Links for Keyword: Muscles

Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.


Links 41 - 60 of 71

By Howard Schneider The People Who Know What's Good For Us have made life progressively difficult, moving from general recommendations such as "maintain ideal weight" to detailed orders for 60 to 90 minutes of exercise every day. You can now add weightlifting to the creeping set of obligations. It's not explicit in the government's overall guidelines, but the more detailed suggestions from agencies such as the Centers for Disease Control and Prevention recommend a couple of rounds of resistance training each week. (And, yes, Vicky, that includes you cardio junkies out there because aaaallllll thaaaaatttt time on the treadmill won't guarantee that you can sit up straight when 27 becomes 77.) This won't make a lot of us happy. The basic exercise recommendations are pretty easy to cope with: Take a walk. Ride a bike. Lather, rinse, repeat. Weightlifting, on the other hand, conjures the threat of being stuck next to some grunting mesomorph who will one day be governor. The chance of injury is greater. The advice gets confusing and may include a lecture about how, if you don't disrupt the Z lines between your sarcomeres, it's a waste of time. It's manageable, however, if you understand some basics. The reason there is so much varying advice -- over what exercises to do, how frequently and how intensely -- is that this is an enterprise that should be tailored to your goals and your body. Cardio focuses on training just one muscle, the heart. There are more than 600 others that need attention. © 2007 The Washington Post Company

Related chapters from BN: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 10400 - Posted: 06.24.2010

Debora Mackenzie STEM cells have helped dogs with muscular dystrophy to walk again. Doctors hope a similar approach in humans could lead to more complete improvement than the other leading contender for a cure - an RNA-blocking drug now in clinical trials. Duchenne muscular dystrophy (DMD) strikes about one in 35,000 children, almost always boys, and is usually fatal by the age of 30. It is caused by mutations in the gene for the muscle protein dystrophin. Without it, muscle contractions shear and kill muscle cells, and victims become progressively weaker, often dying when their breathing muscles fail. Giulio Cossu and colleagues at the San Raffaele Scientific Institute in Milan, Italy, had found previously that adult stem cells called mesangioblasts colonise muscle and restore dystrophin production in mice engineered to lack the gene. But the therapeutic effect could not be tested, because these mice do not develop MD. Dogs do. So Cossu's team took mesangioblasts from golden retrievers with a mutation in the dystrophin gene that causes a disease similar to DMD. They used gene therapy to give the cells a normal version of the gene, before reinjecting them into the dogs' leg arteries. They also transplanted mesangioblasts from healthy dogs into dogs with MD, and gave drugs to suppress immune rejection (Nature, DOI: 10.1038/nature05282). © Copyright Reed Business Information Ltd

Related chapters from BN: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 9625 - Posted: 06.24.2010

When 8 year-old Andrew Kilbarger of Lancaster, Ohio received three injections in his right arm, he became one of six boys participating in the first U.S. gene therapy trial for muscular dystrophy. Andrew has Duchenne Muscular Dystrophy (DMD). DMD patients lack the gene that controls production of a protein called dystrophin, which helps keep muscle cells intact. Patients with DMD usually die by the age of 25, often because of the failure of the heart and breathing muscles. The start of any new gene therapy trial is an exciting time. But for the Muscular Dystrophy Association (which funded the trial), and the participants and doctors involved at Columbus Children's Hospital, this is a particularly exciting event because for this disease, it has been a long, hard road. Researchers discovered the gene for dystrophin 20 years ago but since it is one of the largest genes known, it was too big to work with. In 2000, geneticist Xiao Xiao found a way to miniaturize the gene. His team at the University of Pittsburgh tested the "mini-dystrophin" gene in a strain of mice with muscular dystrophy. The improvement seen in the muscle tissue of the mice was dramatic, and led to the human trial that just began. "The limitation of that is the gene vehicle will not be widespread. It will… be localized around the injection site. However, diseases like muscular dystrophy affect almost every skeletal muscle cell," he says." So you cannot, in theory, inject the genes into every muscle cell directly. So we have to figure out a novel or innovative way to deliver or disseminate [the gene]." © ScienCentral, 2000-2006.

