Most Recent Links

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 21 - 40 of 20316

by Jacob Aron Now that's an in-flight meal. To snatch a mealworm in mid-air, the bat in this video performs impressive aerial acrobatics aided by a unique cluster of touch sensors on its wings. Bats are known to use echolocation to identify their dinner, steering towards prey by listening for reflected sounds. It turns out that their sense of touch plays a key role as well. Ellen Lumpkin of Columbia University, New York, and her colleagues have discovered that bats have a special arrangement of hairs and touch-sensitive receptors across their wings that detect changes in airflow to help stabilise flight. The team also found that sensory neurons arranged in a pattern on bat wings (pictured) send signals to the lower spinal cord, which is unusual for a mammal. This part of the spinal cord usually receives messages from an animal's torso. The bizarre circuitry reflects the embryonic origins of bat wings, which form when their front limbs, torso and hind limbs fuse together. Journal reference: Cell Reports, DOI: 10.1016/j.celrep.2015.04.001 © Copyright Reed Business Information Ltd

Keyword: Pain & Touch
Link ID: 20872 - Posted: 05.02.2015

Monya Baker An ambitious effort to replicate 100 research findings in psychology ended last week — and the data look worrying. Results posted online on 24 April, which have not yet been peer-reviewed, suggest that key findings from only 39 of the published studies could be reproduced. But the situation is more nuanced than the top-line numbers suggest (See graphic, 'Reliability test'). Of the 61 non-replicated studies, scientists classed 24 as producing findings at least “moderately similar” to those of the original experiments, even though they did not meet pre-established criteria, such as statistical significance, that would count as a successful replication. The results should convince everyone that psychology has a replicability problem, says Hal Pashler, a cognitive psychologist at the University of California, San Diego, and an author of one of the papers whose findings were successfully repeated. “A lot of working scientists assume that if it’s published, it’s right,” he says. “This makes it hard to dismiss that there are still a lot of false positives in the literature.” But Daniele Fanelli, who studies bias and scientific misconduct at Stanford University in California, says the results suggest that the reproducibility of findings in psychology does not necessarily lag behind that in other sciences. There is plenty of room for improvement, he adds, but earlier studies have suggested that reproducibility rates in cancer biology and drug discovery could be even lower1, 2. “From my expectations, these are not bad at all,” Fanelli says. “Though I have spoken to psychologists who are quite disappointed.” © 2015 Nature Publishing Group,

Keyword: Attention
Link ID: 20871 - Posted: 05.02.2015

by Simon Oxenham As regular readers will be well aware, much of what I've covered on this blog has been about the use and abuse of the prefix "neuro" to mislead. You don't have to look far to see that most people seem to be pretty disconnected from the science of the brain. This becomes a problem once you realize how this allows us to be misled. Take, for example, the adverts for "brain training" games that stalk you on the internet with claims that don't even remotely hold water; or the fact that a laughable technique called "Brain Gym" that involves making children perform pointless exercises and is based on no evidence whatsoever continues to be widespread in schools across the world at a cost of hundreds of thousands of dollars, and has been used by as many as 39 percent of teachers in the UK. Drop a few brain-related words and it seems even teachers can lose the capacity for critical thought en masse. In 2008, a paper titled "The Seductive Allure of Neuroscience Explanations," struck a chord with me when it made the case that we can be suckered into judging bad psychological explanations as better than they really are if they are served with a side order of irrelevant neuroscience. Another paper published the same year suggested that just showing an image of the brain alongside articles describing fictitious neuroscience research (for example claiming that watching TV improves mathematical ability) resulted in people rating the standard of reasoning in the articles as higher. In 2013 however, a paper was published that remains a strong contender for the award of best-named paper of all time: "The Seductive Allure of Seductive Allure." The paper pointed out flaws in both of the 2008 papers: The neuroscience explanations were longer and arguably added to the psychological explanations. It could be the case that more complicated-sounding, or seemingly better-explained explanations are simply more persuasive. © Copyright 2015, The Big Think, Inc.

