Most Recent Links

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 21774

By Eric Hand That many animals sense and respond to Earth’s magnetic field is no longer in doubt, and people, too, may have a magnetic sense. But how this sixth sense might work remains a mystery. Some researchers say it relies on an iron mineral, magnetite; others invoke a protein in the retina called cryptochrome. Magnetite has turned up in bird beaks and fish noses and even in the human brain, as Joe Kirschvink of the California Institute for Technology in Pasadena reported in 1992, and it is extremely sensitive to magnetic fields. As a result, Kirschvink and other fans say, it can tell an animal not only which way it is heading (compass sense) but also where it is. “A compass cannot explain how a sea turtle can migrate all the way around the ocean and return to the same specific stretch of beach where it started out,” says neurobiologist Kenneth Lohmann of the University of North Carolina, Chapel Hill. A compass sense is enough for an animal to figure out latitude, based on changes in the inclination of magnetic field lines (flat at the equator, plunging into the earth at the poles). But longitude requires detecting subtle variations in field strength from place to place—an extra map or signpost sense that magnetite could supply, Lohmann says. Except in bacteria, however, no one has seen magnetite crystals serving as a magnetic sensor. The crystals could be something else—say, waste products of iron metabolism, or a way for the body to sequester carcinogenic heavy metals. In the early 2000s, scientists found magnetite-bearing cells in the beaks of pigeons. But a follow-up study found that the supposed magnetoreceptors were in fact scavenger immune cells that had nothing to do with the neural system. And because there is no unique stain or marker for magnetite, false sightings are easy to make. © 2016 American Association for the Advancement of Science

Keyword: Pain & Touch
Link ID: 22357 - Posted: 06.24.2016

By Eric Hand Birds do it. Bees do it. But the human subject, standing here in a hoodie—can he do it? Joe Kirschvink is determined to find out. For decades, he has shown how critters across the animal kingdom navigate using magnetoreception, or a sense of Earth’s magnetic field. Now, the geophysicist at the California Institute of Technology (Caltech) in Pasadena is testing humans to see if they too have this subconscious sixth sense. Kirschvink is pretty sure they do. But he has to prove it. He takes out his iPhone and waves it over Keisuke Matsuda, a neuroengineering graduate student from the University of Tokyo. On this day in October, he is Kirschvink’s guinea pig. A magnetometer app on the phone would detect magnetic dust on Matsuda—or any hidden magnets that might foil the experiment. “I want to make sure we don’t have a cheater,” Kirschvink jokes. They are two floors underground at Caltech, in a clean room with magnetically shielded walls. In a corner, a liquid helium pump throbs and hisses, cooling a superconducting instrument that Kirschvink has used to measure tiny magnetic fields in everything from bird beaks to martian meteorites. On a lab bench lie knives—made of ceramic and soaked in acid to eliminate magnetic contamination—with which he has sliced up human brains in search of magnetic particles. Matsuda looks a little nervous, but he will not be going under the knife. With a syringe, a technician injects electrolyte gel onto Matsuda’s scalp through a skullcap studded with electrodes. He is about to be exposed to custom magnetic fields generated by an array of electrical coils, while an electroencephalogram (EEG) machine records his brain waves. © 2016 American Association for the Advancement of Science.

Keyword: Pain & Touch
Link ID: 22356 - Posted: 06.24.2016

By Elahe Izadi It's referred to as the "brain-eating amoeba." Naegleria fowleri resides in warm freshwater, hot springs and poorly maintained swimming pools. When the single-celled organism enters a person's body through the nose, it can cause a deadly infection that leads to destruction of brain tissue. These infections are extremely rare; 138 people have been infected since 1962, according to the Centers for Disease Control and Prevention. But over the weekend, the amoeba claimed another victim when an 18-year-old died from a meningitis infection caused by N. fowleri, said health officials in North Carolina. Lauren Seitz of Westerville, Ohio, died from a suspected case of primary amebic meningoencephalitis (PAM), and officials are investigating whether she contracted the infection while whitewater rafting in Charlotte during a church trip, the Charlotte Observer reported. The N. fowleri infection "resulted in her developing a case of meningitis ... and inflaming of the brain and surrounding tissues, and unfortunately she died of this condition," Mecklenburg County Health Department director Marcus Plescia told reporters Wednesday. Plescia said that, while they were still gathering information from health officials in Ohio, they do know one of the stops Seitz's group made was to the U.S. National Whitewater Center.

