Links for Keyword: Development of the Brain

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 648

by Sarah Zielinski Chimps may be cute and have mannerisms similar to humans, but they are wild animals. A new study finds that chimps raised as pets or entertainers have behavioral problems as adults. There are plenty of good reasons why chimpanzees should not be pets or performers, no matter how cute or humanlike they appear: They are wild animals. They can be violent with each other. And they can be violent toward humans — even humans that have a long history with the chimp. Plus, there’s evidence that seeing an adorable chimp dressed up like a miniature human actually makes us care less about the plight of their species. Now comes evidence that the way that chimps are raised to become pets or entertainers — taking them away from other chimps at a young age and putting them in the care of humans, who may or may not feed and care for them properly — has long-term, negative effects on their behavior. “We now add empirical evidence of the potentially negative welfare effects on the chimpanzees themselves as important considerations in the discussion of privately owned chimpanzees,” Hani Freeman and Stephen Ross of the Lincoln Park Zoo in Chicago write September 23 in PeerJ. Freeman and Ross compiled life history and behavioral data on 60 captive chimps living in zoos. Some of the animals had always lived in zoos and grew up in groups of chimpanzees. Six were raised solely by humans and were later placed in zoos after they became too big or too old for their owners to care for them. Others had a more mixed background. © Society for Science & the Public 2000 - 2014

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 8: Hormones and Sex
Link ID: 20109 - Posted: 09.24.2014

By Priyanka Pulla Humans are late bloomers when compared with other primates—they spend almost twice as long in childhood and adolescence as chimps, gibbons, or macaques do. But why? One widely accepted but hard-to-test theory is that children’s brains consume so much energy that they divert glucose from the rest of the body, slowing growth. Now, a clever study of glucose uptake and body growth in children confirms this “expensive tissue” hypothesis. Previous studies have shown that our brains guzzle between 44% and 87% of the total energy consumed by our resting bodies during infancy and childhood. Could that be why we take so long to grow up? One way to find out is with more precise studies of brain metabolism throughout childhood, but those studies don’t exist yet. However, a new study published online today in the Proceedings of the National Academy of Sciences (PNAS) spliced together three older data sets to provide a test of this hypothesis. First, the researchers used a 1987 study of PET scans of 36 people between infancy and 30 years of age to estimate age trends in glucose uptake by three major sections of the brain. Then, to calculate how uptake varied for the entire brain, they combined that data with the brain volumes and ages of 400 individuals between 4.5 years of age and adulthood, gathered from a National Institutes of Health study and others. Finally, to link age and brain glucose uptake to body size, they used an age series of brain and body weights of 1000 individuals from birth to adulthood, gathered in 1978. © 2014 American Association for the Advancement of Science.

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 19998 - Posted: 08.26.2014

by Clare Wilson Figuring out how the brain works is enough to make your head spin. But now we seem to have a handle on how it gets its folded shape. The surface layer of the brain, or cortex, is also referred to as our grey matter. Mammals with larger brains have a more folded cortex, and the human brain is the most wrinkled of all, cramming as much grey matter into our skulls as possible. L. Mahadevan at Harvard University and his colleagues physically modelled how the brain develops in the embryo, using a layer of gel to stand in for the grey matter. This gel adhered to the top of a solid hemisphere of gel representing the white matter beneath. In the embryo, grey matter grows as neurons are created or others migrate to the cortex from the brain's centre. By adding a solvent to make the grey matter gel expand, the team mimicked how the cortex might grow in the developing brain. They didn't model what effect, if any, the skull would have had. Hills and valleys The team varied factors such as the stiffness of the gels and the depth of the upper layer to find a combination that led to similarly shaped wrinkles as those of the human brain, with smooth "hills" and sharply cusped "valleys". There are several theories about how the brain's folds form. These include the possibility that more neurons migrate to the hills, making them rise above the valleys, or that the valleys are pulled down by the axons – fibres that connect neurons to each other – linking highly interconnected parts of the brain together. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 19974 - Posted: 08.19.2014