Keyword: Brain imaging
Link ID: 20870 - Posted: 05.02.2015

By Kenneth Miller At first, no one noticed that Joe Borelli was losing his mind — no one, that is, but Borelli himself. The trim, dark-haired radiologist was 43 years old. He ran two practices, was an assistant professor at the Medical University of South Carolina and played a ferocious game of tennis. Yet he began to have trouble recalling friends’ names, forgot to run important errands and got lost driving in his own neighborhood. He’d doze off over paperwork and awaken with drool dampening his lab coat. Borelli feared he had a neurodegenerative disease, perhaps early onset Alzheimer’s. But as a physician, he knew that memory loss coupled with fatigue could also indicate obstructive sleep apnea (OSA), a disorder in which sagging tissue periodically blocks the upper airway during slumber. The sufferer stops breathing for seconds or minutes, until the brain’s alarm centers rouse him enough to tighten throat muscles. Although the cycle may repeat hundreds of times a night, the patient is usually unaware of any disturbance. Borelli checked in to a sleep clinic for tests, which came out negative. He went to a neurologist, who found nothing wrong. At another sleep clinic, Borelli was diagnosed with borderline OSA; the doctor prescribed a CPAP (continuous positive airway pressure) machine, designed to keep his airway open by gently inflating it. But he still awoke feeling exhausted, and he quit using the device after a couple of months. Borelli’s fingers soon grew so clumsy that he couldn’t button his shirt cuffs.

Keyword: Sleep
Link ID: 20869 - Posted: 05.02.2015

Nala Rogers People who are ill often complain of changes in their sense of taste. Now, researchers report that this sensory shift may be caused by a protein that triggers inflammation. Mice that cannot produce the protein, called tumour necrosis factor-α (TNF-α), are less sensitive to bitter flavours than normal mice, according to a study published on 21 April in Brain, Behavior, and Immunity1. People with infections, autoimmune disease or other inflammatory conditions have higher levels of TNF-α than healthy people, and the protein has been shown to reduce food intake2. To investigate the influence of TNF-α on taste, researchers at the Monell Chemical Senses Center in Philadelphia, Pennsylvania, used engineered mice that could not produce the protein. The researchers offered the engineered mice and normal mice water that contained different types and concentrations of flavours. The mice that could not produce TNF-α had normal reactions to sweet, sour, salty and umami flavours, but were less sensitive to bitter ones. “Normal mice will pick up [that taste] at a much lower concentration. They will know this is bitter; they will not like it,” says Hong Wang, a molecular biologist at Monell and an author of the study. “But if the TNF-α gene is not there, then the mice will only start to avoid the bitter solution at higher concentrations.” © 2015 Nature Publishing Group

Keyword: Chemical Senses (Smell & Taste); Neuroimmunology
Link ID: 20868 - Posted: 04.30.2015

|By Brian Bienkowski and Environmental Health News Male minnows exposed to a widely used diabetes drug ubiquitous in wastewater effluent had feminized reproductive parts and were smaller and less fertile, according to a new study. It is the first study to examine the drug metformin’s impact on fish endocrine systems and suggests that non-hormone pharmaceuticals pervasive in wastewater may cause reproductive and development problems in exposed fish. Metformin is largely used to combat insulin resistance associated with type-2 diabetes, which accounts for about 90 percent of all diagnosed U.S. adult diabetes cases. Researchers from the University of Wisconsin-Milwaukee exposed young fathead minnows to water containing levels of metformin commonly found in wastewater effluent. Eighty-four percent of 31 metformin-exposed male fish exhibited feminized reproductive organs. “Normally in females you see eggs developed in ova, in males, you see a different structure – producing tiny sperm instead of an egg structure,” said Rebecca Klaper, an associate professor at the University of Wisconsin-Milwaukee and senior author of the study. “We saw development of larger egg structures within the [male’s] testis.” © 2015 Scientific American

