Links for Keyword: Pain & Touch

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 793

Tom Goldman Voters in seven more states said "yes" to marijuana this month. Pot now is legal for recreational or medicinal use in more than half the country. It's still against federal law and classified as a Schedule 1 drug, meaning U.S. officials consider marijuana to have a high risk of abuse or harm, and no accepted medical use in treatment. Also, it's still banned in professional sports. Many athletes hope that will change as momentum grows nationwide for legalization. That's especially true in the National Football League, where pain is a constant companion. Advocates say marijuana could offer a safer and better way to manage the pain. Football hurts. As a fan watching from home, that's not always obvious — players collide, fall down, pop back up. They rarely wince or show weakness. That's just not how it's done in football. Kyle Turley hurt plenty during his eight NFL seasons in the 1990s and 2000s. As an offensive lineman, he was involved in jarring collisions nearly every play when his team had the ball. He hurt after his career -– Turley sometimes walks with a cane. And in a recent video, he displayed one by one the bottles of powerful painkillers he used. "Vicodin, Flexeril, Percocets, Vioxx, morphine," Turley recited as he plopped the bottles down on a kitchen counter. © 2016 npr

Related chapters from BP7e: Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology; Chapter 8: General Principles of Sensory Processing, Touch, and Pain
Related chapters from MM:Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology; Chapter 5: The Sensorimotor System
Link ID: 22893 - Posted: 11.21.2016

By Diana Kwon In people who suffer from pain disorders, painful feelings can severely worsen and spread to other regions of the body. Patients who develop chronic pain after surgery, for example, will often feel it coming from the area surrounding the initial injury and even in some parts of the body far from where it originates. New evidence suggests glia, non-neuronal cells in the brain, may be the culprits behind this effect. Glia were once thought to simply be passive, supporting cells for neurons. But scientists now know they are involved in everything from metabolism to neurodegeneration. A growing body of evidence points to their key role in pain. In a study published today in Science, researchers at the Medical University of Vienna report that glia are involved in long-term potentiation (LTP), or the strengthening of synapses, in pain pathways in the spinal cord. Neuroscientists Timothy Bliss and Terje Lømo first described LTP in the hippocampus, a brain area involved in memory, in the 1970s. Since then scientists have been meticulously studying the role this type of synaptic plasticity—the ability of synapses to change in strength—plays in learning and memory. More recently, researchers discovered that LTP could also amplify pain in areas where injuries or inflammation occur. “We sometimes call this a ‘memory trace of pain’ because the painful insult may lead to subsequent hypersensitivity to painful stimuli, and it was clear that synaptic plasticity can play a role here,” says study co-author Jürgen Sandkühler, a neuroscientist also at the Medical University of Vienna. But current models of how LTP works could not explain why discomfort sometimes becomes widespread or experienced in areas a person has never felt it before, he adds. © 2016 Scientific American

Related chapters from BP7e: Chapter 8: General Principles of Sensory Processing, Touch, and Pain
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 22857 - Posted: 11.12.2016

Nancy Shute Erik Vance didn't go to a doctor until he was 18; he grew up in California in a family that practiced Christian Science. "For the first half of my life, I never questioned the power of God to heal me," Vance writes in his new book, Suggestible You: Placebos, False Memories, Hypnosis, and the Power of Your Astonishing Brain. As a young man, Vance left the faith behind, but as he became a science journalist he didn't stop thinking about how people's beliefs and expectations affect their health, whether it's with placebo pills, mystical practices or treatments like acupuncture. The answer, he found, is in our brains. Erik and I chatted about the book while attending a recent meeting of the National Association of Science Writers. Here are highlights of our conversation, edited for length and clarity. You point out that even though most of us didn't grow up Christian Scientist, we often use belief to manage our health. I've learned from writing this book that there are a lot of people around the world who really rely on expectation and placebos. And I grew up in the most extreme possible group, but it's not that different from seeing a homeopath. You're using faith to manage your body; what a psychologist would call expectation. Having had that experience really prepared me to ask some of these questions. How would your mom take care of you when you were sick? As a kid we might have 7UP with orange juice; we might go that far because it made you feel better. But the treatment was to call a practitioner, to call a healer. © 2016 npr