Related chapters from BN: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 8774 - Posted: 06.24.2010

Rowan Hooper THANKS to research on "mighty mice", the lives of people suffering from muscle-wasting diseases such as muscular dystrophy could be transformed. Two treatments that block a protein called myostatin, which slows muscle growth, are now in the pipeline. The first approach, announced this week, aims to use a drug to mop up myostatin. Meanwhile a second method, which is already in clinical trials in people with muscular dystrophy, uses antibodies to disable the protein. In 1997, researchers led by Se-Jin Lee of Johns Hopkins University School of Medicine in Baltimore, Maryland, engineered mice in which the gene for myostatin had been "knocked out". The animals grew muscles twice as big as normal. A defect in the myostatin gene was what caused a German toddler, whose story was widely publicised last year, to develop prodigious muscles. Now Lee has produced a soluble molecule called activin type IIB receptor (ACVR2B) that binds to myostatin in normal mice, causing their muscles to bulk up. He hopes ACVR2B can be used to treat conditions such as Duchenne muscular dystrophy, a genetic disease that affects 1 in 3000 boys. Their muscles waste away because of a defect in the gene for the protein dystrophin, which is important in organising muscle structure. © Copyright Reed Business Information Ltd

Related chapters from BN: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 8283 - Posted: 06.24.2010

Yawn. Stretch. Grumble. Retch. No matter. All muscle motion starts with a nerve signal: Move, muscle, now! You know the drill: Brain activates nerve, nerve stimulates muscle cell, and something happens. Things are different in the fruitfly. This mainstay of the compost heap and the biology lab beats its wings 200 times a second. Even Why Filers can do the math: 200 contractions of the muscles that lift the wings, and another 200 in the muscles that pull them back down. All in one second. That's a problem because it's much faster than nerves can trigger muscles, says Thomas Irving, associate professor of biology at the Illinois Institute of Technology, and director of the Biophysics Collaborative Access Team . "Human muscle needs a nerve impulse, but the insect has got to do it 200 times a second," and so the triggering "has to be done at the molecular level." To explore the molecular level, Irving and colleagues, including fruit-fly flight expert Michael Dickinson of Caltech, triggered some muscular activity of their own. They glued the head of a living fruitfly to a wire and placed it in a bath of X-rays at the Advanced Photon Source at Argonne National Laboratory in Illinois. They put on a light show to force the fly to adopt a steady wingbeat, and aimed brief surges of tightly focused X-rays at the critter's wing muscles. You can read their results in this week's Nature. ©2005, University of Wisconsin, Board of Regents.

Related chapters from BN: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 6746 - Posted: 06.24.2010

Peter Weiss In a Los Angeles laboratory, researchers have let loose scores of what amount to living micromachines. Dwarfed by a comma, each tiny device consists of an arch of gold coated along its inner surface with a sheath of cardiac muscle grown from rat cells. With each of the muscle bundles' automatic cycles of contraction and relaxation, the device takes a step. Viewed under a microscope, "they move very fast," says bioengineer Jianzhong Xi of the University of California, Los Angeles (UCLA). "The first time I saw that, it was kind of scary." Xi and his UCLA colleagues Jacob J. Schmidt and Carlo D. Montemagno describe their musclebots in the February Nature Materials. Microcontraptions of this sort may someday make pinpoint deliveries of drugs to cells or shuttle minuscule components during the manufacture of other itsy machines or structures, Xi says. Variations on the same design could lead to muscle-driven power supplies for microdevices or laboratory test beds for studying properties of muscle tissue. Because the musclebot is both minuscule and designed to operate in body fluids, "this is the Fantastic Voyage kind of thing" that might someday roam the bloodstream and carry out on-the-spot surgery or disease treatments, comments physicist James Castracane of the State University of New York in Albany. Copyright ©2005 Science Service.

