, which is typically active in tasks involving theory of mind—the ability to imagine other people's thoughts and feelings—but is underactive when people with autism perform such tasks. The brain of those with autism also shows advantages. When some people with this condition are asked to complete detail-oriented tasks, such as finding a target shape in a design, they are quicker and more accurate. Additionally, those with autism generally exhibit less activity in the posterior parietal cortex, involved in visual and spatial perception, which suggests that their brain is performing the task more efficiently. © 2014 Scientific American

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 14: Attention and Consciousness
Link ID: 19489 - Posted: 04.15.2014

By Dominic Basulto The latest numbers from the Center for Disease Control showing a steep rise in the number of children with autism are so off the charts that it’s hard not to come to one of two conclusions: There’s something wrong in the way that we measure the data or there’s something extraordinary going on. 1 in 68 American children now has autism, up from 1 in 88 children just two years ago, an increase of 30 percent. A decade ago, one in 166 children were diagnosed as having autism. In 1975, it was 1 in 5000. Plot this as a graph using CDC data and you get a hockey stick curve showing exponential growth in autism over just the past decade. If you accept the first conclusion – that we’re simply not measuring autism correctly – there’s actually a fair amount of evidence to suggest that as much as 53 percent of the variation in data can be explained away by factors such as better diagnosis, better detection and better awareness. And it’s true that the very definition of “autism” continues to change to include a much wider description of symptoms along a spectrum, so it’s only natural to expect an increase in the number of cases if we’re making it easier to define people as having autism. There’s even a growing consensus in the scientific community that the current numbers are “no cause for alarm” and may actually underestimate the incidence of autism in the population, due to problems in collecting information in more rural areas and among some demographic groups. That still leaves approximately 50 percent of the rise in autism cases to explain through science. It won’t be easy. There may be as many as 60 different disorders that are associated with autism, and a multitude of factors at work, with most of them thought to be linked to changes in our environment or genetic factors resulting from increasing parental age. As a result, even the Chief Science Officer at Autism Speaks concedes that what causes autism remains a mystery. © 1996-2014 The Washington Post

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 19474 - Posted: 04.12.2014

By BENEDICT CAREY Therapists who specialize in autism often use a child’s own interests, toys or obsessions as a way to connect, and sometimes to reward effort and progress on social skills. The more eye contact a child makes, for example, the more play time he or she gets with those precious maps or stuffed animals. But now a group of scientists and the author of a new book are suggesting that those favorite activities could be harnessed in a deeper, more organic way. If a child is fascinated with animated characters like Thomas the Tank Engine, why not use those characters to prompt and reinforce social development? Millions of parents do this routinely, if not systematically, flopping down on the floor with a socially distant child to playact the characters themselves. “We individualize therapy to each child already, so if the child has an affinity for certain animated characters, it’s absolutely worth studying a therapy that incorporates those characters meaningfully,” said Kevin Pelphrey, director of the child neuroscience laboratory at Yale. He and several other researchers, including John D. E. Gabrieli of M.I.T., Simon Baron-Cohen of the University of Cambridge and Pamela Ventola of Yale, are proposing a study to test the approach. The idea came from Ron Suskind, a former Wall Street Journal reporter whose new book “Life, Animated” describes his family’s experience reaching their autistic son, Owen, through his fascination with Disney movies like “The Little Mermaid” and “Beauty and the Beast.” It was Mr. Suskind’s story that first referred to ‘“affinity therapy.” He approached the researchers to put together a clinical trial based on the idea that some children can develop social and emotional instincts through the characters they love. Experts familiar with his story say the theory behind the therapy is plausible, given what’s known from years of studying the effects of other approaches. © 2014 The New York Times Company