Sara Reardon The National Science Foundation (NSF)’s role in the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative is starting to take shape. On 18 August, the NSF awarded 36 small grants totalling US$10.8 million to projects studying everything from electrodes that measure chemical and electronic signals to artificial intelligence programs to identify brain structures. The three agencies participating in the BRAIN Initiative have taken markedly different approaches. The Defense Advanced Research Projects Agency, which received $50 million this year for the neuroscience programme, is concentrating on prosthetics and treatments for brain disorders that affect veterans, such as post-traumatic stress disorder. It has already awarded multi-million dollar grants to several teams. The National Institutes of Health, which received $40 million this year, has put together a 146-page plan to map and observe the brain over the next decade, and will announce its first round of grant recipients next month. The NSF, by contrast, has cast a wider net. The agency sent an request in March for informal, two-page project ideas. The only criterion was that the projects somehow address the properties of neural circuits. The response was overwhelming, says James Deshler, deputy director of the NSF’s Division of Biological Infrastructure. The agency had expected to fund about 12 grants, but decided to triple that number after receiving nearly 600 applications. “People started finding money in different pockets,” Deshler says. The wide-ranging list of winning projects includes mathematical models that help computers recognize different parts and patterns in the brain, physical tools such as new types of electrodes, and other tools that integrate and link neural activity to behaviour. © 2014 Nature Publishing Group

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 19973 - Posted: 08.19.2014

Helen Shen For most adults, adding small numbers requires little effort, but for some children, it can take all ten fingers and a lot of time. Research published online on 17 August in Nature Neuroscience1 suggests that changes in the hippocampus — a brain area associated with memory formation — could help to explain how children eventually pick up efficient strategies for mathematics, and why some children learn more quickly than others. Vinod Menon, a developmental cognitive neuroscientist at Stanford University in California, and his colleagues presented single-digit addition problems to 28 children aged 7–9, as well as to 20 adolescents aged 14–17 and 20 young adults. Consistent with previous psychology studies2, the children relied heavily on counting out the sums, whereas adolescents and adults tended to draw on memorized information to calculate the answers. The researchers saw this developmental change begin to unfold when they tested the same children at two time points, about one year apart. As the children aged, they began to move away from counting on fingers towards memory-based strategies, as measured by their own accounts and by decreased lip and finger movements during the task. Using functional magnetic resonance imaging (fMRI) to scan the children's brains, the team observed increased activation of the hippocampus between the first and second time point. Neural activation decreased in parts of the prefrontal and parietal cortices known to be involved in counting, suggesting that the same calculations had begun to engage different neural circuits. © 2014 Nature Publishing Group

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 14: Attention and Consciousness
Link ID: 19971 - Posted: 08.18.2014

Sara Reardon When the states of Colorado and Washington voted to legalize marijuana in 2012, the abrupt and unprecedented policy switch sent the US National Institute on Drug Abuse (NIDA) into what its director Nora Volkow describes as “red alarm”. Although marijuana remained illegal for people under the age of 21, the drug’s increased availability and growing public acceptance suggested that teenagers might be more likely to try it (see ‘Highs and lows’). Almost nothing is known about whether or how marijuana affects the developing adolescent brain, especially when used with alcohol and other drugs. The new laws, along with advances in brain-imaging technology, convinced Volkow to accelerate the launch of an ambitious effort to follow 10,000 US adolescents for ten years in an attempt to determine whether marijuana, alcohol and nicotine use are associated with changes in brain function and behaviour. At a likely cost of more than US$300 million, it will be the largest longitudinal brain-imaging study of adolescents yet. Researchers are eager to study a poorly understood period of human development — but some question whether it is possible to design a programme that will provide useful information about the effects of drugs. “It’s definitely an idea that’s overdue,” says Deanna Barch, a psychologist at Washington University in St. Louis, Missouri. “The downside is it’s a lot of eggs in one basket.” © 2014 Nature Publishing Group,

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Link ID: 19949 - Posted: 08.13.2014