Keyword: Miscellaneous
Link ID: 22355 - Posted: 06.24.2016

By REUTERS SINGAPORE — Phones or watches may be smart enough to detect sound, light, motion, touch, direction, acceleration and even the weather, but they can't smell. That's created a technology bottleneck that companies have spent more than a decade trying to fill. Most have failed. A powerful portable electronic nose, says Redg Snodgrass, a venture capitalist funding hardware start-ups, would open up new horizons for health, food, personal hygiene and even security. Imagine, he says, being able to analyze what someone has eaten or drunk based on the chemicals they emit; detect disease early via an app; or smell the fear in a potential terrorist. "Smell," he says, "is an important piece" of the puzzle. It's not through lack of trying. Aborted projects and failed companies litter the aroma-sensing landscape. But that's not stopping newcomers from trying. Like Tristan Rousselle's Grenoble-based Aryballe Technologies, which recently showed off a prototype of NeOse, a hand-held device he says will initially detect up to 50 common odors. "It's a risky project. There are simpler things to do in life," he says candidly. The problem, says David Edwards, a chemical engineer at Harvard University, is that unlike light and sound, scent is not energy, but mass. "It's a very different kind of signal," he says. That means each smell requires a different kind of sensor, making devices bulky and limited in what they can do. The aroma of coffee, for example, consists of more than 600 components. France's Alpha MOS was first to build electronic noses for limited industrial use, but its foray into developing a smaller model that would do more has run aground. Within a year of unveiling a prototype for a device that would allow smartphones to detect and analyze smells, the website of its U.S.-based arm Boyd Sense has gone dark. Neither company responded to emails requesting comment. © 2016 The New York Times Company

Keyword: Chemical Senses (Smell & Taste)
Link ID: 22354 - Posted: 06.24.2016

Jon Hamilton Researchers have identified a substance in muscles that helps explain the connection between a fit body and a sharp mind. When muscles work, they release a protein that appears to generate new cells and connections in a part of the brain that is critical to memory, a team reports Thursday in the journal Cell Metabolism. The finding "provides another piece to the puzzle," says Henriette van Praag, an author of the study and an investigator in brain science at the National Institute on Aging. Previous research, she says, had revealed factors in the brain itself that responded to exercise. The discovery came after van Praag and a team of researchers decided to "cast a wide net" in searching for factors that could explain the well-known link between fitness and memory. They began by looking for substances produced by muscle cells in response to exercise. That search turned up cathepsin B, a protein best known for its association with cell death and some diseases. Experiments showed that blood levels of cathepsin B rose in mice that spent a lot of time on their exercise wheels. What's more, as levels of the protein rose, the mice did better on a memory test in which they had to swim to a platform hidden just beneath the surface of a small pool. The team also found evidence that, in mice, cathepsin B was causing the growth of new cells and connections in the hippocampus, an area of the brain that is central to memory. But the researchers needed to know whether the substance worked the same way in other species. So they tested monkeys, and found that exercise did, indeed, raise circulating levels of cathepsin in the blood. © 2016 npr

Keyword: Muscles; Learning & Memory
Link ID: 22353 - Posted: 06.24.2016

By BARRY MEIER and ABBY GOODNOUGH A few months ago, Douglas Scott, a property manager in Jacksonville, Fla., was taking large doses of narcotic drugs, or opioids, to deal with the pain of back and spine injuries from two recent car accidents. The pills helped ease his pain, but they also caused him to withdraw from his wife, his two children and social life. “Finally, my wife said, ‘You do something about this or we’re going to have to make some changes around here,’” said Mr. Scott, 43. Today, Mr. Scott is no longer taking narcotics and feels better. Shortly after his wife’s ultimatum, he entered a local clinic where patients are weaned off opioids and spend up to five weeks going through six hours of training each day in alternative pain management techniques such as physical therapy, relaxation exercises and behavior modification. Mr. Scott’s story highlights one patient’s success. Yet it also underscores the difficulties that the Obama administration and public health officials face in reducing the widespread use of painkillers like OxyContin and Percocet. The use and abuse of the drugs has led to a national epidemic of overdose deaths, addiction and poor patient outcomes. In recent months, federal agencies and state health officials have urged doctors to first treat pain without using opioids, and some have announced plans to restrict how many pain pills a doctor can prescribe. But getting the millions of people with chronic pain to turn to alternative treatments is a daunting task, one that must overcome inconsistent insurance coverage as well as some resistance from patients and their doctors, who know the ease and effectiveness of pain medications. “We are all culpable,” said Dr. David Deitz, a former insurance industry executive and a consultant on pain treatment issues. “I don’t care whether you are a doctor, an insurer or a patient.” © 2016 The New York Times Compan