Keyword: Sexual Behavior
Link ID: 20867 - Posted: 04.30.2015

Neuroscientists have discovered brain circuitry for encoding positive and negative learned associations in mice. After finding that two circuits showed opposite activity following fear and reward learning, the researchers proved that this divergent activity causes either avoidance or reward-driven behaviors. Funded by the National Institutes of Health, they used cutting-edge optical-genetic tools to pinpoint these mechanisms critical to survival, which are also implicated in mental illness. “This study exemplifies the power of new molecular tools that can push and pull on the same circuit to see what drives behavior,” explained Thomas R. Insel, M.D., director of NIH’s National Institute of Mental Health (NIMH). “Improved understanding of how such emotional memory works holds promise for solving mysteries of brain circuit disorders in which these mechanisms are disrupted.” NIMH grantee Kay Tye, Ph.D. External Web Site Policy, Praneeth Namburi and Anna Beyeler, Ph.D., of the Massachusetts Institute of Technology (MIT), Cambridge, and colleagues, report their findings April 29, 2015 in the journal Nature. Prior to the new study, scientists suspected involvement of the circuits ultimately implicated, but were stumped by a seeming paradox. A crossroads of convergent circuits in an emotion hub deep in the brain, thebasolateral amygdala, seem to be involved in both fear and reward learning, but how one brain region could orchestrate such opposing behaviors – approach and avoidance – remained an enigma. How might signals find the appropriate path to follow at this fork in the road?

Keyword: Learning & Memory; Emotions
Link ID: 20866 - Posted: 04.30.2015

by Jessica Hamzelou You open your front door to find your boss – who is also a cat. The bizarre can seem completely normal when you're dreamingMovie Camera, perhaps because parts of your brain give up trying to figure out what's going on. Armando D'Agostino of the University of Milan in Italy thinks that the strangeness of dreams resembles psychosis, because individuals are disconnected from reality and have disrupted thought processes that lead to wrong conclusions. Hoping to learn more about psychotic thoughts, D'Agostino and his colleagues investigated how our brains respond to the bizarre elements of dreams. Because it is all but impossible to work out what a person is dreaming about while they're asleep, D'Agostino's team asked 12 people to keep diaries in which they were to write detailed accounts of seven dreams. When volunteers could remember one, they were also told to record what they had done that day and come up with an unrelated fantasy story to accompany an image they had been given. Using a "bizarreness" scoring system, the researchers found that dreams were significantly weirder than the waking fantasies the volunteers composed. "It seems counterintuitive, but there was almost no bizarreness in fantasies," says D'Agostino. "There are logical constraints on waking fantasies and they are never as bizarre as a dream." © Copyright Reed Business Information Ltd

Keyword: Sleep
Link ID: 20865 - Posted: 04.30.2015

by Laura Sanders Here I am, fresh off of my second maternity leave ready to serve up lots of juicy fresh science about babies. And I would love to do that, if only I were sleeping more at night. With her intoxicating baby aroma, squishy face and sweet little coos, our newest little daughter is irresistible by day. Night is another story altogether. And it’s a sad one. Our tale begins and ends with her cries wrenching me from a dead sleep over and over again. Sometimes I lie in bed for a split second, deluding myself into thinking that maybe this time she’ll go back to sleep. That pause is long enough for me to notice all the ways her cries affect me: Pounding heart, sweaty hands and feet, and most importantly, a single-minded, maniacal focus on that sound. Evolution didn’t give babies many ways to communicate, but the method they have, crying, sure gets the job done. So I read with interest an April 23 study in Nature that explains one way in which baby cries sledgehammer a mother’s brain. Upon hearing a lost pup’s cries, mother mice promptly go and fetch the wayward pup by the scruff of its neck. But this behavior has to be learned — a first-time mom isn’t as attuned to the sounds of her pups’ cries. As she gets the hang of that whole mothering thing, the momma mouse’s brain gets better at picking the sound of a distant crying pup out of the background din. These pup cries bore their way into the mother’s brain in an interesting way, the researchers found. © Society for Science & the Public 2000 - 2015.

