Most Recent Links

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 21 - 40 of 22813

By Daniel Barron It was 4 P.M., and Andrew* had just bought 10 bags of heroin. In his kitchen, he tugged one credit-card-sized bag from the rubber-banded bundle and laid it on the counter with sacramental reverence. Pain shot through his body as he pulled a cutting board from the cabinet. Slowly, deliberately, he tapped the bag's white contents onto the board and crushed it with the flat edge of a butter knife, forming a line of fine white powder. He snorted it in one pass and shuffled back to his armchair. It was bitter, but snorting heroin was safer than injecting, and he was desperate: his prescription pain medication was gone. I met Andrew the next day in the emergency room, where he told me about the previous day's act of desperation. I admitted him to control his swelling legs and joint pain. He was also detoxing from opioids. Andrew looked older than his 69 years. His face was wrinkled with exhaustion. A frayed, tangled mop of grizzled hair fell to his shoulders. Andrew had been a satellite network engineer, first for the military, more recently for a major telecommunications company. An articulate, soft-spoken fellow, he summed up his (rather impressive) career modestly: “Well, I'd just find where a problem was and then find a way to fix it.” Yet there was one problem he couldn't fix. “Doctor, I'm always in the most terrible pain,” he said, with closed eyes. “I had no other options. I started using heroin, bought it from my neighbor to help with the pain. I'm scared stiff.” © 2017 Scientific American

Keyword: Pain & Touch; Drug Abuse
Link ID: 23378 - Posted: 03.20.2017

By Jia Naqvi Sixty percent of the calls to poison control centers for help with prescription opioid exposure involved children younger than 5. (Rich Pedroncelli/Associated Press) The phone rings once approximately every 45 minutes — that is how often poison control centers in the United States receive calls about children being exposed to prescription opioids, according to a study published Monday. Over a span of 16 years, from January 2000 until December 2015, about 188,000 calls were placed to poison control centers regarding pediatric and teenage exposure to opioids, the study published in the journal Pediatrics found. Sixty percent of the children exposed to opioids were younger than 5, while teenagers accounted for 30 percent. Pediatric exposure to opioids increased by 86 percent from 2000 to 2009 but decreased overall for all ages under 20 from 2009 until 2015, the study found. Increasing awareness among people with prescription drugs, physicians putting more thought into prescribing opioids, and prescription drug monitoring programs implemented by many states and efforts by different organizations could have contributed to the decrease in exposure, said Marcel Casavant, study author, medical director of the Central Ohio Poison Center and chief toxicologist at Nationwide Children’s Hospital in Columbus. “We are not quite sure, and so it would be good to try to sort out of all the things that we are trying, which ones are the most effective and how can we spend more time doing that,” Casavant said. © 1996-2017 The Washington Post

Keyword: Pain & Touch; Drug Abuse
Link ID: 23377 - Posted: 03.20.2017

Sara Reardon, Jeff Tollefson, Alexandra Witze & Erin Ross Funding for the National Oceanic and Atmospheric Administration’s weather satellites, which track hurricanes, would be maintained under the Trump plan. When it comes to science, there are few winners in US President Donald Trump’s first budget proposal. The plan, released on 16 March, calls for double-digit cuts for the Environmental Protection Agency (EPA) and the National Institutes of Health (NIH). It also lays the foundation for a broad shift in the United States’ research priorities, including a retreat from environmental and climate programmes. Rumours of the White House proposal have swirled for weeks, alarming many researchers who depend on government funding — and science advocates who worry that the Trump administration’s stance will jeopardize US leadership in fields ranging from climate science to cancer biology. It is not clear, however, how much of the plan will survive negotiations in Congress over the coming months. What could Trump’s budget for science mean for you? “Cutting [research and development] funding from our budget is the same as cutting the engines off an airplane that’s too heavy for take-off,” says Jason Rao, director of international affairs at the American Society for Microbiology in Washington DC. The greatest threats to the United States, he says, are those presented by infectious diseases, climate change and energy production — none of which can be addressed effectively without scientific research. © 2017 Macmillan Publishers Limited,