Related chapters from BP7e: Chapter 8: General Principles of Sensory Processing, Touch, and Pain
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 22847 - Posted: 11.09.2016

By LISA SANDERS, M.D. Yesterday we challenged Well readers to take on the case of a 63-year-old artist who, over the course of several months, developed excruciating headaches, along with changes in his personality, his thinking, even in the way he painted. We provided you with some of the doctor’s notes and medical imaging results that led the doctor who finally made the diagnosis in the right direction. After an extensive evaluation, that doctor asked a single question that led him to make the diagnosis. We asked Well readers to figure out the question the doctor asked and the diagnosis it suggested. It must have been a tough case — or else you were all too worried about the coming election to rise to the challenge — because we got just over 200 responses, fewer than usual. Of those, only six of you figured out the right diagnosis, and only three of you got the question right as well. Despite that, I was very impressed by the thinking of even those who didn’t come up with the right diagnosis. Many of you thought about environmental factors like his recent retirement and his exposure to possible toxins from his painting, and that kind of thinking was, in my opinion, the very essence of thinking like a doctor. Strong work, all of you. The question the doctor asked that led him to the correct diagnosis was: Can you hear your heartbeat in your ears? The patient could. And that suggested the diagnosis: A dural-arteriovenous fistula, or DAVF © 2016 The New York Times Company

Related chapters from BP7e: Chapter 8: General Principles of Sensory Processing, Touch, and Pain; Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 22839 - Posted: 11.07.2016

By Kelly Servick Mark Hutchinson could read the anguish on the participants’ faces in seconds. As a graduate student at the University of Adelaide in Australia in the late 1990s, he helped with studies in which people taking methadone to treat opioid addiction tested their pain tolerance by dunking a forearm in ice water. Healthy controls typically managed to stand the cold for roughly a minute. Hutchinson himself, “the young, cocky, Aussie bloke chucking my arm in the water,” lasted more than 2 minutes. But the methadone patients averaged only about 15 seconds. “These aren’t wimps. These people are injecting all sorts of crazy crap into their arms. … But they were finding this excruciating,” Hutchinson says. “It just fascinated me.” The participants were taking enormous doses of narcotics. How could they experience such exaggerated pain? The experiment was Hutchinson’s first encounter with a perplexing phenomenon called opioid-induced hyperalgesia (OIH). At high doses, opioid painkillers actually seem to amplify pain by changing signaling in the central nervous system, making the body generally more sensitive to painful stimuli. “Just imagine if all the diabetic medications, instead of decreasing blood sugar, increased blood sugar,” says Jianren Mao, a physician and pain researcher at Massachusetts General Hospital in Boston who has studied hyperalgesia in rodents and people for more than 20 years. © 2016 American Association for the Advancement of Science

Related chapters from BP7e: Chapter 8: General Principles of Sensory Processing, Touch, and Pain
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 22829 - Posted: 11.04.2016

A snake with the largest venom glands in the world could hold the answer to pain relief, scientists have found. Dubbed the "killer of killers", the long-glanded blue coral snake is known to prey on the likes of king cobras. The venom of the two-metre-long snake native to South East Asia acts "almost immediately" and causes prey to spasm. New research published in the journal Toxin found it targets receptors which are critical to pain in humans and could be used as a method of treatment. "Most snakes have a slow-acting venom that works like a powerful sedative. You get sleepy, slow, before you die," said Dr Bryan Fry of the University of Queensland who is one of a team of researchers working on a study into the effect of the snake's venom. "This snake's venom however, works almost immediately because it usually preys on very dangerous animals that need to be quickly killed before they can retaliate. It's the killer of killers." Turning into medicine? Cone snails and scorpions are some of a handful of invertebrates whose venom has been studied for its medical use. However, as a vertebrate, the snake is evolutionarily closer to humans, and so a medicine developed from its venom could potentially be more effective, says Dr Fry. "The venom targets our sodium channels, which are central to our transmission of pain. We could potentially turn this into something that could help relieve pain, and which might work better on us." The snake's venom glands extend to up to one-quarter of its body length. "It's got freaky venom glands, the longest of any in the world, but it's so beautiful. It's easily my favourite species of snake," said Dr Fry. © 2016 BBC.