Jia You Premature babies are more likely to produce piercing cries than their full-term peers are, researchers report online today in Biology Letters. Scientists have studied infant crying as a noninvasive way to assess how well a baby’s nervous system develops. Previous research of full-term babies indicates that an abnormally high pitch is associated with disturbances in an infant’s metabolism and neurological development. The team recorded spontaneous crying in preterm babies and full-term babies of the same age and compared the pitch of their sobs. They found that preterm babies whimper in a shriller voice, but not because they are smaller in size or grew at a slower rate in their mothers’ wombs. Instead, the researchers suspect the high pitch could reflect lower levels of activities in a premature baby’s vagal nerve, which extends from the brain stem to the abdomen. Vagal nerve activities are believed to decrease tension in the vocal cords, thus producing a lower pitch. Previous studies show that giving preterm babies massage therapies can stimulate their vagal activities, improve their ingestion, and help them gain weight. © 2014 American Association for the Advancement of Science

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 19946 - Posted: 08.13.2014

By Smitha Mundasad Health reporter, BBC News Human brains grow most rapidly just after birth and reach half their adult size within three months, according to a study in JAMA Neurology. Using advanced scanning techniques, researchers found male brains grew more quickly than those of female infants. Areas involved in movement developed at the fastest pace. Those associated with memory grew more slowly. Scientists say collating this data may help them identify early signs of developmental disorders such as autism. For centuries doctors have estimated brain growth using measuring tape to chart a baby's head circumference over time. Any changes to normal growth patterns are monitored closely as they can suggest problems with development. But as head shapes vary, these tape measurements are not always accurate. Led by scientists at the University of California, researchers scanned the brains of 87 healthy babies from birth to three months. They saw the most rapid changes immediately after birth - newborn brains grew at an average rate of 1% a day. This slowed to 0.4% per day at the end of the 90-day period. Researchers say recording the normal growth trajectory of individual parts of the brain might help them better understand how early disorders arise. They found the cerebellum, an area of the brain involved in the control of movement, had the highest rate of growth - doubling in size over the 90-day period. BBC © 2014

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 19938 - Posted: 08.12.2014

by Bethany Brookshire For most of us, where our birthday falls in the year doesn’t matter much in the grand scheme of things. A July baby doesn’t make more mistakes than a Christmas kid — at least, not because of their birthdays. But for neurons, birth date plays an important role in how these cells find their connections in the brain, a new study finds. Nerve cells that form early in development will make lots of connections — and lots of mistakes. Neurons formed later are much more precise in their targeting. The findings are an important clue to help scientists understand how the brain wires itself during development. And with more information on how the brain forms its network, scientists might begin to see what happens when that network is injured or malformed. Many, many brain cells are born as the brain develops. Each one has to reach out and make connections, sometimes to other cells around them and sometimes to other regions of the brain. To do this, these nerve cells send out axons, long, incredibly thin projections that reach out to other regions. How mammalian axons end up at their final destination in the growing brain remains a mystery. To find out how developing brains get wired up, Jessica Osterhout and colleagues at the University of California, San Diego and colleagues started in the eye. They looked at retinal ganglion cells, neurons that connect the brain and the eye. “It’s easy to access,” explains Andrew Huberman, a neuroscientist at UC San Diego and an author on the paper. “Your retina is basically part of the central nervous system that got squeezed into your eye during development.” Retinal ganglion cells all have the same function: To convey visual information from the eyes to the brain. But they are not all the same. © Society for Science & the Public 2000 - 2013

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 10: Vision: From Eye to Brain
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 7: Vision: From Eye to Brain
Link ID: 19930 - Posted: 08.09.2014

By ALEX STONE Last summer, in a failed attempt at humor, Clorox ran an online ad that declared, “Like dogs or other house pets, new dads are filled with good intentions but lacking the judgment and fine motor skills to execute well.” Although the company pulled the ad amid a flurry of scorn from the online commentariat, it nevertheless played to a remarkably widespread stereotype — that fathers are somehow unfit to raise children. In “Do Fathers Matter?” — spoiler alert: they do — the veteran science writer Paul Raeburn jumps to Dad’s defense, drawing on several decades of research and his own experience as a five-time father. What emerges is a thought-provoking field piece on the science of fatherhood, studded with insights on how to apply it in the real world. Historically, developmental psychologists have largely dismissed fathers as irrelevant. Nearly half the articles on child and adolescent psychology published in leading journals from 1997 to 2005, for example, make no mention of fathers; before 1970, when fathers weren’t even allowed in delivery rooms, less than a fifth of the research on parental bonding took them into account. This bias reflects a deeply ingrained assumption that fathers play a marginal role in how their children turn out, a belief enshrined in the theory of infant attachment, which grew out of the work of the British psychiatrist John Bowlby in the second half of the 20th century. “It focused exclusively on mothers,” Mr. Raeburn writes. “The role of the father, Bowlby believed, was to provide support for the mother. In the drama of childhood, he was merely a supporting actor.” This was more or less the established view until a few decades ago, when psychologists, motivated in part by the growing number of women entering the work force, finally started paying attention to fathers. © 2014 The New York Times Company