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 19459 - Posted: 04.08.2014

By SAM WANG A STUDY published last week found that the brains of autistic children show abnormalities that are likely to have arisen before birth, which is consistent with a large body of previous evidence. Yet most media coverage focuses on vaccines, which do not cause autism and are given after birth. How can we help people separate real risks from false rumors? Over the last few years, we’ve seen an explosion of studies linking autism to a wide variety of genetic and environmental factors. Putting these studies in perspective is an enormous challenge. In a database search of more than 34,000 scientific publications mentioning autism since its first description in 1943, over half have come since 2008. As a statistically minded neuroscientist, I suggest a different approach that relies on a concept we are familiar with: relative odds. As a single common measuring stick to compare odds, I have chosen the “risk ratio,” a measure that allows the bigger picture to come into focus. For a variety of studies I asked the same question: How large is the increased risk for autism? My standard for comparison was the likelihood in the general population of autism spectrum disorder. Here’s an example. Start from the fact that the recorded rate of autism is now 1 in 68, according to a report released last week by the Centers for Disease Control and Prevention. If babies born in purple farmhouses have a rate of autism of 2 in 68, this doubling means that the purple farmhouse carries a risk ratio of 2. However, correlation is not causation, and there is no need to repaint that farmhouse just yet. © 2014 The New York Times Company

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 19429 - Posted: 03.31.2014

by Laura Sanders Ever-increasing numbers of autism diagnoses have parents worried about a skyrocketing epidemic, and this week’s news may only drive alarm higher. Perhaps it shouldn’t. In 2010, 1 in 68 (or 14.7 per 1,000) 8-year-olds had an autism spectrum disorder, the Centers for Disease Control and Prevention now estimates. That number is a substantial increase from 2008, which had an estimate of 1 in 88 (or 11.3 per 1,000). But the numbers might not reflect a spike in actual cases. Instead, the rise might be driven, at least in part, by an increase in diagnoses. The estimates are drawn from a collection of organizations that provide services to children with autism, including doctors, schools and social service agencies. As awareness builds and more people look for signs of autism, these numbers will keep going up. Regional spottiness suggests that better autism detection is feeding the increase. The autism rate in Alabama is just one in 175, while the rate in New Jersey is one in 45, the CDC reports. It would be surprising, and scientifically really important, if children in Alabama were truly much more protected from the disorder. Instead, differences in diagnosis rates are probably at play. If these alarmingly high numbers are driven by professionals and parents better spotting autism, that’s nothing to be alarmed at. On the contrary: This is good news. The earlier therapies begin, the better kids with autism do. That’s the idea behind CDC’s “Learn the Signs: Act Early” program to educate people about signs that something might be amiss with a child. So our best move is to find the kids who need help, and find them when they’re young. Most kids, including the ones in the new CDC survey, aren’t diagnosed with autism until about age 4 1/2. But whatever goes wrong happens long before then. © Society for Science & the Public 2000 - 2013.

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 19424 - Posted: 03.29.2014

By Greg Miller Nobody knows what causes autism, a condition that varies so widely in severity that some people on the spectrum achieve enviable fame and success while others require lifelong assistance due to severe problems with communication, cognition, and behavior. Scientists have found countless clues, but so far they don’t quite add up. The genetics is complicated. The neuroscience is conflicted. Now, a new study adds an intriguing, unexpected, and sure-to-be controversial finding to the mix: It suggests the brains of children with autism contain small patches where the normally ordered arrangement of neurons in the cerebral cortex is disrupted. “We’ve found locations where there appears to be a failure of normal development,” said Eric Courchesne, a neuroscientist at the University of California, San Diego and an author of the study, which appears today in the New England Journal of Medicine. “It’s been really difficult to identify a lesion or anything in the brain that’s specific and diagnostic of autism,” said Thomas Insel, director of the National Institute of Mental Health, one of several agencies that funded the project. The new study is notable because it applies sophisticated molecular labeling methods to postmortem tissue from people with autism who died as children, which is incredibly hard to come by, Insel says. “If it’s real, if it’s replicated and it’s a consistent finding, it’s more evidence that autism starts prenatally and only manifests itself when kids start to have trouble with language or social behavior around age two or three,” Insel said. “These kinds of changes in cellular architecture would happen during brain development, probably around the first part of the second trimester.” © 2014 Condé Nast