Related chapters from BP7e: Chapter 8: General Principles of Sensory Processing, Touch, and Pain
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 22809 - Posted: 10.31.2016

By CATHERINE SAINT LOUIS Neither of the two drugs used most frequently to prevent migraines in children is more effective than a sugar pill, according to a study published on Thursday in The New England Journal of Medicine. Researchers stopped the large trial early, saying the evidence was clear even though the drugs — the antidepressant amitriptyline and the epilepsy drug topiramate — had been shown to prevent migraines in adults. “The medication didn’t perform as well as we thought it would, and the placebo performed better than you would think,” said Scott Powers, the lead author of the study and a director of the Headache Center at Cincinnati Children’s Hospital Medical Center. A migraine is a neurological illness characterized by pulsating headache pain, sometimes accompanied by nausea, vomiting and sensitivity to light and noise. It’s a common childhood condition. Up to 11 percent of 7- to 11-year-olds and 23 percent of 15-year-olds have migraines. At 31 sites nationwide, 328 migraine sufferers aged 8 to 17 were randomly assigned to take amitriptyline, topiramate or a placebo pill for 24 weeks. Patients with episodic migraines (fewer than 15 headache days a month) and chronic migraines (15 or more headache days a month) were included. The aim was to figure out which drug was more effective at reducing the number of headache days, and to gauge which one helped children to stop missing school or social activities. © 2016 The New York Times Company

Related chapters from BP7e: Chapter 8: General Principles of Sensory Processing, Touch, and Pain
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 22801 - Posted: 10.28.2016

Katherine Hobson Placebos can't cure diseases, but research suggests that they seem to bring some people relief from subjective symptoms, such as pain, nausea, anxiety and fatigue. But there's a reason your doctor isn't giving you a sugar pill and telling you it's a new wonder drug. The thinking has been that you need to actually believe that you're taking a real drug in order to see any benefits. And a doctor intentionally deceiving a patient is an ethical no-no. So placebos have pretty much been tossed in the "garbage pail" of clinical practice, says Ted Kaptchuk, director of the Program for Placebo Studies and the Therapeutic Encounter at Beth Israel Deaconess Medical Center. In an attempt to make them more useful, he has been studying whether people might see a benefit from a placebo even if they knew it was a placebo, with no active ingredients. An earlier study found that so-called "open-label" or "honest" placebos improved symptoms among people with irritable bowel syndrome. And Kaptchuk and his colleagues found the same effect among people with garden-variety lower back pain, the most common kind of pain reported by American adults. The study included 83 people in Portugal, all of whom had back pain that wasn't caused by cancer, fractures, infections or other serious conditions. All the participants were told that the placebo was an inactive substance containing no medication. They were told that the body can automatically respond to placebos, that a positive attitude can help but isn't necessary and that it was important to take the pills twice a day for the full three weeks. © 2016 npr

Related chapters from BP7e: Chapter 8: General Principles of Sensory Processing, Touch, and Pain
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 22800 - Posted: 10.28.2016

Ian Sample Science editor Experiments with a fake body part have revealed how the brain becomes confused during a party trick known as the rubber hand illusion. Researchers in Italy performed the trick on a group of volunteers to explore how the mind combines information from the senses to create a feeling of body ownership. Under the illusion, people feel that a rubber hand placed on the table before them is their own, a bizarre but convincing shift in perception that is accompanied by a sense of disowning their real hand. The scientists launched the study after noticing that some stroke patients in their care experienced similar sensations, at times becoming certain that a paralysed limb was not their own, and even claiming ownership over other people’s appendages. “It is a very strong belief,” said Francesca Garbarini at the University of Turin. “We know that the feeling of body ownership can be dramatically altered after brain damage.” For the study, healthy volunteers sat with their forearms resting on a table and their right hand hidden inside a box. A lifelike rubber hand was then placed in front of them and lined up with their right shoulder. A cloth covered the stump of the hand, but the fingers remained visible. To induce the illusion, one of the researchers stroked the middle finger of the participant’s real hand while simultaneously stroking the same finger on the rubber hand. © 2016 Guardian News and Media Limited

Related chapters from BP7e: Chapter 8: General Principles of Sensory Processing, Touch, and Pain; Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 5: The Sensorimotor System
Link ID: 22780 - Posted: 10.24.2016