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 8: Hormones and Sex
Link ID: 19831 - Posted: 07.15.2014

Erika Check Hayden Nearly 750,000 babies born each year in the United Kingdom are at risk of brain damage because of low oxygen during birth. Cooling babies who are at risk of brain damage provides long-lasting prevention of such injuries, researchers report today in the New England Journal of Medicine1. A team led by Denis Azzopardi, a neonatologist at King’s College London, lowered the body temperature of 145 full-term babies who were born after at least 36 weeks of gestation. All were at risk of brain damage because they had been deprived of oxygen during birth — a problem that is often caused by troubles with the placenta or umbilical cord, and affects nearly 750,000 babies a year in the United Kingdom. The researchers cooled the infants to between 33°C and 34°C for 72 hours, starting within 6 hours of birth. The technique is known to boost the chances that children avoid brain damage until they become toddlers2, but any longer-term benefits have remained unclear. The study finds treated babies had better mental and physical health than untreated infants through to ages 6 or 7: they were 60% more likely to have normal intelligence, hearing and vision. Those who survived to childhood also had fewer disabilities such as difficulty walking and seeing. "The bottom line is that this doubles a child’s chance of normal survival," says David Edwards, a neonatologist at King’s College London and an author of the study. Neonatologist David Rowitch from the University of California, San Francisco, who studies treatments for paediatric brain damage, says the new findings are important because they show sustained improvements. "This study is encouraging, adding to the weight of evidence showing both positive early indicators and also school-age benefits to hypothermia," Rowitch adds. © 2014 Nature Publishing Group,

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 19814 - Posted: 07.10.2014

by Laura Sanders At the playground yesterday, Baby V commando-crawled through a tunnel with holes on the side. Every so often, I stuck my face in there with a loud “peekaboo.” She reached up longingly toward the bouncy duck. I picked her up and steadied her as she lurched back and forth. She scrambled up some low stairs and launched down a slide. I lurked near the bottom, ready to assist and yell “yay” when she didn’t face-plant. The one thing I didn’t do was sit back and leave her to her own devices, free from my helicopter-mom tendencies. But since I have the most ridiculous crush on that girl, it’s hard for me to leave her be. As a parent who works outside of the home, I treasure our time together. But as she becomes more capable and independent, I realize that I need to be more thoughtful about letting her carve out some space for herself. A recent research paper emphasized this point. The study, published June 17 in Frontiers in Psychology, finds that children who spend more time in unstructured activities may better master some important life skills. Researchers sorted kids’ activities into structured activities, which included child-initiated activities such as playing alone or with friends, singing, riding bikes and camping, and structured activities, including soccer practice, piano lessons, chores and homework. Six- and seven-year-olds who had more unstructured time scored higher on a measure of executive function, complex cognitive abilities such as seamlessly switching between tasks, resisting impulses and paying attention — all things that help people get along in this world. © Society for Science & the Public 2000 - 2013.

