Chapter 8. Hormones and Sex

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 2605

By Karl Gruber Five lionesses in Botswana have grown a mane and are showing male-like behaviours. One is even roaring and mounting other females. Male lions are distinguished by their mane, which they use to attract females, and they roar to protect their territory or call upon members of their pride. Females lack a mane and are not as vocal. . New Scientist Live: Book tickets to our festival of ideas and discovery – 22 to 25 September in London But sometimes lionesses grow a mane and even behave a bit like males. However, until now, reports of such maned lionesses have been extremely rare and largely anecdotal. We knew they existed, but little about how they behave. Now, Geoffrey D. Gilfillan at the University of Sussex in Falmer, UK, and colleagues have reported five lionesses sporting a mane at the Moremi Game Reserve in Botswana’s Okavango delta. Gilfillan started studying these lionesses back in March 2014, and for the next two years he focused on recording the behaviour of one of them, called SaF05. She had an underdeveloped mane and was larger than most females. “While SaF05 is mostly female in her behaviour – staying with the pride, mating males – she also has some male behaviours, such as increased scent-marking and roaring, as well as mounting other females,” says Gilfillan. © Copyright Reed Business Information Ltd.

Keyword: Sexual Behavior; Aggression
Link ID: 22687 - Posted: 09.23.2016

By Mallory Locklear Men and women show different patterns of drug abuse, with women becoming addicted to some substances much more quickly. Now a study in rats has found that sex hormones can reduce opioid abuse. From studies of other drugs, such as cocaine and alcohol, we know that women are less likely to use these substances than men, but become addicted faster when they do. “There are a lot of data to indicate that women transition from that initial use to having a substance-use disorder much more rapidly,” says Mark Smith, a psychologist at Davidson College, North Carolina. Once addicted, women also seem to have stronger drug cravings. Tracking drug use throughout women’s menstrual cycles suggests that both these differences could be shaped by hormones – with more intense cravings and greater euphoria at particular times in the cycle, says Smith. Craving crash Now Smith’s team has investigated the effects of hormones on opioid addiction in rats. Their findings suggest that hormones such as oestrogen and progesterone may help women to kick the habit. The researchers allowed female rats to self-administer heroin, and measured how much they chose to take at different times in their oestrous cycle – a regular sequence of hormone fluctuations similar to those seen in the menstrual cycle in women. © Copyright Reed Business Information Ltd.

Keyword: Drug Abuse; Hormones & Behavior
Link ID: 22685 - Posted: 09.23.2016

By Colin Barras It is not just about speed. The only songbird known to perform a rapid tap dance during courtship makes more noise with its feet during its routines than at other times. The blue-capped cordon-bleu (Uraeginthus cyanocephalus) from East Africa is blessed with the attributes of a Broadway star: striking good looks, a strong singing voice – and fine tap-dancing skills. The dances are so fast that they went unnoticed until 2015, when Masayo Soma at Hokkaido University in Japan and her colleagues captured the performances on high-speed film. The bird’s speciality is a left-right-left shuffle ­– only with the feet striking the perch up to 50 times a second. The vision of some birds operates at a faster rate than that of humans, so the cordon-bleu’s dance may simply be about creating an impressive visual performance. But it could also be about winning over a potential mate with rhythm. To explore the idea, Soma and her colleagues recorded audio of the courtship dances, which both males and females perform. They found that the tap dances are unusually loud: the feet strike the branch with enough force to generate sound averaging 30 decibels. This typically drops to just 20 decibels when a bird’s feet strike the branch as it hops around when it is not performing, which means the step sounds are not just a by-product of movement. © Copyright Reed Business Information Ltd.