Hannah Devlin Science correspondent Migraine sufferers have a different mix of gut bacteria that could make them more sensitive to certain foods, scientists have found. The study offers a potential explanation for why some people are more susceptible to debilitating headaches and why some foods appear to act as triggers for migraines. The research showed that migraine sufferers had higher levels of bacteria that are known to be involved in processing nitrates, which are typically found in processed meats, leafy vegetables and some wines. The latest findings raise the possibility that migraines could be triggered when nitrates in food are broken down more efficiently, causing vessels in the brain and scalp to dilate. Antonio Gonzalez, a programmer analyst at the University of California San Diego and the study’s first author, said: “There is this idea out there that certain foods trigger migraines - chocolate, wine and especially foods containing nitrates. We thought that perhaps there are connections between what people are eating, their microbiomes and their experiences with migraines.” When nitrates in food are broken down by bacteria in the mouth and gut they are eventually converted into nitric oxide in the blood stream, a chemical that dilates blood vessels and can aid cardiovascular health by boosting circulation. © 2016 Guardian News and Media Limited

Related chapters from BP7e: Chapter 8: General Principles of Sensory Processing, Touch, and Pain; Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 22769 - Posted: 10.19.2016

By Elizabeth Pennisi Although it has a face—and body—that only a mother could love, the naked mole rat has a lot to offer biomedical science. It lives 10 times longer than a mouse, almost never gets cancer, and doesn’t feel pain from injury and inflammation. Now, researchers say they’ve figured out how the rodents keep this pain away. “It’s an amazing result,” says Harold Zakon, an evolutionary neurobiologist at the University of Texas, Austin, who was not involved with the work. “This study points us to important areas … that might be targeted to reduce this type of pain.” Naked mole rats are just plain weird. They live almost totally underground in colonies structured like honey bee hives, with hundreds of workers servicing a single queen and her few consorts. To survive, they dig kilometers of tunnels in search of large underground tubers for food. It’s such a tough life that—to conserve energy—this member of the rodent family gave up regulating its temperature, and they are able to thrive in a low-oxygen, high–carbon dioxide environment that would suffocate or be very painful to humans. “They might as well be from another planet,” says Thomas Park, a neuroscientist at the University of Illinois, Chicago. Gary Lewin, a neuroscientist at the Max Delbrück Center for Molecular Medicine in the Helmholtz Association in Berlin, began working with naked mole rats because a friend in Chicago was finding that the rodent's pain fibers were not the same as other mammals'. In 2008, the studies led to the finding that naked mole rats didn’t feel pain when they came into contact with acid and didn’t get more sensitive to heat or touch when injured, like we and other mammals do. Lewin was hooked and has been raising the rodents in his lab ever since. They are a little more challenging than rats or mice, he notes, because with just one female per colony producing young, he never really has quite enough individuals for his studies. © 2016 American Association for the Advancement of Science

Related chapters from BP7e: Chapter 8: General Principles of Sensory Processing, Touch, and Pain; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 22749 - Posted: 10.12.2016

By The Scientist Staff Growing up, we learn that there are five senses: sight, smell, touch, taste, and hearing. For the past five years, The Scientist has taken deep dives into each of those senses, explorations that revealed diverse mechanisms of perception and the impressive range of these senses in humans and diverse other animals. But as any biologist knows, there are more than just five senses, and it’s difficult to put a number on how many others there are. Humans’ vestibular sense, for example, detects gravity and balance through special organs in the bony labyrinth of the inner ear. Receptors in our muscles and joints inform our sense of body position. (See “Proprioception: The Sense Within.”) And around the animal kingdom, numerous other sense organs aid the perception of their worlds. The comb jelly’s single statocyst sits at the animal’s uppermost tip, under a transparent dome of fused cilia. A mass of cells called lithocytes, each containing a large, membrane-bound concretion of minerals, forms a statolith, which sits atop four columns called balancers, each made up of 150–200 sensory cilia. As the organism tilts, the statolith falls towards the Earth’s core, bending the balancers. Each balancer is linked to two rows of the ctenophore’s eight comb plates, from which extend hundreds of thousands of cilia that beat together as a unit to propel the animal. As the balancers bend, they adjust the frequency of ciliary beating in their associated comb plates. “They’re the pacemakers for the beating of the locomotor cilia,” says Sidney Tamm, a researcher at the Marine Biological Laboratory in Woods Hole, Massachusetts, who has detailed the structure and function of the ctenophore statocyst (Biol Bull, 227:7-18, 2014; Biol Bull, 229:173-84, 2015). © 1986-2016 The Scientist