Keyword: Miscellaneous
Link ID: 23376 - Posted: 03.20.2017

By Taylor Beck LSD, “magic” mushrooms and mescaline have been banned in the U.S. and many other countries since the 1970s, but psychedelic medicine is making a comeback as new therapies for depression, nicotine addiction and anxiety. The drugs have another scientific use, too: so-called psychotomimetics, or mimics of psychosis, may be useful tools for studying schizophrenia. By creating a brief bout of psychosis in a healthy brain, as indigenous healers have for millennia, scientists are seeking new ways to study—and perhaps treat—mental illness. “We think that schizophrenia is a group of psychoses, which may have different causes,” says Franz Vollenweider, a psychiatrist and neuroscientist at the University of Zurich. “The new approach is to try to understand specific symptoms: hearing voices, cognitive problems, or apathy and social disengagement. If you can identify the neural bases of these, you can tailor the pharmacology.” Vollenweider and his colleagues have found an existing drug for anxiety that blocks specific effects of psilocybin, the psychoactive ingredient in magic mushrooms. When healthy people were given the drug before tripping, they did not report visual hallucinations and other common effects, according to a study published in April 2016 in European Neuropsychopharmacology. The effort is part of a burgeoning movement in pharmacology that seeks to induce psychosis to learn how to treat it. And schizophrenia desperately needs new treatments. Seventy-five percent of afflicted patients have cognitive problems. And most commonly used drugs do not treat the disorder's “negative” symptoms—apathy, social withdrawal, negative thinking—nor the cognitive impairments, which best predict how well a patient will fare in the long term. © 2017 Scientific American

Keyword: Schizophrenia; Drug Abuse
Link ID: 23375 - Posted: 03.19.2017

By JULIE REHMEYER and DAVID TULLER What are some of the treatment regimens that sufferers of chronic fatigue syndrome should follow? Many major medical organizations cite two: psychotherapy and a steady increase in exercise. There’s just one problem. The main study that has been cited as proof that patients can recover with those treatments overstated some of its results. In reality, the claim that patients can recover from these treatments is not justified by the data. That’s the finding of a peer-reviewed preliminary re-analysis of previously unpublished data from the clinical trial, the largest ever for chronic fatigue syndrome. Nicknamed the PACE trial, the core findings of the British study appeared in The Lancet in 2011 and Psychological Medicine in 2013. Patients battled for years to obtain the underlying data, and last spring, a legal tribunal in Britain, the General Regulatory Chamber, directed the release of some of the study’s information. The impact of the trial on treatment options for the estimated one million chronic fatigue patients in the United States has been profound. The Mayo Clinic, Kaiser Permanente, WebMD, the American Academy of Family Physicians and others recommend psychotherapy and a steady increase in exercise. But this approach can be harmful. According to a 2015 report from the Institute of Medicine, now the National Academy of Medicine, even minimal activity can cause patients prolonged exhaustion, muscle pain, cognitive problems and more. In severe cases, a short conversation or a trip to the bathroom can deplete patients for hours, days or more. In surveys, patients routinely report deterioration after a program of graded exercise. The psychotherapeutic intervention also encourages patients to increase their activity levels. Many patients (including one of us) have remained ill for years or decades with chronic fatigue syndrome, also known as myalgic encephalomyelitis, or ME/CFS. It can be triggered by a viral infection, resulting in continuing or recurring immunological and neurological dysfunction. The Institute of Medicine dismissed any notion that it is a psychiatric illness. © 2017 The New York Times Company