Keyword: Sexual Behavior
Link ID: 22665 - Posted: 09.19.2016

Carrie Arnold Could a protein that originated in a virus explain why men are more muscular than women? Viruses are notorious for their ability to cause disease, but they also shape human biology in less obvious ways. Retroviruses, which insert their genetic material into our genomes to copy themselves, have left behind genes that help to steer our immune systems and mold the development of embryos and the placenta. Now researchers report in PLOS Genetics that syncytin, a viral protein that enables placenta formation, also helps to increase muscle mass in male mice1. These results could partially explain a lingering mystery in biology: why the males of many mammalian species tend to be more muscular than females. “As soon as I read it, my mind started racing with the potential implications,” says evolutionary virologist Aris Katzourakis of the University of Oxford, UK. About 8% of the 3 billion pairs of As, Ts, Gs and Cs that make up our DNA are viral detritus. Many of those viral hand-me-downs have degraded into useless junk — but not all, as a series of discoveries over the past 15 years has revealed. In 2000, scientists discovered that syncytin, a protein that enables the formation of the placenta, actually originated as a viral protein that humans subsequently ‘borrowed’2. That original viral protein enables the retrovirus to fuse with host cells, depositing its entire genome into the safe harbour of the cytoplasm. Syncytin has changed little from this ancestral protein form; it directs certain placental cells to fuse with cells in the mother’s uterus, forming the outer layer of the placenta. © 2016 Macmillan Publishers Limited

Keyword: Muscles; Sexual Behavior
Link ID: 22650 - Posted: 09.13.2016

By NATALIE ANGIER The female bonobo apes of the Wamba forest in the Democratic Republic of Congo had just finished breakfast and were preparing for a brief nap in the treetops, bending and crisscrossing leafy branches into comfortable day beds. But one of the females was in estrus, her rump exceptionally pink and swollen, and four males in the group were too excited to sleep. They took turns wildly swinging and jumping around the fertile female and her bunkmates, shaking the branches, appearing to display their erections and perforating the air with high-pitched screams and hoots. Suddenly, three older, high-ranking female bonobos bolted up from below, a furious blur of black fur and swinging limbs and, together with the female in estrus, flew straight for the offending males. The males scattered. The females pursued them. Tree boughs bounced and cracked. Screams on all sides grew deafening. Three of the males escaped, but the females cornered and grabbed the fourth one — the resident alpha male. He was healthy, muscular and about 18 pounds heavier than any of his captors. But no matter. The females bit into him as he howled and struggled to pull free. Finally, “he dropped from the tree and ran away, and he didn’t appear again for about three weeks,” said Nahoko Tokuyama, of the Primate Research Institute at Kyoto University in Japan, who witnessed the encounter. When the male returned, he kept to himself. Dr. Tokuyama noticed that the tip of one of his toes was gone. “Being hated by females,” she said in an email interview, “is a big matter for male bonobos.” The toe-trimming incident was extreme but not unique. Describing results from their long-term field work in the September issue of Animal Behaviour, Dr. Tokuyama and her colleague Takeshi Furuichi reported that the female bonobos of Wamba often banded together to fend off male aggression, and in patterns that defied the standard primate rule book. © 2016 The New York Times Company

Keyword: Aggression; Sexual Behavior
Link ID: 22641 - Posted: 09.10.2016

By Jesse Singal Back in 2014, a bigoted African leader put J. Michael Bailey, a psychologist at Northwestern, in a strange position. Yoweri Museveni, the president of Uganda, had been issuing a series of anti-gay tirades, and — partially fueled by anti-gay religious figures from the U.S. — was considering toughening Uganda’s anti-gay laws. The rhetoric was getting out of control: “The commercialisation of homosexuality is unacceptable,” said Simon Lokodo, Uganda’s ethics minister. “If they were doing it in their own rooms we wouldn’t mind, but when they go for children, that’s not fair. They are beasts of the forest.” Eventually, Museveni said he would table the idea of new legislation until he better understood the science of homosexuality, and agreed to lay off Uganda’s LGBT population if someone could prove to him homosexuality was innate. That’s where Bailey comes in: He’s a leading sex researcher who has published at length on the question of where sexual orientation comes from. LGBT advocates began reaching out to him to explain the science of homosexuality and, presumably, denounce Museveni for his hateful rhetoric. But “I had issues with rushing out a scientific statement that homosexuality is innate,” he said in an email, because he’s not sure that’s quite accurate. While he did write articles, such as an editorial in New Scientist, explaining why he thought Museveni’s position didn’t make sense, he stopped short of calling homosexuality innate. He also realized that in light of some recent advances in the science of sexual orientation, it was time to publish an article summing up the current state of the field — gathering together all that was broadly agreed-upon about the nature and potential origins of sexual orientation. (In the meantime, Museveni did end up signing the anti-gay legislation, justifying his decision by reasoning that homosexuality “was learned and could be unlearned.”) © 2016, New York Media LLC.