Related chapters from BP7e: Chapter 8: General Principles of Sensory Processing, Touch, and Pain; Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 5: The Sensorimotor System
Link ID: 22629 - Posted: 09.05.2016

Laura Sanders Scientists have identified the “refrigerator” nerve cells that hum along in the brains of mice and keep the body cool. These cells kick on to drastically cool mice’s bodies and may prevent high fevers, scientists report online August 25 in Science. The results “are totally new and very important,” says physiologist Andrej Romanovsky of the Barrow Neurological Institute in Phoenix. "The implications are far-reaching." By illuminating how bodies stay at the right temperature, the discovery may offer insights into the relationship between body temperature and metabolism. Scientists had good reasons to think that nerve cells controlling body temperature are tucked into the hypothalamus, a small patch of neural tissue in the middle of the brain. Temperature fluctuations in a part of the hypothalamus called the preoptic area prompt the body to get back to baseline by conserving or throwing off heat. But the actual identify of the heat sensors remained mysterious. The new study reveals the cells to be those that possess a protein called TRPM2. “Overall, this is a major discovery in the field of thermoregulation,” says Shaun Morrison of Oregon Health & Science University in Portland. Jan Siemens, a neurobiologist at the University of Heidelberg in Germany, and colleagues tested an array of molecules called TRP channels, proteins that sit on cell membranes and help sense a variety of stimuli, including painful tear gas and cool menthol. In tests of nerve cells in lab dishes, one candidate, the protein TRPM2, seemed to respond to heat. |© Society for Science & the Public 2000 - 201

Related chapters from BP7e: Chapter 13: Homeostasis: Active Regulation of the Internal Environment; Chapter 8: General Principles of Sensory Processing, Touch, and Pain
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment; Chapter 5: The Sensorimotor System
Link ID: 22605 - Posted: 08.27.2016

Angus Chen Once people realized that opioid drugs could cause addiction and deadly overdoses, they tried to use newer forms of opioids to treat the addiction to its parent. Morphine, about 10 times the strength of opium, was used to curb opium cravings in the early 19th century. Codeine, too, was touted as a nonaddictive drug for pain relief, as was heroin. Those attempts were doomed to failure because all opioid drugs interact with the brain in the same way. They dock to a specific neural receptor, the mu-opioid receptor, which controls the effects of pleasure, pain relief and need. Now scientists are trying to create opioid painkillers that give relief from pain without triggering the euphoria, dependence and life-threatening respiratory suppression that causes deadly overdoses. That wasn't thought possible until 2000, when a scientist named Laura Bohn found out something about a protein called beta-arrestin, which sticks to the opioid receptor when something like morphine activates it. When she gave morphine to mice that couldn't make beta-arrestin, they were still numb to pain, but a lot of the negative side effects of the drug were missing. They didn't build tolerance to the drug. At certain dosages, they had less withdrawal. Their breathing was more regular, and they weren't as constipated as normal mice on morphine. Before that experiment, scientists thought the mu-opioid receptor was a simple switch that flicked all the effects of opioids on or off together. Now it seems they could be untied. © 2016 npr

Related chapters from BP7e: Chapter 8: General Principles of Sensory Processing, Touch, and Pain; Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Link ID: 22569 - Posted: 08.18.2016