Keyword: Depression; Neuroimmunology
Link ID: 23374 - Posted: 03.19.2017

Doctors who limit the supply of opioids they prescribe to three days or less may help patients avoid the dangers of dependence and addiction, a new study suggests. Among patients without cancer, a single day's supply of a narcotic painkiller can result in 6 per cent of patients being on an opioid a year later, the researchers said. The odds of long-term opioid use increased most sharply in the first days of therapy, particularly after five days of taking the drugs. The rate of long-term opioid use increased to about 13 per cent for patients who first took the drugs for eight days or more, according to the report. "Awareness among prescribers, pharmacists and persons managing pharmacy benefits that authorization of a second opioid prescription doubles the risk for opioid use one year later might deter overprescribing of opioids," said senior researcher Martin Bradley. He is from the division of pharmaceutical evaluation and policy at the University of Arkansas for Medical Sciences. "The chances of long-term opioid use, use that lasts one year or more, start increasing with each additional day supplied, starting after the third day, and increase substantially after someone is prescribed five or more days, and especially after someone is prescribed one month of opioid therapy," Bradley said. The odds of chronic opioid use also increase when a second prescription is given or refilled, he noted. ©2017 CBC/Radio-Canada.

Keyword: Drug Abuse; Pain & Touch
Link ID: 23373 - Posted: 03.19.2017

Obese people who get surgery to lose weight have half the risk of developing heart failure as do patients who make lifestyle changes to shed excess pounds, a recent study suggests. “We were surprised by the large difference in heart failure incidence between the two groups,” said lead study author Johan Sundstrom of Uppsala University in Sweden. It’s possible that gastric bypass patients had a lower risk of heart failure because they lost more weight than the group trying to do so without surgery. Researchers also found that losing 22 pounds by any means was tied to a 23 percent drop in heart failure risk. The study team examined data on 25,805 obese people who had gastric bypass surgery, which reduces the stomach to a small pouch, and 13,701 patients who were put on low-calorie diets. After following half of the patients for at least four years, people who had gastric bypass were found to be 46 percent less likely to have developed heart failure. After one year, surgery patients had an average weight loss 41.4 pounds greater than that of those who relied on diet and exercise, the study found. After two years, surgery was associated with an average weight loss that was 49.8 pounds more than those who undertook lifestyle changes. Some previous research has linked obesity to heart failure, and a growing body of evidence suggests that obesity might directly cause the heart condition, Sundstrom said. While the new study wasn’t designed to prove a causal relationship, it adds more evidence in support of this possibility. © 1996-2017 The Washington Post

Keyword: Obesity
Link ID: 23372 - Posted: 03.19.2017

By Linda Geddes A gentle touch can make all the difference. Premature babies – who miss out on the sensory experiences of late gestation – show different brain responses to gentle touch from babies that stay inside the uterus until term. This could affect later physical and emotional development, but regular skin-to-skin contact from parents and hospital staff seem to counteract it. Infants who are born early experience dramatic events at a time when babies that aren’t born until 40 weeks are still developing in the amniotic fluid. Premature babies are often separated from their parents for long periods, undergo painful procedures like operations and ventilation, and they experience bigger effects of gravity on the skin and muscles. “There is substantial evidence that pain exposure during early life can cause long-term alterations in infant brain development,” says Rebeccah Slater at the University of Oxford. But it has been less clear how gentle touches shape the brains of babies, mainly because the brain’s response to light touch is about a hundredth of that it has to pain, so it’s harder to study. Nathalie Maitre of the Nationwide Children’s Hospital in Columbus, Ohio, and her colleagues have gently stretched soft nets of 128 electrodes over the heads of 125 preterm and full-term babies, shortly before they were discharged from hospital. These were used to record how their brains responded to a gentle puff of air on the skin. © Copyright Reed Business Information Ltd.