Related chapters from BN: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 6733 - Posted: 06.24.2010

John Travis Find the kid a sports agent. Researchers studying an unusually muscular tot have found that he has gene mutations similar to ones that produce abnormally brawny cattle and mice. Less-severe variations in the same gene may underlie the success of some athletes, the scientists speculate. The boy's mutations disrupt both copies of the gene encoding a muscle protein called myostatin. Previous studies of the gene in animals had suggested that myostatin restrains muscle growth during development and adult life. But scientists didn't know whether the protein serves the same function in people. The boy's powerhouse physique "says pretty definitively that myostatin plays the same role in humans that it does in mice and cattle," concludes Se-Jin Lee of Johns Hopkins Medical Institutions in Baltimore. If so, he adds, then drugs to block myostatin might have some benefits in people with muscle-wasting diseases. Lee is a member of the international group of investigators who have studied the boy since 1999 and now report their results in the June 24 New England Journal of Medicine (NEJM). Copyright ©2004 Science Service.

Related chapters from BN: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 5710 - Posted: 06.24.2010

BOSTON - A genetic mutation in "mighty mice" is also found in a German boy with unusually large muscles, scientist say. The four-year-old's muscles are roughly twice as large as other children his age. Researchers found he has an inherited mutation in the myostatin gene, boosting muscle growth and reducing fat. "This is the first evidence that myostatin regulates muscle mass in people as it does in other animals," said Dr. Se-Jin Lee, a professor of molecular biology and genetics at Johns Hopkins University in Baltimore, and a co-author of the study. Naturally bulky cattle such as Belgian Blues also lack myostatin, the researchers have found. Lee's team wants to explore if interfering with myostatin can slow down muscle loss in muscle wasting diseases such as Duchenne muscular dystrophy. About 850 males in Canada have the disease. Seven years ago, Lee's team created mice that are twice as brawny as normal by blocking the mysotatin gene. Both Lee and his university would share in royalties if the research results in any commercial therapies. Copyright © CBC 2004

Related chapters from BN: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 5701 - Posted: 06.24.2010

EDMONTON - By implanting computer chips in the body, researchers in Alberta hope to make paralysed limbs work again. Scientists at the University of Alberta developed a device to stimulate nerves to take a step. The device helped Edgar Jackson of Calgary regain the ability to walk. Five years ago, a motorcycle accident left him a quadriplegic. A video shows the difference the device made. Jackson went from struggling to put one foot in front of the other to walking with ease. Here's how it works. A sensor attached to Jackson's leg recognizes when his foot is being lifted. Then an electric shock is triggered to stimulate the nerve, moving the foot into position to take a normal step. Copyright © CBC 2004

Related chapters from BN: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 4999 - Posted: 06.24.2010

A common question flowing across holiday tables trimmed with turkey this week may be "white meat or dark?" Now scientists have identified the genetic switch that governs the formation of the two types during development. White and dark meat differ in appearance because each is made up of a distinct type of muscle fiber. Dark meat comprises so-called slow twitch muscle fibers, which are specialized for extended exertion, whereas white meat is made up of fast twitch fibers that fuel short, intense bursts of energy. That much has been known for some time. The genetic mechanism underlying the specification of one muscle type versus the other was unclear, however. Philip Ingham of the University of Sheffield and his colleagues studied muscle cells of developing zebrafish and found that a gene dubbed u-boot (ubo ) plays a key role in determining what type of muscle develops by controlling the transcription factor protein known as Blimp-1. © 1996-2003 Scientific American, Inc.