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 19416 - Posted: 03.27.2014

By Jennifer Richler A few days ago, an old friend sent me a panicked email. She had just finished reading Ron Suskind’s beautiful essay in the New York Times Magazine about raising a son with autism: “Reaching My Autistic Son Through Disney.” Suskind describes how, at almost 3 years of age, his son Owen “disappeared.” The child was once “engaged, chatty, full of typical speech,” but then he stopped talking, lost eye contact, even struggled to use a sippy cup. Owen was eventually diagnosed with a regressive form of autism, which Suskind says affects about a third of children with the disorder. “Unlike the kids born with it,” he continues, “this group seems typical until somewhere between 18 and 36 months—then they vanish.” That was the line that alarmed my friend, whose son is nearing his third birthday. “What is this ‘regressive autism?’ ” she asked me, the resident autism expert in her peer group. (I conducted research on autism and regression in autism before becoming a freelance writer.) “I thought we were out of the woods!” I’m sure many parents of young children who read the piece had the same reaction, and it’s completely understandable. It’s also unwarranted. The claim that many kids with autism develop typically for almost three years and then experience a near-complete loss of language, social skills, and motor ability—a claim I’ve read many times before—simply isn’t true. It’s time to set the record straight. © 2014 The Slate Group LLC.

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 19409 - Posted: 03.26.2014

Claudia Dreifus The biochemist Ricardo E. Dolmetsch has pioneered a major shift in autism research, largely putting aside behavioral questions to focus on cell biology and biochemistry. Dr. Dolmetsch, 45, has done most of his work at Stanford. Since our interviews — a condensed and edited version of which follows — he has taken a leave to join Novartis, where his mission is to organize an international team to develop autism therapies. “Pharmaceutical companies have financial and organizational resources permitting you to do things you might not be able to do as an academic,” he said. “I really want to find a drug.” Q. Did you start out your professional life studying the biochemistry of autism? A. No. In graduate school and as a postdoc, I’d done basic research on the ion channels on the membranes of cells. By my mid-20s, I had my name on some high-profile papers. Then, around 2006, my son who was then 4 was diagnosed with autism. We had suspected it. He didn’t talk much, was hyperactive, very moody. He assembled huge towers based on the color spectrum. He did all sorts of things that were very unusual. Given the signs, why did you wait that long to seek a diagnosis? I’m from Latin America [Cali, Colombia], and my Latin thing was, “This is the way boys are.” But he would just scream for hours and hours, uncontrollable. He didn’t sleep. We didn’t understand it. After a while, his teachers said, “You probably ought to have him seen.” So we went to a psychiatrist and neurologist and ultimately we got differing diagnoses. © 2014 The New York Times Company

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 19404 - Posted: 03.25.2014

by Simon Makin How much can environmental factors explain the apparent rise in autism spectrum disorders? Roughly 1 per cent of children in the US population are affected by autism spectrum disorder (ASD). Rates in many countries, including the US, have risen sharply in recent years but no one is sure why. It is still not clear whether this is prompted by something in the environment, increased awareness of the condition and changes in diagnoses, or a result of people having children later. The environmental case is hotly debated. There is some evidence that maternal infections during pregnancy can increase the risk. Other studies have pointed to a possible link with antidepressants while others have looked at elevated levels of mercury. But determining prenatal exposure to any substance is difficult because it is hard to know what substances people have been exposed to and when. To get around this, Andrey Rzhetsky and colleagues at the University of Chicago analysed US health insurance claims containing over 100 million patient records – a third of the population – dating from 2003 to 2010. They used rates of genital malformations in newborn boys as a proxy of parents' exposure to environmental risk factors. This is based on research linking a proportion of these malformations to toxins in the environment, including pesticides, lead and medicines. Toxic environment? The team compared the rates of these malformations to rates of ASD county by county. After adjusting for gender, income, ethnicity and socio-economic status, they found that a 1 per cent increase in birth defects – their measure for environmental effects - was associated with an average increase of 283 per cent in cases of ASD. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 19393 - Posted: 03.21.2014