Keyword: Development of the Brain; Emotions
Link ID: 20864 - Posted: 04.30.2015

By Rachel E. Gross “By being a guy’s best first move … Axe is designed to keep guys a step ahead in the dating game,” boasts Unilever, the company that sells Axe products. Of course, if you don’t happen to be a gullible 13-year-old boy, you probably don’t believe that body spray or deodorant is a magic elixir with the power to turn nice girls naughty. But what if it were possible to change a person’s mood with just a scent? The idea may not be that far-fetched, according to a new study in the journal Psychological Science—reporting work that was funded by Unilever. The study found that it might be possible to subconsciously trigger a state of happiness using the scent of—deep breath now—human sweat. People send all kinds of secret messages through their secretions. When smelling chemicals in male sweat, women become more alert, and they can even tell whether that sweat was made by a guy who was particularly turned on. (Cautions the New York Times: “No man should imagine that based on these conclusions he can improve his sex life by refraining from bathing.”) But until now, most sweat studies have focused on sexual arousal or negative emotions like fear. For obvious reasons, these emotions are crucial to survival and evolutionary success. If your friend spots a puma, it may be helpful for you to be able to sniff out instant cues to be on the alert or flee for cover. Being able to transmit positive emotions may also have a profound social impact, says Gün Semin, a psychologist at Utrecht University in the Netherlands and lead researcher on the study. After all, “the pursuit of happiness is not an individual enterprise,” as he and his fellow researchers write rather eloquently in the new study. So Semin’s team decided to test whether people could communicate happiness via sweat.

Keyword: Chemical Senses (Smell & Taste); Emotions
Link ID: 20863 - Posted: 04.30.2015

Scott Hensley When patients brought to the ER have uncontrolled blood pressure, neglected asthma or diabetes that hasn't been dealt with, doctors often start treatment right then and there. But what happens when the patient turns out to be addicted to opioids, such as oxycodone or heroin? In case of an overdose, the medical team can take action to rescue the patient. The underlying addiction is something else, though. Like asthma or diabetes, opioid addiction is a chronic condition. Could starting treatment for addiction in the ER get someone on right road faster? Doctors at Yale University thought it was possible. "You can normalize this chronic disease like any other chronic disease," says Dr. Gail D'Onofrio, chief of emergency medicine at Yale's med school. A kit with naloxone, also known by its brand name Narcan, is displayed at the South Jersey AIDS Alliance in Atlantic City. Naloxone counters an overdose with heroin or certain prescription painkillers by blocking the receptors these opioids bind to in the brain. She and her colleagues at Yale-New Haven Hospital in Connecticut tested whether prescribing medicine to ease withdrawal symptoms in combination with a brief counseling intervention and a focused referral for help would improve the chances a person would get into addiction treatment. It worked pretty well, according to results of a study published Tuesday in JAMA, the journal of the American Medical Association. © 2015 NPR

Keyword: Drug Abuse
Link ID: 20862 - Posted: 04.30.2015

Children who were often bullied by their peers may experience more anxiety and depression than children who were abused by adults, a finding that U.S. and British researchers say highlights an "imbalance" in school services to tackle bullying. Researchers followed the mental health of more than 4,000 children in Avon, south west England from birth to age 18 and 1,400 others in North Carolina from age nine up to age 26 through parent questionnaires and clinical interviews. In the Avon study, maltreatment was defined as physical, emotional, or sexual abuse or "maladaptive parenting" such as hitting, shouting and hostility. Children were interviewed about the frequency of bullying, which included overt threats, physical violence and nasty names as well as social exclusion or spreading lies or rumours. The results consistently showed an increased risk of anxiety, depression, self-harm and suicidal tendencies in children who were bullied, whether or not they had a history of abuse by adults, Prof. William Copeland, a clinical psychologist at Duke University School of Medicine in Durham, N.C. and his co-authors concluded in Tuesday's issue of Lancet Psychiatry. "What was a surprise was to see [the results] were as significant and pervasive as what we see for children that are physically abused, sexually abused or neglected," Copeland said. Government policies have focused almost exclusively on providing services for child abuse but much less attention and resources are devoted to bullying, the researchers said. Copeland's previous research showed long-term repercussions from bullying persist — and that includes impacts on physical health, dropping out of school and trouble with authorities. ©2015 CBC/Radio-Canada