Related chapters from BN: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 4726 - Posted: 06.24.2010

Detergent delivers genetic medicine to mice with muscular dystrophy. HELEN R. PILCHER A mouse study raises hopes that injections of the DNA-like molecule RNA might one day help to treat the muscle-wasting disease Duchenne muscular dystrophy. For the first time in a live animal, RNA therapy has produced improvements that last for up to three months1. Duchenne muscular dystrophy is an inherited disease that affects 1 in 3,500 children, mainly boys. Sufferers inherit a fault in the gene encoding the protein dystrophin, causing most to die in early adulthood. The new approach effectively corrects the flawed gene. It targets RNA - the intermediate between DNA and protein. Snippets of RNA, injected directly into the muscle, help edit out damaged pieces of host RNA. Muscle cells can then produce the missing dystrophin protein. © Nature News Service / Macmillan Magazines Ltd 2003

Related chapters from BN: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 4006 - Posted: 06.24.2010

-- A protein that plays a role in muscular dystrophies also may be involved in peripheral neuropathy - disorders of the nerves that carry messages between the brain and the rest of the body. The findings, by University of Iowa researchers and colleagues, may shed light on the causes and mechanisms of human peripheral neuropathies, which cause pain, numbness and muscle wasting. Peripheral neuropathies can be acquired as a result of diseases including diabetes and Hansen's disease (leprosy) or can be inherited. Some congenital peripheral neuropathies (those present at birth) can cause limb deformities. The UI study may suggest new treatment strategies for these conditions. In the peripheral nervous system, dystroglycan is found in Schwann cells, which wrap themselves around peripheral axons (nerve fibers) and protect them by producing a myelin sheath. The sheath allows nerve impulses to move faster and more efficiently along the nerves. If nerve fibers are the body's electrical wiring, then the myelin sheath represents the insulation. Copyright © 1992-2003 Bio Online, Inc.

Related chapters from BN: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 3929 - Posted: 06.24.2010

A protein defective in two types of muscular dystrophy also appears to be important in repairing damaged muscle, according to Howard Hughes Medical Institute researchers at the University of Iowa College of Medicine. The discovery reveals the first known component of the machinery that repairs the damaged membrane in a muscle fiber. Further studies of this and related proteins could lead to a better understanding of disorders that affect cardiac and skeletal muscles. Howard Hughes Medical Institute investigator Kevin Campbell and Dimple Bansal led the research group that published its findings in the May 8, 2003, issue of the journal Nature. Campbell and his colleagues reported that their studies in mice showed that a mutant form of the muscle protein dysferlin prevents normal muscle repair in limb-girdle muscular dystrophy type 2B (LGMD2B) and Miyoshi Myopathy (MM). Campbell and his colleagues at the University of Iowa College of Medicine collaborated with Paul McNeil and his laboratory at The Medical College of Georgia. ©2003 Howard Hughes Medical Institute

Related chapters from BN: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 3783 - Posted: 06.24.2010

HOUSTON - A newly identified gene, atrogin-1, is involved in muscle loss associated with cancer, diabetes, fasting and kidney disease as well as in the atrophy occurring with disuse, inactivity, and nerve or spinal injury. This discovery, funded by the National Space Biomedical Research Institute (NSBRI) and the Muscular Dystrophy Association, increases the understanding of how muscles atrophy and may lead to development of new treatments for muscle wasting on Earth and in space. "Through a study of rat muscles, we determined that atrogin-1 is found only in muscle," said Dr. Alfred Goldberg, professor of cell biology at Harvard Medical School and associate leader of NSBRI's team of scientists focusing on muscle loss in space. "In normal muscles, the amount is low; however, there is a dramatic increase in the production of the atrogin-1 protein in conditions where muscles lose size and strength." Copyright © 2000-2002 National Space Biomedical Research Institute

Related chapters from BN: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 1741 - Posted: 06.24.2010