By Jessica Wright and SFARI.org It takes more mutations to trigger autism in women than in men, which may explain why men are four times more likely to have the disorder, according to a study published 26 February in the American Journal of Human Genetics. The study found that women with autism or developmental delay tend to have more large disruptions in their genomes than do men with the disorder. Inherited mutations are also more likely to be passed down from unaffected mothers than from fathers. Together, the results suggest that women are resistant to mutations that contribute to autism. “This strongly argues that females are protected from autism and developmental delay and require more mutational load, or more mutational hits that are severe, in order to push them over the threshold,” says lead researcher Evan Eichler, professor of genome sciences at the University of Washington in Seattle. “Males on the other hand are kind of the canary in the mineshaft, so to speak, and they are much less robust.” The findings bolster those from previous studies, but don't explain what confers protection against autism in women. The fact that autism is difficult to diagnose in girls may mean that studies enroll only those girls who are severely affected and who may therefore have the most mutations, researchers note. “The authors are geneticists, and the genetics is terrific,” says David Skuse, professor of behavioral and brain sciences at University College London, who was not involved in the study. “But the questions about ascertainment are not addressed adequately.” © 2014 Scientific American

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 8: Hormones and Sex
Link ID: 19347 - Posted: 03.11.2014

By RON SUSKIND In our first year in Washington, our son disappeared. Just shy of his 3rd birthday, an engaged, chatty child, full of typical speech — “I love you,” “Where are my Ninja Turtles?” “Let’s get ice cream!” — fell silent. He cried, inconsolably. Didn’t sleep. Wouldn’t make eye contact. His only word was “juice.” I had just started a job as The Wall Street Journal’s national affairs reporter. My wife, Cornelia, a former journalist, was home with him — a new story every day, a new horror. He could barely use a sippy cup, though he’d long ago graduated to a big-boy cup. He wove about like someone walking with his eyes shut. “It doesn’t make sense,” I’d say at night. “You don’t grow backward.” Had he been injured somehow when he was out of our sight, banged his head, swallowed something poisonous? It was like searching for clues to a kidnapping. After visits to several doctors, we first heard the word “autism.” Later, it would be fine-tuned to “regressive autism,” now affecting roughly a third of children with the disorder. Unlike the kids born with it, this group seems typical until somewhere between 18 and 36 months — then they vanish. Some never get their speech back. Families stop watching those early videos, their child waving to the camera. Too painful. That child’s gone. In the year since his diagnosis, Owen’s only activity with his brother, Walt, is something they did before the autism struck: watching Disney movies. “The Little Mermaid,” “Beauty and the Beast,” “Aladdin” — it was a boom time for Disney — and also the old classics: “Dumbo,” “Fantasia,” “Pinocchio,” “Bambi.” They watch on a television bracketed to the wall in a high corner of our smallish bedroom in Georgetown. It is hard to know all the things going through the mind of our 6-year-old, Walt, about how his little brother, now nearly 4, is changing. They pile up pillows on our bed and sit close, Walt often with his arm around Owen’s shoulders, trying to hold him — and the shifting world — in place. © 2014 The New York Times Company