Keyword: Pain & Touch
Link ID: 22352 - Posted: 06.23.2016

by Helen Thompson Young zebra finches (Taeniopygia guttata) learn to sing from a teacher, usually dad. Remembering dad’s tunes may even be hardwired into the birds’ brains. Researchers at the Okinawa Institute of Science and Technology in Japan measured activity in the brains of male juvenile birds listening to recordings of singing adult males, including their fathers. The team focused its efforts on neurons in a part of the brain called the caudomedial nidopallium that’s thought to influence song learning and memory. A subset of neurons in the caudomedial nidopallium lit up in response to songs performed by dad but not those of strangers, the team reports June 21 in Nature Communications. The more baby birds heard songs, the more their neurons responded and the clearer their own songs became. Sleep and a neurotransmitter called GABA influenced this selectivity. The researchers suggest that this particular region of the brain stores song memories as finches learn to sing, and GABA may drive the storage of dad’s songs over others. Researchers played a variety of sounds for young zebra finches: their own song, dad’s song and songs and calls from other adult finches. Over time, their songs became more and more similar to that of their father. |© Society for Science & the Public 2000 - 2016

Keyword: Animal Communication; Language
Link ID: 22351 - Posted: 06.23.2016

By Nancy Stearns Bercaw In her memoir “Aliceheimer’s: Alzheimer’s Through the Looking Glass,” Dana Walrath uses drawings and stories to chronicle three years of caregiving for her mother, Alice, who was in the middle stages of Alzheimer’s disease. The experience turned out to be a magical trip down the rabbit hole of memory loss, an outcome that inspired Dr. Walrath, a medical anthropologist who taught at the University of Vermont College of Medicine and who also studied art and writing, to share their tale. Refusing to accept the dominant narrative of Alzheimer’s disease as a horror story, Dr. Walrath used the techniques of graphic medicine to create “Aliceheimer’s,” an 80-page, 35-picture tribute to her mother’s animated mind. Graphic medicine uses text and graphics to, as she writes in the book’s introduction, “let us better understand those who are hurting, feel their stories, and redraw and renegotiate those social boundaries.” We spoke with Dr. Walrath to learn more about graphic medicine, how the book came into being, and what it can teach others about caring for someone with Alzheimer’s disease. Here’s an edited excerpt of our conversation. Q. You say that “Aliceheimer’s” found you, not the other way around. What’s the backstory of your story? A. After a lifetime of mutually abrasive interaction, my mother moved into my home when a lock-down memory-care unit was her only other option. The years of living together not only brought us closure, but it also integrated my disparate career threads. Medical anthropology, creative writing, visual art — who knew they were connected? I sure didn’t. But Alice must have. During dementia, she said to me, “You should quit your job and make art full time.” © 2016 The New York Times Company

Keyword: Alzheimers
Link ID: 22350 - Posted: 06.23.2016

Alison Abbott It isn’t a scam, as neuroscientist Elena Cattaneo had first assumed. A total stranger really has left the prominent Italian, who is also a senator and a relentless campaigner against the misuse of science, his entire fortune to distribute for research. The sum is likely to be upwards of €1.5 million (US$1.7 million). The short, handwritten will of Franco Fiorini, an accountant from the small town of Molinella near Bologna, was officially made public on 21 June. “I’ll never know for sure why he decided to do this,” says Cattaneo, who adds that she has wept with regret that she cannot thank Fiorini. “But it gives a hopeful message that there are some people like Franco who are able to work out on their own the importance of science and research for Italy’s future.” She intends to make the money available for fellowships for young scientists in Italy, where funds for research are notoriously scarce. Cattaneo, who is based at the University of Milan, is no ordinary researcher. In 2013, then-president Giorgio Napolitano appointed her a senator-for-life in recognition of her activities in promoting science. One of her most famous achievements, made with a handful of colleagues, was a successful two-year battle to stop the Stamina Foundation in Brescia from administering unproven stem-cell therapies. Fiorini died on 21 May at the age of 64. A wheelchair user since a bout of childhood polio left him partially paralysed, he had been director of a construction company in Molinella before taking early retirement 15 years ago. © 2016 Macmillan Publishers Limited,