Keyword: Sexual Behavior; Development of the Brain
Link ID: 22628 - Posted: 09.05.2016

By LISA SANDERS, M.D. On Thursday, we challenged Well readers to take on the complicated case of a 50-year-old woman who felt feverish and couldn’t stop vomiting and who ended up losing a lot of weight. Like the doctors who saw her as she searched for a diagnosis, many of you focused on her recent journey to Kenya as the source of her symptoms. It was a completely reasonable approach, and one that was extensively explored by the doctors who cared for her. But ultimately it was incorrect. This was a really tough case. Indeed, only three of you got it right. The correct diagnosis was: Hyperthyroidism Thyroid hormone controls metabolism. The more of this hormone flowing in the body, the harder the body works. Because this hormone plays such an important role in how we function, the body tightly regulates how much of it is released and when. But just like every other system in the body, that regulatory mechanism can mess up, releasing either too little hormone (hypothyroidism) or, as in this case, too much. The usual symptoms of hyperthyroidism are pretty apparent: The heart races; patients are sweaty, shaky, itchy and sometimes feverish. The appetite increases, but because the entire body is revved up, there is often weight loss. Bowel movements become more frequent and sleep harder to come by. Frequent and uncontrolled vomiting is less common but has been reported. This patient had all of these symptoms. The most common cause of hyperthyroidism is an autoimmune disorder known as Graves’ disease, named after Dr. Robert Graves, a 19th-century Irish physician who wrote about the phenomenon of rapid and violent palpitations associated with an enlarged thyroid gland. In the 20th century it was discovered that the symptoms result when antibodies, the foot soldiers of the immune system, cause excess stimulation of the thyroid gland, resulting in the uncontrolled production and release of thyroid hormone. © 2016 The New York Times Company

Keyword: Hormones & Behavior
Link ID: 22624 - Posted: 09.03.2016

By Simon Oxenham It can seem like barely a week goes by without a new study linking the stage in a woman’s monthly cycle to her preferences in a sexual partner. Reportedly, when women are ovulating they are attracted to men who are healthier, more dominant, more masculine, have higher testosterone levels– the list goes on. But do women really exhibit such behavioural changes – and why are we so fascinated by the idea that they do? A popular theory in evolutionary psychology is that women seek out men with better genes while they are ovulating to have short term affairs with, so as to produce healthier babies. These men may not necessarily stick around for the long haul, but appear particularly attractive when a woman is in the fertile stage of her cycle. During the non-fertile phase, the theory goes that women seek out men who are more likely to make reliable long-term partners and good fathers. But something smells a bit fishy here. Are women really evolutionarily hard-wired to cuckold their partners? Or might the attraction of a salacious hypothesis – with slightly sexist overtones – be shaping some of this research? Masculine all month A review of these kinds of studies is now challenging this often-told story. Wendy Wood at the University of Southern California and her team have analysed 58 studies – some of which were never published – and found that this theory is largely unsupported by evidence. © Copyright Reed Business Information Ltd.

Keyword: Chemical Senses (Smell & Taste); Hormones & Behavior
Link ID: 22611 - Posted: 08.30.2016