Scientists have found a way to block the genetic flaw that causes the most common form of muscular dystrophy. Tests on mice found injecting them with a compound that neutralises the faulty gene's activity led to muscle cells working more effectively. The US team's work, published in Science, could be a step towards treatments to reverse the symptoms of the disease. UK experts said the study results were "exciting". Around 7,500 children and adults in the UK have some form of muscular dystrophy. Myotonic dystrophy, like other forms of the condition, causes muscle weakness and wasting that is usually progressive. It typically affects muscles in the face, jaw and neck. Another symptom is muscle stiffness - myotonia - which tends to be seen in the hands. The condition can appear at any age, and currently there is no treatment that can halt its progress. It is caused by a mutation of a specific gene on chromosome 19. Scientists discovered RNA - which takes genetic messages from the nucleus to the rest of the cell in order to build proteins - was key to myotonic dystrophy. Each gene produces its own RNA. But in myotonic dystrophy, the genetic defect leads to production of a toxic RNA which blocks certain proteins from carrying out their normal functions by sticking to them like Velcro. In this study scientists from the University of Rochester in New York found the blocking of a protein called "muscleblind" causes the characteristic hand stiffness. The toxic RNA accumulates as deposits which are visible in the cell's nucleus. The team used a synthetic molecule, called an antisense morpholino oligonucleotide, that mimics a segment of the genetic code to break up these deposits and re-establish cellular activity. It was specifically designed to bind to the toxic RNA and neutralise its harmful effects. When it was injected into the muscle cells of mice with myotonic dystrophy, the stuck proteins were released and resumed their normal function. The abnormal electrical (myotonic) activity went away. (C)BBC

Related chapters from BN: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 13070 - Posted: 07.20.2009

The anti-impotence drug Viagra may help save people with muscular dystrophy from an early death, a study suggests. Researchers found the way the drug works to combat impotence may also help ward off heart failure in muscular dystrophy patients. Tests on mice with a version of the disease showed the drug helped keep their hearts working well. The Montreal Heart Institute study appears in Proceedings of the National Academy of Sciences. Muscular dystrophy is a genetic condition causing wasting of the muscles. The first signs of muscular weakness appear at roughly age five, leading to a progressive loss in the ability to walk by the age of 13. People with the condition are also at a higher risk of heart failure due to a weakening of the muscles which keep the organ pumping strongly. For this reason, many people with Duchenne muscular dystrophy - the most common form of the condition - die in early life, often in their 20s or 30s. The Montreal team found that Viagra - known technically as sildenafil - prevents the loss of a molecule, cGMP, which plays a key role in keeping blood vessels dilated. In the penis, this increases blood flow, and helps to combat impotence. But in the heart it helps to ensure the organ itself receives a proper supply of blood, and remains healthy and strong. With the heart in a strong condition, it is more able to withstand the impact of weakening muscle cells caused by muscular dystrophy. (C)BBC

Related chapters from BN: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 11626 - Posted: 05.13.2008

By GINA KOLATA One of the great unanswered questions in physiology is why muscles get tired. The experience is universal, common to creatures that have muscles, but the answer has been elusive until now. Scientists at Columbia say they have not only come up with an answer, but have also devised, for mice, an experimental drug that can revive the animals and let them keep running long after they would normally flop down in exhaustion. For decades, muscle fatigue had been largely ignored or misunderstood. Leading physiology textbooks did not even try to offer a mechanism, said Dr. Andrew Marks, principal investigator of the new study. A popular theory, that muscles become tired because they release lactic acid, was discredited not long ago. In a report published Monday in an early online edition of Proceedings of the National Academy of Sciences, Dr. Marks says the problem is calcium flow inside muscle cells. Ordinarily, ebbs and flows of calcium in cells control muscle contractions. But when muscles grow tired, the investigators report, tiny channels in them start leaking calcium, and that weakens contractions. At the same time, the leaked calcium stimulates an enzyme that eats into muscle fibers, contributing to the muscle exhaustion. In recent years, says George Brooks of the University of California, Berkeley, muscle researchers have had more or less continuous discussions about why muscles fatigue. It was his work that largely discredited the lactic-acid hypothesis, but that left a void. Copyright 2008 The New York Times Company