Keyword: Stem Cells
Link ID: 22349 - Posted: 06.23.2016

Laura Sanders Busy nerve cells in the brain are hungry and beckon oxygen-rich blood to replenish themselves. But active nerve cells in newborn mouse brains can’t yet make this request, and their silence leaves them hungry, scientists report June 22 in the Journal of Neuroscience. Instead of being a dismal starvation diet, this lean time may actually spur the brain to develop properly. The new results, though, muddy the interpretation of the brain imaging technique called functional MRI when it is used on infants. Most people assume that all busy nerve cells, or neurons, signal nearby blood vessels to replenish themselves. But there were hints from fMRI studies of young children that their brains don’t always follow this rule. “The newborn brain is doing something weird,” says study coauthor Elizabeth Hillman of Columbia University. That weirdness, she suspected, might be explained by an immature communication system in young brains. To find out, she and her colleagues looked for neuron-blood connections in mice as they grew. “What we’re trying to do is create a road map for what we think you actually should see,” Hillman says. When 7-day-old mice were touched on their hind paws, a small group of neurons in the brain responded instantly, firing off messages in a flurry of activity. Despite this action, no fresh blood arrived, the team found. By 13 days, the nerve cell reaction got bigger, spreading across a wider stretch of the brain. Still the blood didn’t come. But by the time the mice reached adulthood, neural activity prompted an influx of blood. The results show that young mouse brains lack the ability to send blood to busy neurons, a skill that influences how the brain operates (SN: 11/14/15, p. 22). © Society for Science & the Public 2000 - 2016.

Keyword: Development of the Brain; Brain imaging
Link ID: 22348 - Posted: 06.22.2016

Bentley Yoder was born with his brain outside his skull. Doctors said he didn’t have a chance, but he not only survived—he thrived. Now, some seven months later, Bentley has undergone reconstructive surgery to move his brain back into his skull. Bentley’s parents, Sierra and Dustin, both 25, found out something was wrong when they went in for a routine ultrasound at 22 weeks. Still in the womb, he was diagnosed with a rare condition called encephalocele, or cranium bifidum, in which parts of the brain protrude outside of gaps that have formed in the developing skull. The parents were told that their baby likely wouldn’t survive very long after birth, or that if he did he wouldn’t have any brain function; he was simply “incompatible with life.” As Sierra told the Washington Post, “We had no hope whatsoever.” The parents were unwilling to terminate the pregnancy, saying they wanted at least one chance to meet him before saying goodbye. To virtually everyone’s surprise, Bentley came out on his due date, October 31, 2015, kicking and screaming. After the first 36 hours, Sierra and Dustin had to take him home wearing the only onesie they bothered to purchase. Over the course of the next few weeks and months, Bentley continued to march on, save for a staph infection in his lungs. Aside from the large sac containing critical parts of his brain atop his head, Bentley developed normally. He continued to grow, and cried when he was hungry. The doctors were incredulous, and insisted that the growth above his head was just “damaged tissue,” and that “there’s no way it could be functioning,” but Bentley’s behaviors and normal developmental trajectory suggested otherwise.