By Christie Aschwanden The Olympic stadium was quiet on Wednesday morning, and spectators in the sparsely filled stands seemed to pay little notice to South African runner Caster Semenya as she cruised to an easy win in her first-round heat of the 800 meters. But on Saturday evening, when Semenya will contest the 800-meter final, she’ll have the world’s eyes on her. “There is no more certain gold medal in the Rio Olympics than Semenya,” wrote Ross Tucker, an exercise scientist in South Africa, on his blog, The Science of Sport. “She could trip and fall, anywhere in the first lap, lose 20m, and still win the race.” If she does indeed dominate, some sports fans will be cheering Semenya, while others will be less inclined to celebrate, believing that she has an unfair advantage over her rivals. Semenya made headlines in 2009 amid rumors that track’s governing body, the International Association of Athletics Federations, had required her to undergo tests to confirm that she was female. Media accounts have reported that she has hyperandrogenism, a condition that causes higher-than-average testosterone levels — an allegation that neither Semenya nor the IAAF has publicly confirmed. Semenya’s case is the latest saga in sport’s checkered history of sex testing, a task that is purportedly aimed at creating an even playing field but — as I’ve discussed previously — raises serious questions about how athletics organizations treat women. Her muscular build, deep voice and remarkable results had raised suspicions among some of Semenya’s rivals about whether she was really a woman. “Just look at her,” said Mariya Savinova, a Russian runner now tangled in her country’s doping scandal.

Keyword: Sexual Behavior; Hormones & Behavior
Link ID: 22601 - Posted: 08.25.2016

By Melinda Wenner Moyer The science of sleep is woefully incomplete, not least because research on the topic has long ignored half of the population. For decades, sleep studies mostly enrolled men. Now, as sleep researchers are making a more concerted effort to study women, they are uncovering important differences between the sexes. Hormones are a major factor. Estrogen, progesterone and testosterone can influence the chemical systems in the brain that regulate sleep and arousal. Moreover, recent studies indicate that during times of hormonal change—such as puberty, pregnancy and menopause—women are at an increased risk for sleep disorders such as obstructive sleep apnea, restless legs syndrome and insomnia. Women also tend to report that they have more trouble sleeping before and during their menstrual periods. And when women do sleep poorly, they may have a harder time focusing than sleep-deprived men do. In one recent study, researchers shifted the sleep-wake cycles of 16 men and 18 women for 10 days. Volunteers were put on a 28-hour daily cycle involving nearly 19 hours of awake time followed by a little more than nine hours of sleep. During the sleep-shifted period, the women in the group performed much less accurately than the men on cognitive tests. The findings, published in April of this year in the Proceedings of the National Academy of Sciences USA, may help explain why women are more likely than men to get injured working graveyard shifts. In addition, a study conducted in 2015 in teenagers reported that weekday sleep deprivation affects cognitive ability more in girls than in boys. © 2016 Scientific American

Keyword: Sleep; Sexual Behavior
Link ID: 22568 - Posted: 08.18.2016

by Helen Thompson Some guys really know how to kill a moment. Among Mediterranean fish called ocellated wrasse (Symphodus ocellatus), single males sneak up on mating pairs in their nest and release a flood of sperm in an effort to fertilize some of the female’s eggs. But female fish may safeguard against such skullduggery through their ovarian fluid, gooey film that covers fish eggs. Suzanne Alonzo, a biologist at Yale University, and her colleagues exposed sperm from both types of males to ovarian fluid from female ocellated wrasse in the lab. Nesting males release speedier sperm in lower numbers (about a million per spawn), while sneaking males release a lot of slower sperm (about four million per spawn). Experiments showed that ovarian fluid enhanced sperm velocity and motility and favored speed over volume. Thus, the fluid gives a female’s chosen mate an edge in the race to the egg, the researchers report August 16 in Nature Communications. While methods to thwart unwanted sperm are common in species that fertilize within the body, evidence from Chinook salmon previously hinted that external fertilizers don’t have that luxury. However, these new results suggest otherwise: Some female fish retain a level of control over who fathers their offspring even after laying their eggs. Male ocellated wrasse come in three varieties: sneaky males (shown) that surprise mating pairs with sperm but don’t help raise offspring; nesting males that build algae nests and court females; and satellite males, which protect nests from sneakers but staying out of parenting. |© Society for Science & the Public 2000 - 2016