Keyword: Development of the Brain; Pain & Touch
Link ID: 23371 - Posted: 03.17.2017

By Mike Stobbe, Elderly people are suffering concussions and other brain injuries from falls at what appear to be unprecedented rates, according to a new report from U.S. government researchers. The reason for the increase isn't clear, the report's authors said. But one likely factor is that a growing number of elderly people are living at home and taking repeated tumbles, said one expert. "Many older adults are afraid their independence will be taken away if they admit to falling, and so they minimize it," said Dr. Lauren Southerland, an Ohio State University emergency physician who specializes in geriatric care. But what may seem like a mild initial fall may cause concussions or other problems that increase the chances of future falls — and more severe injuries, she said. Whatever the cause, the numbers are striking, according to the new report released Thursday by the Centers for Disease Control and Prevention. One in every 45 Americans 75 and older suffered brain injuries that resulted in emergency department visits, hospitalizations, or deaths in 2013. The rate for that age group jumped 76 per cent from 2007. The rate of these injuries for people of all ages rose 39 per cent over that time, hitting a record level, the CDC found. Falls account for 90 per cent of hip and wrist fractures and 60 per cent of head injuries among people aged 65 and older, Canadian researchers have previously reported. The report, which explored brain injuries in general, also found an increase in brain injuries from suicides and suicide attempts, mainly gunshot wounds to the head. Brain injuries from car crashes fell. But the elderly suffered at far higher rates than any other group. ©2017 CBC/Radio-Canada.

Keyword: Brain Injury/Concussion; Development of the Brain
Link ID: 23370 - Posted: 03.17.2017

By Bob Grant In the past decade, some bat species have been added to the ranks of “singing” animals, with complex, mostly ultrasonic vocalizations that, when slowed down, rival the tunes of some songbirds. Like birds, bats broadcast chirps, warbles, and trills to attract mates and defend territories. There are about 1,300 known bat species, and the social vocalizations of about 50 have been studied. Of those, researchers have shown that about 20 species seem to be singing, with songs that are differentiated from simpler calls by both their structural complexity and their function. Bats don’t sound like birds to the naked ear; most singing species broadcast predominately in the ultrasonic range, undetectable by humans. And in contrast to the often lengthy songs of avian species, the flying mammals sing in repeated bursts of only a few hundred milliseconds. Researchers must first slow down the bat songs—so that their frequencies drop into the audible range—to hear the similarities. Kirsten Bohn, a behavioral biologist at Johns Hopkins University, first heard Brazilian free-tailed bats (Tadarida brasiliensis) sing more than 10 years ago, when she was a postdoc in the lab of Mike Smotherman at Texas A&M University. “I started hearing a couple of these songs slowed down,” she recalls. “And it really was like, ‘Holy moly—that’s a song! That sounds like a bird.’” The neural circuitry used to learn and produce song may also share similarities between bats and birds. Bohn and Smotherman say they’ve gathered some tantalizing evidence that bats use some of the same brain regions—namely, the basal ganglia and prefrontal cortex—that birds rely upon to produce, process, and perhaps even learn songs. “We have an idea of how the neural circuits control vocalizing in the bats and how they might be adapted to produce song,” Smotherman says. © 1986-2017 The Scientist

Keyword: Hearing; Language
Link ID: 23369 - Posted: 03.17.2017

By Jenny Rood To human ears, the trilling of birdsong ranks among nature’s most musical sounds. That similarity to human music is now inspiring researchers to apply music theory to avian vocalizations. For example, zebra finch neurobiologist Ofer Tchernichovski of the City University of New York, together with musician and musicologist Hollis Taylor, recently analyzed the song of the Australian pied butcherbird (Cracticus nigrogularis) and found an inverse relationship between motif complexity and repetition that paralleled patterns found in human music (R Soc Open Sci, 3:160357, 2016). Tchernichovski’s work also suggests that birds can perceive rhythm and change their calls in response. Last year, he and colleague Eitan Globerson, a symphony conductor at the Jerusalem Academy of Music and Dance as well as a neurobiologist at Bar Ilan University in Israel, demonstrated that zebra finches, a vocal learning species, adapt their innate calls—as opposed to learned song—to avoid overlapping with unusual rhythmic patterns produced by a vocal robot (Curr Biol, 26:309-18, 2016). The researchers also found that both males and females use the brain’s song system to do this, although females do not learn song. But these complexities of birdsong might be more comparable to human speech than to human music, says Henkjan Honing, a music cognition scientist at the University of Amsterdam. Honing’s research suggests that some birds don’t discern rhythm well. Zebra finches, for example, seem to pay attention to pauses between notes on short time scales but have trouble recognizing overarching rhythmic patterns—one of the key skills thought necessary for musical perception (Front Psychol, doi:10.3389/fpsyg.2016.00730, 2016). © 1986-2017 The Scientist