Keyword: Development of the Brain
Link ID: 22347 - Posted: 06.22.2016

Agata Blaszczak-Boxe, People with higher levels of education may be more likely to develop certain types of brain tumors, a new study from Sweden suggests. Researchers found that women who completed at least three years of university courses were 23 percent more likely to develop a type of cancerous brain tumor called glioma, compared with women who only completed up to nine years of mandatory education and did not go to a university. And men who completed at least three years of university courses were 19 percent more likely to develop the same type of tumor, compared with men who did not go to a university. Though the reasons behind the link are not clear, "one possible explanation is that highly educated people may be more aware of symptoms and seek medical care earlier," and therefore are more likely to be diagnosed, said Amal Khanolkar, a research associate at the Institute of Child Health at the University College Londonand a co-author of the study. [Top 10 Cancer-Fighting Foods] In the study, the researchers looked at data on more than 4.3 million people in Sweden who were a part of the Swedish Total Population Register. The researchers tracked the people for 17 years, beginning in 1993, to see if they developed brain tumors during that time. They also collected information about the people's education levels, income, marital status and occupation. During the 17-year study, 5,735 men and 7,101 women developed brain tumors, according to the findings, published today (June 20) in the Journal of Epidemiology & Community Health. Copyright 2016 LiveScience,

Keyword: Intelligence; Development of the Brain
Link ID: 22346 - Posted: 06.22.2016

By Vinicius Donisete Goulart The “new world” monkeys of South and Central America range from large muriquis to tiny pygmy marmosets. Some are cute and furry, others bald and bright red, and one even has an extraordinary moustache. Yet, with the exception of owl and howler monkeys, the 130 or so remaining species have one thing in common: A good chunk of the females, and all of the males, are colorblind. This is quite different from “old world” primates, including us Homo sapiens, who are routinely able to see the world in what we humans imagine as full color. In evolutionary terms, colorblindness sounds like a disadvantage, one which should really have been eliminated by natural selection long ago. So how can we explain a continent of the colorblind monkeys? I have long wondered what makes primates in the region colorblind and visually diverse, and how evolutionary forces are acting to maintain this variation. We don’t yet know exactly what kept these seemingly disadvantaged monkeys alive and flourishing—but what is becoming clear is that colorblindness is an adaptation not a defect. The first thing to understand is that what we humans consider “color” is only a small portion of the spectrum. Our “trichromatic” vision is superior to most mammals, who typically share the “dichromatic” vision of new world monkeys and colorblind humans, yet fish, amphibians, reptiles, birds, and even insects are able to see a wider range, even into the UV spectrum. There is a whole world of color out there that humans and our primate cousins are unaware of. What is becoming clear is that color blindness is an adaptation not a defect.

Keyword: Vision; Evolution
Link ID: 22345 - Posted: 06.22.2016

By DONALD G. McNEIL Jr. Global health authorities are trying to get more countries to mandate the use of the “world’s ugliest color” on cigarette packaging to discourage smoking. In 2012, GfK Bluemoon, a market research company under contract to the Australian government, announced that nearly 1,000 smokers had voted that a drab greenish brown known as opaque couché, number 448c in the Pantone color matching system, was the world’s most repulsive color. It was described as looking like death, filth, lung tar or baby excrement. Color aficionados later noted that it was also similar to the hue of the dress worn by the Mona Lisa. Photo Cigarettes on sale in Sydney, New South Wales. Credit Ryan Pierse/Getty Images Australia then mandated “plain packaging” for cigarettes that was actually anything but plain. The opaque couché-colored boxes have vivid pictures of rotted teeth, tongues with tumors and dangerously tiny newborns, along with warnings about smoking’s dangers printed in type larger than the brand names. Australia has been very successful in getting smokers to quit, so health officials in Britain, France and Ireland have announced plans to imitate the packaging. Last month, the European Court of Justice rebuffed legal challenges, by tobacco companies, to the use of shocking images, and India’s Supreme Court ruled in favor of letting them cover 85 percent of packs. A recent study in JAMA Internal Medicine found that these pictures prompt more smokers to at least try to quit, but the American tobacco industry has blocked all attempts to put them on cigarette packs sold in the United States. © 2016 The New York Times Company