Keyword: Sexual Behavior; Evolution
Link ID: 22563 - Posted: 08.17.2016

By Robert Lavine Just the briefest eye contact can heighten empathetic feelings, giving people a sense of being drawn together. But patients who suffer from autism, even in its most high-functioning forms, often have trouble establishing this sort of a social connection with other people. Researchers are delving into what’s going on behind the eyes when these magical moments occur, and the hormones and neural substrates involved may offer hope of helping people with autism. University of Cambridge neuroscientist Bonnie Auyeung and colleagues gave oxytocin—a compound commonly referred to as the “love hormone,” as it’s been found to play roles in maternal and romantic bonding—to both normal men and those with a high-functioning form of autism also called Asperger’s syndrome. The scientists then tracked the eye movements of the study subjects and found that, compared with controls, those who received oxytocin via nasal spray showed increases in the number of fixations—pauses of about 300 milliseconds—on the eye region of an interviewer’s face and in the fraction of time spent looking at this region during a brief interview (Translational Psychiatry, doi:10.1038/tp.2014.146, 2015). Oxytocin, a neuropeptide hormone secreted by the pituitary gland, has long been known to activate receptors in the uterus and mammary glands, facilitating labor and milk letdown. But research on the neural effects of oxytocin has been accelerated by the availability of a nasal spray formulation of the hormone, which can deliver it more directly to the brain, also rich with oxytocin receptors. Auyeung adds that her study used a unique experimental setup. “Other studies have shown that [oxytocin] increases looking at the eye region when presented with a picture of a face,” Auyeung says. “The new part is that we are using a live interaction.”

Keyword: Autism; Hormones & Behavior
Link ID: 22540 - Posted: 08.11.2016

By Megan Scudellari In late 2013, psychologist Raphael Bernier welcomed a 12-year-old girl and her parents into his office at the University of Washington (UW) in Seattle. The girl had been diagnosed with autism spectrum disorder, and Bernier had invited the family in to discuss the results of a genetic analysis his collaborator, geneticist Evan Eichler, had performed in search of the cause. As they chatted, Bernier noticed the girl’s wide-set eyes, which had a slight downward slant. Her head was unusually large, featuring a prominent forehead. The mother described how her daughter had gastrointestinal issues and sometimes wouldn’t sleep for two to three days at a time. The girl’s presentation was interesting, Bernier recalls, but he didn’t think too much of it—until a week later, when he met an eight-year-old boy with similarly wide-set eyes and a large head. Bernier did a double take. The “kiddos,” as he calls children who come to see him, could have been siblings. According to the boy’s parents, he also suffered from gastrointestinal and sleep problems. The similarities between the unrelated children were remarkable, especially for a disorder so notoriously complex that it has been said, “If you’ve met one child with autism, you’ve met one child with autism.” But Bernier knew that the patients shared another similarity that might explain the apparent coincidence: both harbored a mutation in a gene known as chromodomain helicase DNA binding protein 8 (CHD8). © 1986-2016 The Scientist

Keyword: Autism; Genes & Behavior
Link ID: 22515 - Posted: 08.04.2016

Carl Zimmer An eye is for seeing, a nose is for smelling. Many aspects of the human body have obvious purposes. But some defy easy explanation. For biologists, few phenomena are as mysterious as the female orgasm. While orgasms have an important role in a woman’s intimate relationships, the evolutionary roots of the experience — a combination of muscle contractions, hormone release, and intense pleasure — have been difficult to uncover. For decades, researchers have put forward theories, but none are widely accepted. Now two evolutionary biologists have joined the fray, offering a new way of thinking about the female orgasm based on a reconstruction of its ancient history. On Monday, in The Journal of Experimental Zoology, the authors conclude that the response originated in mammals more than 150 million years ago as a way to release eggs to be fertilized after sex. Until now, few scientists have investigated the biology of distantly related animals for clues to the mystery. “For orgasms, we kept it reserved for humans and primates,” said Mihaela Pavlicev, an evolutionary biologist at University of Cincinnati College of Medicine and an author of the new paper. “We didn’t look to other species to dig deeper and look for the origin.” The male orgasm has never caused much of a stir among evolutionary biologists. The pleasure is precisely linked to ejaculation, the most important step in passing on a male’s genes to the next generation. That pleasure encourages men to deliver more sperm, which is evolutionarily advantageous. For women, the evolutionary path is harder to figure out. The muscle contractions that occur during an orgasm are not essential for a woman to become pregnant. And while most men can experience an orgasm during sex, it’s less reliable for women. © 2016 The New York Times Company