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 19780 - Posted: 07.02.2014

By RICHARD A. FRIEDMAN ADOLESCENCE is practically synonymous in our culture with risk taking, emotional drama and all forms of outlandish behavior. Until very recently, the widely accepted explanation for adolescent angst has been psychological. Developmentally, teenagers face a number of social and emotional challenges, like starting to separate from their parents, getting accepted into a peer group and figuring out who they really are. It doesn’t take a psychoanalyst to realize that these are anxiety-provoking transitions. But there is a darker side to adolescence that, until now, was poorly understood: a surge during teenage years in anxiety and fearfulness. Largely because of a quirk of brain development, adolescents, on average, experience more anxiety and fear and have a harder time learning how not to be afraid than either children or adults. Different regions and circuits of the brain mature at very different rates. It turns out that the brain circuit for processing fear — the amygdala — is precocious and develops way ahead of the prefrontal cortex, the seat of reasoning and executive control. This means that adolescents have a brain that is wired with an enhanced capacity for fear and anxiety, but is relatively underdeveloped when it comes to calm reasoning. You may wonder why, if adolescents have such enhanced capacity for anxiety, they are such novelty seekers and risk takers. It would seem that the two traits are at odds. The answer, in part, is that the brain’s reward center, just like its fear circuit, matures earlier than the prefrontal cortex. That reward center drives much of teenagers’ risky behavior. This behavioral paradox also helps explain why adolescents are particularly prone to injury and trauma. The top three killers of teenagers are accidents, homicide and suicide. The brain-development lag has huge implications for how we think about anxiety and how we treat it. It suggests that anxious adolescents may not be very responsive to psychotherapy that attempts to teach them to be unafraid, like cognitive behavior therapy, which is zealously prescribed for teenagers. © 2014 The New York Times Company

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 19775 - Posted: 07.01.2014

Elizabeth Norton It's a sad fact that children born in poverty start out at a disadvantage and continue to fall further behind kids who are more privileged as they grow up. In developing countries, chiefly in Africa and Asia, some 200 million children under age 5 won't reach the same milestones—for physical growth, school performance, and earnings later on—as children who are less deprived. But a new analysis of a long-term study in Jamaica shows that surprisingly simple ways of stimulating children’s mental development can have dramatic benefits later in life. The children were participants in the Jamaican Study, a project geared toward improving cognitive development begun in the mid-1980s by child health specialists Sally Grantham-McGregor of University College London and Susan Walker of the University of the West Indies, Mona, in Jamaica. They focused on children between the ages of 9 and 24 months whose growth was stunted, placing them in the bottom 5% of height for their age and sex (an easy-to-quantify gauge of extreme poverty). Children of normal height in the same neighborhoods were also studied for comparison. For 2 years, community health workers visited the families weekly. One group was given nutritional assistance only (a formula containing 66% of daily recommended calories, along with vitamins and minerals). One group received a mental and social stimulation program only, and one group got stimulation and nutritional assistance. A final group had no intervention and served as a control. The mental stimulation program involved giving parents simple picture books and handmade toys, and encouraging them to read and sing to their children and point out names of objects, shapes, and colors. They were also taught better ways to converse and respond to their toddlers. These everyday interactions aren't always part of the culture in low-income countries, explains Paul Gertler, an economist at the University of California, Berkeley. "Parents might have five or six kids and few toys. They might be working really hard and have a lot of competing demands. They might not have been taught how to talk to their children, or how important and effective it is," he says. Past research attests to the importance of everyday conversation for children’s mental development: A recent study suggests that children of affluent parents do better in life in large part because their parents talk to them more. © 2014 American Association for the Advancement of Science

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 13: Memory, Learning, and Development
Link ID: 19675 - Posted: 05.31.2014

By BRUCE WEBER Dr. Gerald M. Edelman at Rockefeller University in 1972, in front of a gamma globulin model. Credit Don Hogan Charles/The New York Times Dr. Gerald M. Edelman, who shared a 1972 Nobel Prize for a breakthrough in immunology and went on to contribute key findings in neuroscience and other fields, becoming a leading if contentious theorist on the workings of the brain, died on Saturday at his home in the La Jolla section of San Diego. He was 84. The precise cause was uncertain, but Dr. Edelman had Parkinson’s disease and prostate cancer, his son David said. Dr. Edelman was known as a problem solver, a man of relentless intellectual energy who asked big questions and attacked big projects. What interested him, he said, were “dark areas” where mystery reigned. “Anybody in science, if there are enough anybodies, can find the answer,” he said in a 1994 interview in The New Yorker. “It’s an Easter egg hunt. That isn’t the idea. The idea is: Can you ask the question in such a way as to facilitate the answer? And I think the great scientists do that.” His Nobel Prize in Physiology or Medicine came in 1972 after more than a decade of work on the process by which antibodies, the foot soldiers of the immune system, mount their defense against infection and disease. He shared the prize with Rodney R. Porter, a British scientist who worked independent of Dr. Edelman. The Nobel committee cited them for their separate approaches in deciphering the chemical structure of antibodies, also known as immunoglobulins. Dr. Edelman discovered that antibodies were not constructed in the shape of one long peptide chain, as thought, but of two different ones — one light, one heavy — that were linked. © 2014 The New York Times Company