Keyword: Drug Abuse
Link ID: 22344 - Posted: 06.22.2016

James Gorman There’s an aura of power around invasive species. How is it that they can sweep in and take over from the locals? Are they more adaptable, tougher? What are their secrets? The great-tailed grackle is a case in point. North America has its own similar species — the common and boat-tailed grackle. But the great-tailed bird, Quiscalus mexicanus, native to Central America, is one of the most invasive species in the United States. The black birds with iridescent feathers were prized by the Aztec emperor Auitzotl, who, by some accounts, relocated some of them from Veracruz to near Mexico City about 500 years ago. Over the past century or so the bird has spread north and its range is still expanding, particularly in the West, where it haunts cattle feed lots and big dairy farms. The birds are also quite happy in urban areas, like Santa Barbara, Calif., where Corina J. Logan captured and later released some grackle for recent experiments. Great-tailed grackles first caught the attention of Dr. Logan, now at Cambridge University, in 2004 when she was doing undergraduate research in Costa Rica. “They’ll actually walk right up and look you in the eye,” she said. “They look like they’re so smart.” Years later, having earned her Ph.D. at Cambridge, she decided to look more closely at them because she was interested in behavioral flexibility. Grackles, for example, might look under rocks at the beach for something to eat, or switch to discarded sandwich wrappers in a city park. © 2016 The New York Times Company

Keyword: Intelligence; Evolution
Link ID: 22343 - Posted: 06.21.2016

By Sarah Kaplan Some 250 million years ago, when dinosaurs roamed the Earth and early mammals were little more than tiny, fuzzy creatures that scurried around attempting to evade notice, our ancestors evolved a nifty trick. They started to become active at night. They developed sensitive whiskers and an acute sense of hearing. Their circadian rhythms shifted to let them sleep during the day. Most importantly, the composition of their eyes changed — instead of color-sensing cone photoreceptor cells, they gained thousands of light-sensitive rod cells, which allowed them to navigate a landscape lit only by the moon and stars. Mammals may no longer have to hide from the dinosaurs, but we bear the indelible marks of our scrappy, nocturnal past. Unlike every other vertebrate on land and sea, we still have rod-dominated eyes — human retinas, for example, are 95 percent rods, even though we're no longer active at night. "How did that happen? What is the mechanism that made mammals become so different?" asked Anand Swaroop, chief of the Neurobiology Neurodegeneration and Repair Laboratory at the National Eye Institute. He provides some answers to those questions in a study published in the journal Developmental Cell Monday. The findings are interesting from an evolutionary standpoint, he said, but they're also the keys to a medical mystery. If Swaroop and his colleagues can understand how our eyes evolved, perhaps they can fix some of the problems that evolved with them.

Keyword: Vision; Evolution
Link ID: 22342 - Posted: 06.21.2016

BBC journalist Caroline Wyatt has said she is determined to make the most of her life after being diagnosed with multiple sclerosis (MS). In her first interview since revealing the news last week, Wyatt told the Radio Times: "It is what it is." "I am not angry, and I don't want bitterness to start eating away at me." One of the best known faces of BBC News, Wyatt recently stepped down as the corporation's religious affairs correspondent due to her condition. 'Incredibly blessed' "I feel really sad now because I'm not going to be a correspondent full-time anymore - I physically can't." Wyatt had been struggling with undiagnosed symptoms for 25 years but was only diagnosed with MS last July after she was paralysed down her left side. Wyatt, who was also the BBC's defence correspondent, said she has had moments where she has questioned her own mortality. "Reporting news is often about reporting death, particularly in the places I have been. But it's less terrifying to me to think of being blown up and dying than to think 'gosh, I might decline slowly day by day, losing a little bit of capability every day'." At the moment, she is a bit unsteady on her feet and is struggling with her vision but still says she is "incredibly lucky and incredibly blessed". She is currently on a long summer break but is hoping to return to radio broadcasting later in the year, along with covering the canonisation of Mother Teresa in Rome. In MS the protective layer surrounding nerve fibres in the brain and spinal cord - known as myelin - becomes damaged. The immune system mistakenly attacks the myelin, causing scarring or sclerosis. The damaged myelin disrupts the nerve signals - rather like the short circuit caused by a frayed electrical cable. © 2016 BBC.