Keyword: Animal Communication; Hearing
Link ID: 23368 - Posted: 03.17.2017

By Timothy Revell Who would you get to observe differences in how men, women and children interact? A robot in a fur-lined hat, of course. Experiments using a robotic head, called Furhat, aimed to uncover inequalities in people’s participation when working on a shared activity, and see if a robot could help redress the balance. They revealed that when a woman is paired in conversation with another woman, she speaks more than if paired with a man. And two men paired together speak less than two women. But this only holds for adults. “Surprisingly, we didn’t find this same pattern for boys and girls. Gender didn’t make much difference to how much children speak,” says Gabriel Skantze at the KTH Royal Institute of Technology in Stockholm, Sweden, who is also one of the robot’s creators. Furhat interacted with 540 visitors at the Swedish National Museum of Science and Technology over nine days. Two people at a time would sit at an interactive table with a touchscreen opposite the robot. They were asked to play a game that involved sorting a set of virtual picture cards, such as arranging images of historical inventions in chronological order. The people worked with the robot to try to solve the task. During this time, the robot’s sensors tracked how long each person spoke for. “This turned out to be a really nice opportunity to study the differences between men and women, and adults and children,” says Skantze. © Copyright Reed Business Information Ltd.

Keyword: Language; Sexual Behavior
Link ID: 23367 - Posted: 03.17.2017

By Kate Darby Rauch When Marian Diamond was growing up in Southern California, she got her first glimpse of a real brain at Los Angeles County Hospital with her dad, a physician. She was 15. Looking back now, at age 90, Diamond, a Berkeley resident, points to that moment as the start of something profound — a curiosity, wonderment, drive. “It just blew my mind, the fact that a cell could create an idea,” Diamond said in a recent interview, reflecting on her first encounter with that sinewy purple-tinged mass. She didn’t know that this was the start of a distinguished legacy that would stretch for decades, touching millions. But today, she’d be one of the first to scientifically equate that adolescent thrill with her life’s work. Because she helped prove a link. Brains, we now know, thanks in large part to research by Diamond, thrive on challenge, newness, discovery. With this enrichment, brain cells are stimulated and grow. This week, Diamond, a UC Berkeley emeritus professor of integrative biology and the first woman to earn a PhD in anatomy at Cal, is being honored by the Berkeley City Council, which is designating March 14 as Marian Diamond Day. And on March 22, KQED TV will air a new documentary film about her life’s work, My Love Affair With the Brain. © Berkeleyside All Rights Reserved.

Keyword: Development of the Brain
Link ID: 23366 - Posted: 03.16.2017

By DENISE GRADY Three women suffered severe, permanent eye damage after stem cells were injected into their eyes, in an unproven treatment at a loosely regulated clinic in Florida, doctors reported in an article published Wednesday in The New England Journal of Medicine. One, 72, went completely blind from the injections, and the others, 78 and 88, lost much of their eyesight. Before the procedure, all had some visual impairment but could see well enough to drive. The cases expose gaps in the ability of government health agencies to protect consumers from unproven treatments offered by entrepreneurs who promote the supposed healing power of stem cells. The women had macular degeneration, an eye disease that causes vision loss, and they paid $5,000 each to receive stem-cell injections in 2015 at a private clinic in Sunrise, Fla. The clinic was part of a company then called Bioheart, now called U.S. Stem Cell. Staff members there used liposuction to suck fat out of the women’s bellies, and then extracted stem cells from the fat to inject into the women’s eyes. The disastrous results were described in detail in the journal article, by doctors who were not connected to U.S. Stem Cell and treated the patients within days of the injections. An accompanying article by scientists from the Food and Drug Administration warned that stem cells from fat “are being used in practice on the basis of minimal clinical evidence of safety or efficacy, sometimes with the claims that they constitute revolutionary treatments for various conditions.” © 2017 The New York Times Company