By ABBY GOODNOUGH TUSCALOOSA, Ala. — Roslyn Lewis was at work at a dollar store here in Tuscaloosa, pushing a heavy cart of dog food, when something popped in her back: an explosion of pain. At the emergency room the next day, doctors gave her Motrin and sent her home. Her employer paid for a nerve block that helped temporarily, numbing her lower back, but she could not afford more injections or physical therapy. A decade later, the pain radiates to her right knee and remains largely unaddressed, so deep and searing that on a recent day she sat stiffly on her couch, her curtains drawn, for hours. The experience of African-Americans, like Ms. Lewis, and other minorities illustrates a problem as persistent as it is complex: Minorities tend to receive less treatment for pain than whites, and suffer more disability as a result. While an epidemic of prescription opioid abuse has swept across the United States, African-Americans and Hispanics have been affected at much lower rates than whites. Researchers say minority patients use fewer opioids, and they offer a thicket of possible explanations, including a lack of insurance coverage and a greater reluctance among members of minority groups to take opioid painkillers even if they are prescribed. But the researchers have also found evidence of racial bias and stereotyping in recognizing and treating pain among minorities, particularly black patients. “We’ve done a good job documenting that these disparities exist,” said Salimah Meghani, a pain researcher at the University of Pennsylvania. “We have not done a good job doing something about them.” Dr. Meghani’s 2012 analysis of 20 years of published research found that blacks were 34 percent less likely than whites to be prescribed opioids for conditions such as backaches, abdominal pain and migraines, and 14 percent less likely to receive opioids for pain from traumatic injuries or surgery. © 2016 The New York Times Company

Related chapters from BP7e: Chapter 8: General Principles of Sensory Processing, Touch, and Pain; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 14: Attention and Consciousness
Link ID: 22532 - Posted: 08.09.2016

By Diana Kwon Few things feel worse than not knowing when your next paycheck is coming. Economic insecurity has been shown to have a whole host of negative effects, including low self-esteem and impaired cognitive functioning. It turns out financial stress can also physically hurt, according to a paper published in February in Psychological Science. Eileen Chou, a public policy professor at the University of Virginia, and her collaborators began by analyzing a data set of 33,720 U.S. households and found that those with higher levels of unemployment were more likely to purchase over-the-counter painkillers. Then, using a series of experiments, the team discovered that simply thinking about the prospect of financial insecurity was enough to increase pain. For example, people reported feeling almost double the amount of physical pain in their body after recalling a financially unstable time in their life as compared with those who thought about a secure period. In another experiment, university students who were primed to feel anxious about future employment prospects removed their hand from an ice bucket more quickly (showing less pain tolerance) than those who were not. The researchers also found that economic insecurity reduced people's sense of control, which, in turn, increased feelings of pain. Chou and her colleagues suggest that because of this link between financial insecurity and decreased pain tolerance, the recent recession may have been a factor in fueling the prescription painkiller epidemic. Other experts are cautious about taking the findings that far. “I think the hypothesis [that financial stress causes pain] has a lot of merit, but it would be helpful to see additional rigorous evidence in a real-world environment,” says Heather Schofield, an economist at the University of Pennsylvania who was not involved in the study. © 2016 Scientific American,

Related chapters from BP7e: Chapter 8: General Principles of Sensory Processing, Touch, and Pain; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 11: Emotions, Aggression, and Stress
Link ID: 22452 - Posted: 07.19.2016

DAVID GREENE, HOST: Nearly one-quarter of all Americans reach for a bottle of acetaminophen every single week. Many of you might know this drug as Tylenol. It's a pain killer that can take the edge off a headache or treat you when you have a fever. It also might have another effect. And let's talk about this with NPR social science correspondent Shankar Vedantam. And, Shankar, straight out, is this going to make me not want to take Tylenol, what you're about to tell me? VEDANTAM: It might make you not want to take Tylenol when you're talking with me, David. GREENE: Oh, even more interesting. VEDANTAM: (Laughter) I was speaking with Dominik Mischkowski. He's currently a researcher at the National Institutes of Health. He recently conducted a couple of double blind experiments. These are experiments where the volunteers are given either sugar pills or Tylenol, but neither the volunteers nor the researchers know which volunteers are getting which pill. Mischkowski and his advisers at Ohio State University, Jennifer Crocker and Baldwin Way, they played loud noises for the volunteers. Not surprisingly, volunteers given Tylenol experienced less physical discomfort than volunteers given the placebo. © 2016 npr

Related chapters from BP7e: Chapter 8: General Principles of Sensory Processing, Touch, and Pain; Chapter 19: Language and Hemispheric Asymmetry
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 15: Brain Asymmetry, Spatial Cognition, and Language
Link ID: 22403 - Posted: 07.07.2016