Keyword: Stress; Depression
Link ID: 20861 - Posted: 04.29.2015

By JEFFREY ELY, ALEXANDER FRANKEL and EMIR KAMENICA IMAGINE the following situation. After a grueling day at work, you plop down in front of your TV, ready to relax. Your TiVo has recorded all of the day’s March Madness games. You’ve sequestered yourself away from any news about who won or lost. Which game to watch? Suddenly, your spouse pops in and tells you to stay away from Villanova versus Lafayette, which was a blowout, and to watch Baylor versus Georgia State, a nail-biter. Is this recommendation appreciated? Hardly. Baylor versus Georgia State was exciting because the unexpected happened: It was a back-and-forth affair in which Georgia State, the underdog, clinched the upset only in the final moments. But if you know in advance that it’s a nail-biter, you will expect the unexpected, ruining the surprise. It’s a lesson that the filmmaker M. Night Shyamalan, for one, seems to have missed. Once it’s common knowledge that your movie will have a dramatic, unexpected plot twist at the end, then your movie no longer has a dramatic, unexpected plot twist at the end. To be thrilling, you must occasionally be boring. This is one of several lessons that came out of our recent study of drama-based entertainment using the tools of information economics — the results of which were published in the Journal of Political Economy in February. When we recognize that the capacity to surprise an audience is a scarce resource (“You can’t fool all of the people all of the time”), it becomes natural to use economic theory to optimize that resource.

Keyword: Attention
Link ID: 20860 - Posted: 04.29.2015

Amy Coats Those split second decisions, made almost without thinking. When to put your foot on the pedal when you’re at the red light. When to check how those sausages are doing. Remembering to grab your lunch from the fridge seconds before you leave the house. Or – too often – 20 minutes after. And those carefully considered ones. Do I just finish this paragraph before I make a cup of tea? Or do I wait until the boss is clear of the kitchen? Timing, that is our perception and estimation of time, is key in determining how we behave and in the decisions we make. New findings suggest that time in the brain is relative, not absolute. This means that your brain ‘encodes’ your sense of time depending on what happens to you, and not by the second, minute or hour. And this in turn determines how you behave. Alas, you could be forgiven for feeling that the units of time common to everyone worldwide, except perhaps the odd Amazonian tribe, are pretty well ingrained. My partner and I will often make a quick bet on what time it is before we check our phone (all sigh!/rejoice! [delete as appropriate], the dwindling watch-less generation). And we’re both pretty good at getting to within 5 or 10 minutes, even if we haven’t known the exact time all day. He’s normally better at it, perhaps because he’s male? Perhaps it tends to fly/drag for me because I’m having more/less fun? Perhaps that’s another story. In the 2004 reality TV show Shattered, contestants who had been sleep-deprived for over 140 hours went head-to-head to predict when an arbitrary amount of time had passed – in this case, one minute and seven seconds. With the pressure of £100,000 prize money at stake, Dermot O’Leary grimacing nearby, a studio audience rustling in the darkness, and no cues except their ‘inner clock’, contestants were almost unbelievably close. The loser, Jonathan, was 0.4 seconds out, while Jimmy, the winner, was just one tenth of a second out. © 2015 Guardian News and Media Limited

Keyword: Attention
Link ID: 20859 - Posted: 04.29.2015

// by Jennifer Viegas Male species of a West African monkey communicate using at least these six main sounds: boom-boom, krak, krak-oo, hok, hok-oo and wak-oo. Key to the communication by the male Campbell's monkey is the suffix "oo," according to a new study, which is published in the latest issue of the Proceedings of the Royal Society B. By adding that sound to the end of their calls, the male monkeys have created a surprisingly rich "vocabulary" that males and females of their own kind, as well as a related species of monkey, understand. The study confirms prior suspected translations of the calls. For example, "krak" means leopard, while "krak-oo" refers to other non-leopard threats, such as falling branches. "Boom-boom-krak-oo" can roughly translate to, "Watch out for that falling tree branch." "Several aspects of communication in Campbell's monkeys allow us to draw parallels with human language," lead author Camille Coye, a researcher at the University of St. Andrews, told Discovery News. For the study, she and her team broadcast actual and artificially modified male Campbell's monkey calls to 42 male and female members of a related species: Diana monkeys. The latter's vocal responses showed that they understood the calls and replied in predicted ways. They freaked out after hearing "krak," for example, and remained on alert as they do after seeing a leopard. © 2015 Discovery Communications, LLC.