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 19341 - Posted: 03.10.2014

by Clare Wilson More genetic mutations may be needed to give rise to autism in girls than in boys. The finding supports the notion that the female brain is somehow protected against autism, and this may in turn explain why four times as many males have autism than females. Although some cases of autism are associated with one mutation, most are thought to involve several genetic abnormalities. In the past few years, hundreds of mutations have been discovered that can make people more vulnerable to the condition. To see if the mutations affect men and women differently, Sébastien Jacquemont at the University Hospital of Lausanne in Switzerland and colleagues measured the frequency of two different kinds of mutation in 762 families that had a child with autism. Among the children with autism, one class of mutation known as a copy number variation – deletions or duplications of a large chunk of genetic material – was three times more common in girls than in boys. The team also found that substitutions of a single letter of DNA were about one-third more common in affected girls. Jacquemont says this suggests it takes more mutations for autism to arise in girls than in boys. "Females function a lot better than males with similar mutations," he says. The results reflect the "shielding" effect of being female, he says. "There's something that's protecting [their] brain development." A larger, as yet unpublished, study of about 2400 people with autism, conducted as part of the Autism Genome Project - an attempt to sequence the whole genome of 10,000 individuals affected by the condition – has produced similar results, says Joseph Buxbaum of Mount Sinai Hospital in New York. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 8: Hormones and Sex
Link ID: 19311 - Posted: 03.01.2014

By Maggie Fox Researchers looking for simple ways to treat autism say they may have explained why at least some cases occur: It all has to do with the stress babies undergo at birth. They’re already testing a simple drug for treating kids with autism and say their findings may point to ways to treat the disorder earlier in life. It’s all experimental, but the study, published in the journal Science, should inspire other researchers to take a closer look. “This is exciting stuff to people in the field, because it’s getting at a basic mechanism," says Andrew Zimmerman of the University of Massachusetts Medical School, who reviewed the study. Yehezkel Ben-Ari of the Mediterranean Institute of Neurobiology in Marseille, France, and colleagues have been treating children with autism with a diuretic called bumetanide that reduces levels of chloride in cells. Diuretics lower blood pressure by making people urinate more, reducing fluid. Ben-Ari has had mixed success in his trials in kids, and wanted to prove his theory that chloride was the key. He worked with two rodent “models” of autism — they’re the closest things scientists have for replicating autism in a human. One has mutated genes linked with autism, and another develops autism when given valproate, an epilepsy drug blamed for causing autism in the children of mothers who take it while pregnant. They looked at what was going on in the brains of the mouse and rat pups just before and after birth. Then they gave the mouse and rat moms bumetanide — and fewer of their newborns showed autistic-like behaviors.

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 11: Emotions, Aggression, and Stress
Link ID: 19229 - Posted: 02.10.2014

Ewen Callaway A study in mice and rats suggests that an imbalance in chloride ions during a child's development in the womb could be a factor for autism. Children with autism typically begin showing obvious symptoms, such as trouble making eye contact and slow language development, a year or more after birth. A study in mice and rats now hints that prenatal drug treatment could head off these problems. The findings, reported today in Science1, do not suggest that autism spectrum disorders can be prevented in children. But researchers not involved in the study say that they add support to a controversial clinical trial suggesting that some children with autism benefited from taking a common diuretic medication called bumetanide2. In that trial, a team led by neuroscientist Yehezkel Ben-Ari at the Mediterranean Institute of Neurobiology in Marseille gave 60 children bumetanide or a placebo daily for three months. Children who had less severe forms of autism showed mild improvements in social behaviour after taking the drug, and almost no adverse side effects were observed (see 'Diuretic drug improves symptoms of autism'). But autism researchers greeted the results with caution. Many pointed out that the study did not provide a clear biological mechanism that could explain how the drug improved the symptoms of the disorder. The latest study is an attempt to answer such criticisms by identifying a role for the neurotransmitter GABA. Studies in humans and animals have suggested that GABA, which in healthy people typically inhibits the activity in neurons, is altered in autism and instead activates some brain cells. © 2014 Nature Publishing Group,