Keyword: Multiple Sclerosis
Link ID: 22341 - Posted: 06.21.2016

Laurel Hamers People hooked on cocaine are more likely to stick to other habits, too. They’re also less sensitive to negative feedback that tends to push nonaddicts away from harmful habitual behaviors, new research published in the June 17 Science suggests. The findings might help explain why cocaine addicts will do nearly anything to keep using the drug, despite awareness of its negative consequences. Instead, treatments that encourage new, healthier habits in place of drug use might click better. Similar results have been demonstrated with mice and rats, but the effect hadn’t been well-established in humans. There’s no pharmacological treatment approved by the U.S. Food and Drug Administration that targets cocaine addiction as there is for opioid addiction. So the best treatment currently focuses on changing patients’ behavior — and it’s not easy. “It’s such a devastating situation for families,” says Karen Ersche, a psychologist at the University of Cambridge who led the study. Drug users “know they’ll lose their job. They’ll tell you they want to change, but still they carry on using the drug. It seems incomprehensible.” Habits can be helpful because they free up brainpower for other things. A new driver has to think through every push of the pedal and flick of the turn signal, while an experienced one can perform these actions almost effortlessly, allowing them to also carry on a conversation. But people can also snap out of that automation when necessary, slamming on the brakes when a deer darts across the road. It’s harder for someone addicted to cocaine to get off autopilot. © Society for Science & the Public 2000 - 2016.

Keyword: Drug Abuse
Link ID: 22340 - Posted: 06.20.2016

By Jane E. Brody Smokers who think they are escaping the lung-damaging effects of inhaled tobacco smoke may have to think again, according to the findings of two major new studies, one of which the author originally titled “Myth of the Healthy Smoker.” Chronic obstructive pulmonary disease, or C.O.P.D., may be among the best known dangers of smoking, and current and former smokers can be checked for that with a test called spirometry that measures how much air they can inhale and how much and how quickly they can exhale. Unfortunately, this simple test is often skipped during routine medical checkups of people with a history of smoking. But more important, even when spirometry is done, the new studies prove that the test often fails to detect serious lung abnormalities that cause chronic cough and sputum production and compromise a person’s breathing, energy level, risk of serious infections and quality of life. “Current or former smokers without airflow obstruction may assume that they are disease-free,” but that’s not necessarily the case, one of the research teams pointed out. These researchers projected that there are 35 million current or former smokers older than 55 in the United States with unrecognized smoking-caused lung disease or impairments. Many, if not most, of these people could get worse with time, even if they have quit smoking. They are also unlikely to be referred for pulmonary rehabilitation, a treatment that can head off encroaching disability. Perhaps most important, those currently smoking may be inclined to think they’ve dodged the bullet and so can continue to smoke with impunity. Doctors, who are often reluctant to urge patients with symptoms to quit smoking, may be even less likely to recommend smoking cessation to those with normal spirometry results. Referring to C.O.P.D., one of the researchers, Dr. Elizabeth A. Regan, said, “Smoking is really taking a terrible toll on our society.” Dr. Regan, a clinical researcher at National Jewish Health in Denver, is the lead author of one of the new studies, published last year in JAMA Internal Medicine. “We live happily in the world thinking that only a small percentage of people who smoke get this devastating disease,” she said. “However, the lungs of millions of people in the United States are negatively impacted by smoking, and our methods for identifying their lung disease are relatively insensitive.” © 2016 The New York Times Company

Keyword: Drug Abuse
Link ID: 22339 - Posted: 06.20.2016

Gary Stix Unlike biochemistry and psychology, brain science did not exist as a separate academic field until the middle of the 20th century. In recent decades, neuroscience has emerged as a star among the biological disciplines. In 2014 a workshop organized by the National Academy of Medicine met to ponder the question of whether all bodes well for the scientists-to-be who are now getting their PhDs and laboring away at postdoctoral fellowships. Will the field be able to absorb this wealth of new talent—and is it preparing students with the quantitative skills needed to understand the workings of an organ with some 86 billion neurons and hundreds of trillions of connections among all of those cells? Steven Hyman of the Broad Institute of Harvard and MIT, who helped with the planning of the workshop and was recently president of the Society for Neuroscience (SfN), welcomed the flood of doctoral students choosing neuroscience, but warned: “Insofar as talented young people are discouraged from academic careers by funding levels so low that they produce debilitating levels of competition or simply foreclose opportunities, the U.S. and the world are losing an incredibly precious resource.” I got in touch with one member of the National Academy of Medicine panel, Huda Akil of the University of Michigan Medical School, the lead author on a paper in Neuron that summarized the workshop’s findings. Akil, also a former SfN president, is a noted researcher in the neurobiology of emotions. © 2016 Scientific American,

Keyword: Miscellaneous
Link ID: 22338 - Posted: 06.20.2016