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 19651 - Posted: 05.23.2014

By John Horgan Biologist Gerald Edelman–one of the truly great scientific characters I’ve encountered, whose work raised profound questions about the limits of science—has died. I interviewed Edelman in June 1992 at Rockefeller University in New York. Edelman subsequently left Rockefeller to head a center for neuroscience at the Scripps Institute in California. Edelman, 84, died in his home in La Jolla. The following is an edited version of my profile of Edelman in my 1996 book The End of Science. Gerald Edelman, who sought to solve the riddle of consciousness, had "the brain of an empiricist and the heart of a romantic." Gerald Edelman’s career, like that of his rival Francis Crick, has been eclectic, and highly successful. While still a graduate student, Edelman helped to determine the structure of a protein molecule crucial to the body’s immune response. In 1972 he shared a Nobel Prize for that work. Edelman moved on to developmental biology, the study of how a single fertilized cell becomes a full-fledged organism. He found a class of proteins, called cell adhesion molecules, thought to play an important role in embryonic development. All this was merely prelude, however, to Edelman’s grand project of creating a theory of mind. Edelman has set forth his theory in three books: Neural Darwinism, The Remembered Present and Bright Air, Brilliant Fire. The gist of the theory is that just as environmental stresses select the fittest members of a species, so do inputs to the brain select groups of neurons–corresponding to useful memories, for example–by strengthening the connections between them. © 2014 Scientific American

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 19650 - Posted: 05.23.2014

By David Grimm, A shaggy brown terrier approaches a large chocolate Labrador in a city park. When the terrier gets close, he adopts a yogalike pose, crouching on his forepaws and hiking his butt into the air. The Lab gives an excited bark, and soon the two dogs are somersaulting and tugging on each other’s ears. Then the terrier takes off and the Lab gives chase, his tail wagging wildly. When the two meet once more, the whole thing begins again. Watch a couple of dogs play, and you’ll probably see seemingly random gestures, lots of frenetic activity and a whole lot of energy being expended. But decades of research suggest that beneath this apparently frivolous fun lies a hidden language of honesty and deceit, empathy and perhaps even a humanlike morality. Take those two dogs. That yogalike pose is known as a “play bow,” and in the language of play it’s one of the most commonly used words. It’s an instigation and a clarification, a warning and an apology. Dogs often adopt this stance as an invitation to play right before they lunge at another dog; they also bow before they nip (“I’m going to bite you, but I’m just fooling around”) or after some particularly aggressive roughhousing (“Sorry I knocked you over; I didn’t mean it.”). All of this suggests that dogs have a kind of moral code — one long hidden to humans until a cognitive ethologist named Marc Bekoff began to crack it. A wiry 68-year-old with reddish-gray hair tied back in a long ponytail, Bekoff is a professor emeritus at the University of Colorado at Boulder, where he taught for 32 years. He began studying animal behavior in the early 1970s, spending four years videotaping groups of dogs, wolves and coyotes in large enclosures and slowly playing back the tapes, jotting down every nip, yip and lick. “Twenty minutes of film could take a week to analyze,” he says. © 1996-2014 The Washington Post