Related chapters from BN: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 11309 - Posted: 02.20.2008

By Fergus Walsh A gene therapy trial for the fatal disorder Duchenne muscular dystrophy (DMD) is about to begin in London. In a world first, a small group of patients will be injected with an experimental drug which it is hoped will extend their lives. DMD, which affects boys, is caused by a single faulty gene, and results in progressive muscle wasting. The injection contains a "molecular patch" targeting the faulty gene so that it should work again. At first, minute quantities of the drug will be used - to check it is safe. If it works the drug will effectively knit together the key damaged section of DNA, allowing it to begin producing a protein that keeps the muscles strong. The hope is it could slow, or even halt the progression of muscle wasting, and give some patients the chance of living into old age. Animal trials of the drug have proved highly successful. If it works in humans, patients would need regular infusions of the drug. Lead researcher Professor Francesco Muntoni, of Imperial College London, has high hopes. He said: "It will be truly life changing, and life extending for these people. "Maybe this will not be a complete cure, but it could definitely buy a lot of time for these children." Professor Muntoni describes the gene therapy as like a piece of molecular velcro which will form a temporary repair. (C)BBC

Related chapters from BN: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 10866 - Posted: 10.22.2007

Vitamin shots may help protect multiple sclerosis patients from severe long-term disability, a study suggests. Currently, there is no effective treatment for the chronic progressive phase of MS, when serious disability is most likely to appear. Researchers cut the risk of nerve degeneration in mice with MS-type symptoms by giving them a form of vitamin B3 called nicotinamide. The Children's Hospital Boston study appears in the Journal of Neuroscience. MS, which affects about 85,000 people in the UK, is a disease of the central nervous system. It causes the break down of the myelin sheath, a fatty protein, which coats nerve fibres, disrupting the ability to conduct electrical impulses to and from the brain. Many patients develop a form of the disease called relapsing-remitting MS, in which bouts of illness are followed by complete or partial recovery. In this early phase anti-inflammatory drugs can help. But eventually patients can enter the chronic progressive phase, for which there is no good treatment. The Boston team worked on mice with an MS-like disease called experimental autoimmune encephalitis (EAE). They found that daily nicotinamide shots protected the animals' nerve cells from myelin loss, and stabilised the condition of those cells that had already been affected. The greater the dose of nicotinamide, the greater the protective effect. Rating disability on a scale of one to five, mice receiving the highest doses of nicotinamide scored between one and two, while animals who received no shots at all scored between three and four. (C)BBC

Related chapters from BN: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 9366 - Posted: 09.20.2006

US scientists have found a way to reverse muscular dystrophy (MD) in mice, offering hope of a cure for humans with muscle-wasting diseases. The animals in the Nature Genetics study had myotonic dystrophy - the most common form of MD in adults. The therapy targets a particular kind of toxic molecule to "silence" its presence in the diseased muscle. The University of Virginia team showed the treatment fully restored heart and skeletal muscle function in mice. In myotonic dystrophy, like the other types of MD, faulty DNA is to blame for the abnormalities that occur. Myotonic dystrophy occurs because of a large expansion of DNA code, which most likely causes an accumulation of toxic messenger RNA molecules in cells. Messenger or mRNA is a copy of the information carried by a gene on the DNA. If the DNA code is faulty then the mRNA will be faulty too. These abnormalities lead to the progressive muscle weakness and wasting and heart problems seen in myotonic dystrophy. Dr Mani Mahadevan and his team reasoned that eliminating the toxic mRNA molecules might help reverse the disease. They created mice with faulty DNA that could be turned on and off by adding or removing an antibiotic to their drinking water. In the "on" phase the mice showed all the cardinal features of myotonic dystrophy. When the DNA was turned off, normal skeletal and cardiac muscle function was restored in many, but not all of the mice. (C)BBC

Related chapters from BN: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 9185 - Posted: 07.31.2006