Keyword: Vision; Stem Cells
Link ID: 23365 - Posted: 03.16.2017

By Anna Azvolinsky Delivering a CRISPR/Cas9–based therapy directly to the eye via a viral vector can prevent retinal degeneration in a mouse model of retinitis pigmentosa, a team led by researchers at the National Eye Institute reported in Nature Communications today (March 14). Retinitis pigmentosa, which affects around one in 4,000 people, causes retinal degeneration that eventually leads to blindness. The inherited disorder has been mapped to more than 60 genes (and more than 3,000 mutations), presenting a challenge for researchers working toward a gene therapy. The results of this latest study suggest that a broader, gene-editing–based therapeutic approach could be used to target many of the genetic defects underlying retinitis pigmentosa. “Given the lack of effective therapies for retinal degeneration, particularly the lack of therapies applicable to a broad range of different genetic varieties of this disease, this study represents a very exciting and important advance in our field,” Joseph Corbo, a neuropathologist at the Washington University School of Medicine in St. Louis who was not involved in the work, wrote in an email to The Scientist. This combination of “CRISPR technology with an adeno-associated virus vector, a system tried and true for delivering genetic information to the retina, may represent the first step in a global treatment approach for rod-mediated degenerative disease,” Shannon Boye, whose University of Florida lab develops gene replacement strategies for eye disorders, wrote in an email to The Scientist. © 1986-2017 The Scientist

Keyword: Vision
Link ID: 23364 - Posted: 03.16.2017

By Andy Coghlan A woman in her 80s has become the first person to be successfully treated with induced pluripotent stem (iPS) cells. A slither of laboratory-made retinal cells has protected her eyesight, fighting her age-related macular degeneration – a common form of progressive blindness. Such stem cells can be coaxed to form many other types of cell. Unlike other types of stem cell, such as those found in an embryo, induced pluripotent ones can be made from adult non-stem cells – a discovery that earned a Nobel prize in 2012. Now, more than a decade after they were created, these stem cells have helped someone. Masayo Takahashi at the RIKEN Laboratory for Retinal Regeneration in Kobe, Japan, and her team took skin cells from the woman and turned them into iPS cells. They then encouraged these to form retinal pigment epithelial cells, which are important for supporting and nourishing the retina cells that capture light for vision. The researchers made a slither of cells measuring just 1 by 3 millimetres. Before transplanting this into the woman’s eye in 2014, they first removed diseased tissue on her retina that was gradually destroying her sight. They then inserted the small patch of cells they had created, hoping they would become a part of her eye and stop her eyesight from degenerating. © Copyright Reed Business Information Ltd.

Keyword: Vision; Stem Cells
Link ID: 23363 - Posted: 03.16.2017

By Mitch Leslie It sounds like a crazy way to improve your health—spend some time on a platform that vibrates at about the same frequency as the lowest string on a double bass. But recent research indicates that the procedure, known as whole-body vibration, may be helpful in illnesses from cerebral palsy to chronic obstructive pulmonary disease. Now, a new study of obese mice reveals that whole-body vibration provides similar metabolic benefits as walking on a treadmill, suggesting it may be useful for treating obesity and type II diabetes. “I think it’s very promising,” says exercise physiologist Lee Brown of the California State University in Fullerton, who wasn’t connected to the study. Although the effects are small, he says, researchers should follow-up to determine whether they can duplicate them in humans. Plenty of gyms feature whole-body vibration machines, and many athletes swear the activity improves their performance. The jiggling does seem to spur muscles to work harder, possibly triggering some of the same effects as exercise. But researchers still don’t know how the two compare, especially when it comes to people who are ill. So biomedical engineer Meghan McGee-Lawrence of the Medical College of Georgia in Augusta and colleagues decided to perform a head-to-head comparison of exercise and whole-body vibration. The researchers tested mutant mice resistant to the appetite-controlling hormone leptin, resulting in obesity and diabetes. © 2017 American Association for the Advancement of Science.