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 19225 - Posted: 02.08.2014

by Helen Thomson When the criteria for diagnosing autism were changed last year, concerns were raised that people already diagnosed might be re-evaluated and end up losing access to treatments and services. The American Psychiatric Association (APA), which publishes the diagnostic guidelines, recommends that children who are receiving appropriate treatment as the result of the old criteria should not be required to undergo a re-examination with the new criteria by insurance companies. But a small survey revealed to New Scientist suggests that not everyone is following the party line. In May, the APA published the DSM-5, the latest edition of what has come to be known as psychiatry's diagnostic bible. One controversial change was to the criteria used to diagnose different kinds of autism, which are now combined under the umbrella term of "Autism Spectrum Disorder" (ASD). Under the previous criteria of DSM-4, a person would be diagnosed with ASD by exhibiting at least six of 12 behaviours, which include problems with communication, interaction and repetition. Now, that same person would need to exhibit three deficits in social communication and interaction and at least two repetitive behaviours – the latter, say critics, makes the new criteria more restrictive. To see how the change in criteria was affecting people, Autism Speaks, a US science and advocacy organisation, asked users of its website to complete an online survey about their experiences. "We wanted to ensure that people are still maintaining access to the services they need," says Michael Rosanoff, Autism Speaks' associate director for public health research and scientific review. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 19174 - Posted: 01.27.2014

By SARAH MASLIN NIR The day after the funeral of Avonte Oquendo, the boy with autism whose remains were found this month after he disappeared at age 14 from his school in October, his mother and grandmother stood with Senator Charles E. Schumer as he announced a proposal for a new law. Called “Avonte’s law,” it would finance a program to provide optional electronic tracking devices to be worn by children with autism. “Avonte’s running away was not an isolated incident,” Mr. Schumer, Democrat of New York, said at a news conference on Sunday morning in his office on the East Side of Manhattan. “This is a high-tech solution to an age-old problem.” Citing research that suggests nearly 50 percent of children with autism wander off, often to escape the overstimulation of sounds and noise, Mr. Schumer said the new legislation would expand an existing Department of Justice program that grants money to law enforcement agencies and other groups to provide trackers for people who have Alzheimer’s disease. Mr. Schumer said he had contacted the department months ago about including children with autism in the program. There was receptiveness, he said, but money was needed to provide children with the devices, which cost $80 to $90 and a few dollars a month to operate. The legislation would allocate $10 million for the program, giving interested parents free access to the equipment, which can be worn like a watch or even sewn into clothing. Whether to use such a monitor would be up to the parents, and the exact system of employing the devices would be up to individual municipalities, Mr. Schumer said. There are different variants that could be selected, including one that alerts authorities automatically when a child has stepped across a given perimeter — for example, outside school grounds — and another that becomes activated only after authorities are called. © 2014 The New York Times Company

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 19173 - Posted: 01.27.2014

By DONALD G. McNEIL Jr. A long-awaited study has confirmed the fears of Somali residents in Minneapolis that their children suffer from higher rates of a disabling form of autism compared with other children there. The study — by the University of Minnesota, the Centers for Disease Control and Prevention, and the research and advocacy group Autism Speaks — found high rates of autism in two populations: About one Somali child in 32 and one white child in 36 in Minneapolis were on the autism spectrum. The national average is one child in 88, according to Coleen A. Boyle, who directs the C.D.C.’s Center on Birth Defects and Developmental Disabilities. But the Somali children were less likely than the whites to be “high-functioning” and more likely to have I.Q.s below 70. (The average I.Q. score is 100.) The study offered no explanation of the statistics. “We do not know why more Somali and white children were identified,” said Amy S. Hewitt, the project’s primary investigator and director of the University of Minnesota’s Research and Training Center on Community Living. “This project was not designed to answer these questions.” The results echoed those of a Swedish study published last year finding that children from immigrant families in Stockholm — many of them Somali — were more likely to have autism with intellectual disabilities. The Minneapolis study also found that Somali children with autism received their diagnoses late. Age 5 was the average, while autism and learning disabilities can be diagnosed as early as age 2, and children get the most benefit from behavioral treatment when it is started early. Black American-born children and Hispanic children in Minneapolis had much lower autism rates: one in 62 for the former and one in 80 for the latter. © 2013 The New York Times Company

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 19044 - Posted: 12.17.2013