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 19633 - Posted: 05.19.2014

By DAVID L. KIRP Whenever President Obama proposes a major federal investment in early education, as he did in his two most recent State of the Union addresses, critics have a two-word riposte: Head Start. Researchers have long cast doubt on that program’s effectiveness. The most damning evidence comes from a 2012 federal evaluation that used gold-standard methodology and concluded that children who participated in Head Start were not more successful in elementary school than others. That finding was catnip to the detractors. “Head Start’s impact is no better than random,” The Wall Street Journal editorialized. Why throw good money after bad? Though the faultfinders have a point, the claim that Head Start has failed overstates the case. For one thing, it has gotten considerably better in the past few years because of tougher quality standards. For another, researchers have identified a “sleeper effect” — many Head Start youngsters begin to flourish as teenagers, maybe because the program emphasizes character and social skills as well as the three R’s. Still, few would give Head Start high marks, and the bleak conclusion of the 2012 evaluation stands in sharp contrast to the impressive results from well-devised studies of state-financed prekindergartens. Head Start, a survivor of President Lyndon B. Johnson’s war on poverty, enrolls only poor kids. That’s a big part of the problem — as the adage goes, programs for the poor often become poor programs. Whether it’s health care (compare the trajectories of Medicare, for those 65 and older of all incomes, and Medicaid, only for the poor), education or housing, the sorry truth is that “we” don’t like subsidizing “them.” Head Start is no exception. It has been perpetually underfunded, never able to enroll more than half of eligible children or pay its teachers a decent wage. If Head Start is going to realize its potential, it has to break out of the antipoverty mold. One promising but unfortunately rarely used strategy is to encourage all youngsters, not just poor kids, to enroll, with poor families paying nothing and middle-class families contributing on a sliding scale. Another is to merge Head Start with high-quality state prekindergarten. © 2014 The New York Times Company

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 13: Memory, Learning, and Development
Link ID: 19602 - Posted: 05.12.2014

Lida Katsimpardi Could the elixir of youth be as simple as a protein found in young blood? In recent years, researchers studying mice found that giving old animals blood from young ones can reverse some signs of aging, and last year one team identified a growth factor in the blood that they think is partly responsible for the anti-aging effect on a specific tissue--the heart. Now that group has shown this same factor can also rejuvenate muscle and the brain. "This is the first demonstration of a rejuvenation factor" that is naturally produced, declines with age, and reverses aging in multiple tissues, says Harvard stem cell researcher Amy Wagers, who led efforts to isolate and study the protein. Independently, another team has found that simply injecting plasma from young mice into old mice can boost learning. The results build on a wave of studies in the last decade in which investigators sewed together the skins of two mice, joining their circulation systems, and studied the effects on various tissues. “It’s still a bit creepy for many people. At meetings, people talk about vampires,” says Stanford University neuroscientist Tony Wyss-Coray, who led the study of learning. But he, Wagers, and others think unease will give way to excitement. The new work, he says, “opens the possibility that we can try to isolate additional factors” from blood, “and they have effects on the whole body.” Hope and hype are high in the anti-aging research arena, and other researchers caution that the work is preliminary. “These are exciting papers,” but “it’s a starting point,” says neuroscientist Sally Temple of the Neural Stem Cell Institute in Rensselaer, NY. Adds Matthew Kaeberlein, a biologist who studies aging at the University of Washington, Seattle, “The therapeutic implications are profound if this mechanism holds true in people.” But that “is the million dollar question here, and that may take some time to figure out.” © 2014 American Association for the Advancement of Science

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 5: Hormones and the Brain
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 8: Hormones and Sex
Link ID: 19575 - Posted: 05.05.2014

By Julie Steenhuysen CHICAGO (Reuters) - International teams of researchers using advanced gene sequencing technology have uncovered a single genetic mutation responsible for a rare brain disorder that may have stricken families in Turkey for some 400 years. The discovery of this genetic disorder, reported in two papers in the journal Cell, demonstrates the growing power of new tools to uncover the causes of diseases that previously stumped doctors. Besides bringing relief to affected families, who can now go through prenatal genetic testing in order to have children without the disorder, the discovery helps lend insight into more common neurodegenerative disorders, such as ALS, also known as Lou Gehrig's disease, the researchers said. The reports come from two independent teams of scientists, one led by researchers at Baylor College of Medicine and the Austrian Academy of Sciences, and the other by Yale University, the University of California, San Diego, and the Academic Medical Center in the Netherlands. Both focused on families in Eastern Turkey where marriage between close relatives, such as first cousins, is common. Geneticists call these consanguineous marriages. In this population, the researchers focused specifically on families whose children had unexplained neurological disorders that likely resulted from genetic defects. Both teams identified a new neurological disorder arising from a single genetic variant called CLP1. Children born with this disorder inherit two defective copies of this gene, which plays a critical role in the health of nerve cells. Babies with the disorder have small and malformed brains, they develop progressive muscle weakness, they do not speak and they are increasingly prone to seizures.

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 5: The Sensorimotor System
Link ID: 19542 - Posted: 04.28.2014