Keyword: Obesity
Link ID: 23362 - Posted: 03.16.2017

By Christof Koch We moderns take it for granted that consciousness is intimately tied up with the brain. But this assumption did not always hold. For much of recorded history, the heart was considered the seat of reason, emotion, valor and mind. Indeed, the first step in mummification in ancient Egypt was to scoop out the brain through the nostrils and discard it, whereas the heart, the liver and other internal organs were carefully extracted and preserved. The pharaoh would then have access to everything he needed in his afterlife. Everything except for his brain! Several millennia later Aristotle, one of the greatest of all biologists, taxonomists, embryologists and the first evolutionist, had this to say: “And of course, the brain is not responsible for any of the sensations at all. The correct view [is] that the seat and source of sensation is the region of the heart.” He argued consistently that the primary function of the wet and cold brain is to cool the warm blood coming from the heart. Another set of historical texts is no more insightful on this question. The Old and the New Testaments are filled with references to the heart but entirely devoid of any mentions of the brain. Debate about what the brain does grew ever more intense over ensuing millennia. The modern embodiment of these arguments seeks to identify the precise areas within the three-pound cranial mass where consciousness arises. What follows is an attempt to size up the past and present of this transmillennial journey. The field has scored successes in delineating a brain region that keeps the neural engine humming. Switched on, you are awake and conscious. In another setting, your body is asleep, yet you still have experiences—you dream. In a third position, you are deeply asleep, effectively off-line. © 2017 Scientific American

Keyword: Consciousness
Link ID: 23361 - Posted: 03.16.2017

Ian Sample Science editor Researchers have overcome one of the major stumbling blocks in artificial intelligence with a program that can learn one task after another using skills it acquires on the way. Developed by Google’s AI company, DeepMind, the program has taken on a range of different tasks and performed almost as well as a human. Crucially, and uniquely, the AI does not forget how it solved past problems, and uses the knowledge to tackle new ones. The AI is not capable of the general intelligence that humans draw on when they are faced with new challenges; its use of past lessons is more limited. But the work shows a way around a problem that had to be solved if researchers are ever to build so-called artificial general intelligence (AGI) machines that match human intelligence. “If we’re going to have computer programs that are more intelligent and more useful, then they will have to have this ability to learn sequentially,” said James Kirkpatrick at DeepMind. The ability to remember old skills and apply them to new tasks comes naturally to humans. A regular rollerblader might find ice skating a breeze because one skill helps the other. But recreating this ability in computers has proved a huge challenge for AI researchers. AI programs are typically one trick ponies that excel at one task, and one task only.

Keyword: Learning & Memory; Robotics
Link ID: 23360 - Posted: 03.15.2017

By Nicole Mortillaro, CBC News Have you ever been witness to an event with a friend only to conclude you both had different accounts about what had occurred? This is known as perception bias. Our views and beliefs can cloud the way we perceive things — and perception bias can take on many forms. New research published in the Journal of Personality and Social Psychology found that people tend to perceive young black men as larger, stronger and more threatening than white men of the same size. This, the authors say, could place them at risk in situations with police. The research was prompted by recent police shootings against black men in the United States — particularly those involving descriptions of men that didn't correspond with reality. Take, for example, the case of Dontre Hamilton. In 2014, the unarmed Hamilton was shot 14 times and killed by police in Milkwaukee. The officer involved testified that he believed he would have been easily overpowered by Hamilton, who he described as having a muscular build. But the autopsy report found that Hamilton was just five foot seven and weighed 169 pounds. Looking at the Hamilton case, as well as many other examples, the researchers sought to determine whether or not there were psychologically driven preconceived notions about black men over white men. ©2017 CBC/Radio-Canada.

Keyword: Attention; Emotions
Link ID: 23359 - Posted: 03.15.2017