Keyword: Sexual Behavior; Hormones & Behavior
Link ID: 22501 - Posted: 08.02.2016

Nicola Davis Female orgasm has perplexed scientists, fuelled an equality movement and propelled Meg Ryan to fame. Now researchers say they might have found its evolutionary roots. The purpose of the euphoric sensation has long puzzled scientists as it is not necessary for conception, and is often not experienced by women during sex itself. But scientists in the US have come up with an answer. Human female orgasm, they say, might be a spin-off from our evolutionary past, when the hormonal surges that accompany it were crucial for reproduction. “It is important to stress that it didn’t look like the human female orgasm looks like now,” said Mihaela Pavličev, co-author of the study from Cincinnati children’s hospital. “We think that [the hormonal surge] is the core that was maybe modified further in humans.” Writing in the journal JEZ-Molecular and Developmental Evolution, Pavličev and co-author Günter Wagner from Yale University describe how they delved into the anatomy and behaviour of a host of placental mammals to uncover the evolutionary origin of female orgasm, based on the hormonal surges associated with it. In mammals such as cats and rabbits, these surges occur during sex and play a crucial role in signalling for eggs to be released from the female’s ovaries. By contrast in a variety of other mammals, including humans and other primates, females ovulate spontaneously. © 2016 Guardian News and Media Limited

Keyword: Sexual Behavior; Hormones & Behavior
Link ID: 22498 - Posted: 08.01.2016

By PAM BELLUCK The World Health Organization is moving toward declassifying transgender identity as a mental disorder in its global list of medical conditions, with a new study lending additional support to a proposal that would delete the decades-old designation. The change, which has so far been approved by each committee that has considered it, is under review for the next edition of the W.H.O. codebook, which classifies diseases and influences the treatment of patients worldwide. “The intention is to reduce barriers to care,” said Geoffrey Reed, a psychologist who is coordinating the mental health and behavior disorders section in the upcoming edition of the codebook, called the International Classification of Diseases, or I.C.D. Dr. Reed, a professor at the National Autonomous University of Mexico and an author of the new study, said the proposal to remove transgender from the mental disorder category was “not getting opposition from W.H.O.,” suggesting that it appears likely to be included in the new edition. The revised volume would be the first in more than 25 years, and is scheduled to be approved in May 2018. Removing the mental health label from transgender identity would be a powerful signifier of acceptance, advocates and mental health professionals say. “It’s sending a very strong message that the rest of the world is no longer considering it a mental disorder,” said Dr. Michael First, a professor of clinical psychiatry at Columbia University and the chief technical consultant to the new edition of the codebook, which is known by its initials and the edition number I.C.D.-11. “One of the benefits of moving it out of the mental disorder section is trying to reduce stigma.” © 2016 The New York Times Company

Keyword: Sexual Behavior
Link ID: 22484 - Posted: 07.27.2016

By Jesse Singal As anyone who has read much about the subject can attest, the discussion about kids with gender dysphoria — that is, discomfort with their body and the feeling that they should have been born the other sex, or that they are the other sex — can get extremely heated and tricky. Much of the controversy stems from questions of age: How young is too young to help a child socially transition — that is, to change their name and pronoun, and possibly the way they present themselves? To prescribe them cross-sex hormones to begin the process of physically transitioning? For children with persistent gender dysphoria who are approaching adolescence, current best practice is to prescribe them so-called puberty blockers. Delaying the onset of puberty both forestalls the sometimes very uncomfortable experience of a child going through puberty in a body they aren’t comfortable in, and buys them and their families time to figure out what to do. Sometimes, this eventually leads to the prescription of cross-sex hormones, and sometimes it leads to surgery after that. Some people, though, are arguing that kids — particularly those who have socially transitioned at a young age — shouldn’t have to wait that long. Recently in the Guardian, for example, Kate Lyons reported on the current state of this debate in Britain: specifically, whether children who identify as transgender should be given access to cross-sex hormones, or possibly even surgery, at younger ages than what is current practice. © 2016, New York Media LLC.