By Damian Garde, A boy in Pakistan became a local legend as a street performer in recent years by traversing hot coals and lancing his arms with knives without so much as a wince. A thousand miles away, in China, lived a family wracked by excruciating bouts of inexplicable pain, passed down generation after generation. Scientists eventually determined what the boy and the family had in common: mutations in a gene that functions like an on-off switch for agony. Now, a bevy of biotech companies, including Genentech and Biogen, are staking big money on the idea that they can develop drugs that toggle that switch to relieve pain without the risk of addiction. The gene in question is SCN9A, which is responsible for producing a pain-related protein called Nav1.7. In patients who feel nothing, SCN9A is pretty much broken. In those who feel searing random pain, the gene is cranking out far too much Nav1.7. That discovery raises an obvious question: Can blocking Nav1.7 provide relief for many types of pain—and someday, perhaps, replace dangerous opioid therapies? “That’s the dream,” said David Hackos, a senior scientist at Genentech, which has two Nav1.7 treatments in the first stage of clinical development. It’s too early make any sweeping predictions—and, indeed, a Pfizer pill targeting Nav1.7 has already stumbled—but the pharma industry clearly sees the potential for a blockbuster. © 2016 Scientific American

Related chapters from BP7e: Chapter 8: General Principles of Sensory Processing, Touch, and Pain
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 22400 - Posted: 07.06.2016

By Rachel Rabkin Peachman It began with a simple roller-skating accident three years ago. Taylor Aschenbrenner, then 8 years old, lost her balance amid a jumble of classmates, tumbled to the floor and felt someone else’s skate roll over her left foot. The searing pain hit her immediately. The diagnosis, however, would take much longer. An X-ray, M.R.I.s, a CT scan and blood tests over several months revealed no evidence of a break, sprain or other significant problem. Taylor’s primary symptom was pain — so severe that she could not put weight on the foot. “Our family doctor first told us to give it some time,” said Taylor’s mother, Jodi Aschenbrenner, of Hudson, Wis. But time didn’t heal the pain. After about a month, an orthopedist recommended physical therapy. That didn’t end the problem, either. “I couldn’t walk or play outside or do anything,” Taylor said. After she had spent a year and a half on crutches, her orthopedist suggested she see Dr. Stefan Friedrichsdorf, the medical director ofpain medicine, palliative care and integrative medicine at Children’s Hospitals and Clinics of Minnesota. He and his team promptly recognized Taylor’s condition as complex regional pain syndrome, a misfiring within the peripheral and central nervous systems that causes pain signals to go into overdrive and stay turned on even after an initial injury or trauma has healed. He came up with a treatment plan for Taylor that included cognitive behavioral therapy, physical therapy, mind-body techniques, stress-reduction strategies, topical pain-relief patches and a focus on returning to her normal life and sleep routine, among other things. © 2016 The New York Times Company

Related chapters from BP7e: Chapter 8: General Principles of Sensory Processing, Touch, and Pain; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 13: Memory, Learning, and Development
Link ID: 22368 - Posted: 06.28.2016

Emily Conover Sharks have a sixth sense that helps them locate prey in murky ocean waters. They rely on special pores on their heads and snouts, called ampullae of Lorenzini, that can sense electric fields generated when nearby prey move. The pores were first described in 1678, but scientists haven’t been sure how they work. Now, the answer is a bit closer. The pores, which connect to electrosensing cells, are filled with a mysterious clear jelly. This jelly is a highly efficient proton conductor, researchers report May 13 in Science Advances. In the jelly, positively charged particles move and transmit current. Marco Rolandi of the University of California, Santa Cruz and colleagues squeezed jelly from the pores of one kind of shark and two kinds of skate and tested how well protons could flow through the substance. Good proton conductors, including a protein found in squid skin, occur in nature. But the jelly is the best biological proton conductor discovered so far. In fact, even humankind’s best technology isn’t wildly better. The most efficient proton conductor devised by people — a polymer known as Nafion — is a mere 40 times better than the stuff sharks are born with. Citations E.E. Josberger et al. Proton conductivity in ampullae of Lorenzini jelly. Science Advances. Published online May 13, 2016. doi:10.1126/sciadv.1600112. Further Reading |© Society for Science & the Public 2000 - 2016.

Related chapters from BP7e: Chapter 8: General Principles of Sensory Processing, Touch, and Pain
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 22366 - Posted: 06.28.2016