Keyword: Sexual Behavior
Link ID: 22483 - Posted: 07.27.2016

By Ann Grisold, Oscar, 6, sits at the family dinner table and endures the loneliest hour of his day. The room bustles with activity: Oscar’s sister passes plates and doles out broccoli florets. His father and uncle exchange playful banter. Oscar’s mother emerges from the kitchen carrying a platter of carved meat; a cousin pulls up an empty chair. “Chi fan le!” shouts Oscar’s older sister, in Mandarin Chinese. Time for dinner! “Hao,” her grandfather responds from the other room. Okay. Family members tell stories and rehash the day, all in animated Chinese. But when they turn to Oscar, who has autism, they speak in English. “Eat rice,” Oscar’s father says. “Sit nice.” Except there is no rice on the table. In Chinese, ‘eat rice’ can refer to any meal, but its meaning is lost in translation. Pediatricians, educators and speech therapists have long advised multilingual families to speak one language — the predominant one where they live — to children with autism or other developmental delays. The reasoning is simple: These children often struggle to learn language, so they’re better off focusing on a single one. However, there are no data to support this notion. In fact, a handful of studies show that children with autism can learn two languages as well as they learn one, and might even thrive in multilingual environments. Lost in translation: It’s not just children with autism who miss out when parents speak only English at home — their families, too, may experience frustrating miscommunications. Important instructions, offhand remarks and words of affection are often lost in translation when families swap their heritage language for English, says Betty Yu, associate professor of special education and communicative disorders at San Francisco State University. © 2016 Scientific American,

Keyword: Autism; Language
Link ID: 22475 - Posted: 07.26.2016

By Andy Coghlan The final brain edit before adulthood has been observed for the first time. MRI scans of 300 adolescents and young adults have shown how the teenage brain upgrades itself to become quicker – but that errors in this process may lead to schizophrenia in later life. The editing process that takes place in teen years seems to select the brain’s best connections and networks, says Kirstie Whitaker at the University of Cambridge. “The result is a brain that’s sleeker and more efficient.” When Whitaker and her team scanned brains from people between the ages of 14 and 24, they found that two major changes take place in the outer layer of the brain – the cortex – at this time. As adolescence progresses, this layer of grey matter gets thinner – probably because unwanted or unused connections between neurons – called synapses – are pruned back. At the same time, important neurons are upgraded. The parts of these cells that carry signals down towards synapses are given a sheath that helps them transmit signals more quickly – a process called myelination. “It may be that pruning and myelination are part of the maturation of the brain,” says Steven McCarroll at Harvard Medical School. “Pruning involves removing the connections that are not used, and myelination takes the ones that are left and makes them faster,” he says. McCarroll describes this as a trade-off – by pruning connections, we lose some flexibility in the brain, but the proficiency of signal transmission improves. © Copyright Reed Business Information Ltd.

Keyword: Development of the Brain
Link ID: 22474 - Posted: 07.26.2016

By Knvul Sheikh Although millions of women use hormone therapy, those who try it in hopes of maintaining sharp memory and preventing the fuzzy thinking sometimes associated with menopause may be disappointed. A new study indicates that taking estrogen does not significantly affect verbal memory and other mental skills. “There is no change in cognitive abilities associated with estrogen therapy for postmenopausal women, regardless of their age,” says Victor Henderson, a neurologist at Stanford University and the study’s lead author. Evidence of positive and negative effects of such hormone therapy has ping-ponged over the years, with some observational studies in postmenopausal women and research in animal models, suggesting it improves cognitive function and memory. But other previous research, including a long-term National Institutes of Health Women’s Health Initiative memory study published in 2004, has suggested that taking estrogen increases the risk of cognitive impairment and dementia in women over 65 years old. Henderson says one explanation for these contradictory findings may be that after menopause begins there is a “critical period” in which hormone therapy could still benefit relatively young women—if they start early enough. So in their study, which appears in the July 20 online Neurology, Henderson and his team recruited 567 healthy women, between ages 41 and 84, to examine how estrogen affected one group whose members were within six years of their last menstrual period and another whose members had started menopause at least 10 years earlier. © 2016 Scientific American

Keyword: Hormones & Behavior; Attention
Link ID: 22470 - Posted: 07.23.2016