Keyword: Language; Evolution
Link ID: 20858 - Posted: 04.29.2015

By Sid Perkins Imagine having a different accent from someone else simply because your house was farther up the same hill. For at least one species of songbird, that appears to be the case. Researchers have found that the mating songs of male mountain chickadees (Poecile gambeli, shown) differ in their duration, loudness, and the frequency ranges of individual chirps, depending in part on the elevation of their habitat in the Sierra Nevada mountains of the western United States. The songs also differed from those at similar elevations on a nearby peak. Young males of this species learn their breeding songs by listening to adult males during their first year of life, the researchers note. And because these birds don’t migrate as the seasons change, and young birds don’t settle far from where they grew up, it’s likely that the differences persist in each local group—the ornithological equivalent of having Southern drawls and Boston accents. Females may use the differences in dialect to distinguish local males from outsiders that may not be as well adapted to the neighborhood they’re trying to invade, the team reports today in Royal Society Open Science. © 2015 American Association for the Advancement of Science

Keyword: Language; Evolution
Link ID: 20857 - Posted: 04.29.2015

Julian Baggini is that happy thing – a philosopher who recognises that readers go glassy-eyed if presented with high-octane philosophical discourse. And yet, as his latest book, Freedom Regained: The Possibility of Free Will, makes clear, it is in all our interests to consider crucial aspects of what it means to be human. Indeed, in this increasingly complex world, maybe more so than ever. Freedom is one of the great, emotive political watchwords. The emancipation of slaves and women has inspired political movements on a grand scale. But, latterly, the concept of freedom has defected from the public realm to the personal. How responsible are we as individuals for the actions we take? To what degree are we truly autonomous agents? The argument that environmental circumstances are crucial determinates on our actions – the “Officer Krupke” argument (from the West Side Story song: “Gee, Officer Krupke, we’re very upset/We never had the love that every child ought to get”) – has for some time carried weight, not least in the defence of violent crime. Defective genes are also a common part of the artillery in the argument against the possibility of free choice. Excessive testosterone and low resting heart rates, for example, both statistically bias a person towards violence. And now neuroscience brings us the unnerving news that while even the most sane, genetically well endowed and law-abiding of us believe we make free choices, the evidence of brain scans suggests otherwise. Neuroscience reveals the seemingly novel fact that “we are not the authors of our thoughts and actions in the way people generally suppose”. I say “seemingly novel”, for it is no news that many of our apparently willed choices have unconscious determinates, which are at variance from our known wishes and desires. The whole of psychoanalysis is predicated on that principle but, as anyone who can drive a car will attest, often routine physical actions take their source from an internalised history rather than any conscious decision-making. The neural information that has made waves, however, is the fact that scans indicates the brain’s chemistry consistently determines a decision prior to our consciously making that decision. So when I deliberate over a menu and finally choose a mushroom risotto over a rare steak, my brain has anticipated this before I am aware of my choice. © 2015 Guardian News and Media Limited

Keyword: Consciousness
Link ID: 20856 - Posted: 04.28.2015

Scientists have raised hopes that they may be able to create a vaccine to block the progress of Parkinson’s disease. They believe new research provides evidence that an abnormal protein may trigger the condition. If the theory is correct, researchers say it might be possible to prime a person’s immune system – using a special vaccine – so it is ready to attack the rogue protein as it passes through the body. In this way, the protein would be prevented from destroying a person’s dopamine-manufacturing cells, where the disease inflicts its greatest damage. This new vision of Parkinson’s has been arousing excitement among researchers. “It has transformed the way we see Parkinson’s,” said Roger Barker, professor of clinical neurosciences at Cambridge University. Parkinson’s does not usually affect people until they are over 50. However, researchers have uncovered recent evidence that suggests it may be caused by an event occurring 10 to 20 years before its main symptoms – tremors, rigidity and slowness of movement – manifest themselves. “If you ask Parkinson’s patients if, in the past, they have experienced loss of sense of smell or suffer from disturbed sleep or have problems with their bowels, very often they reply they have,” said Barker, whose work is backed by the charity Parkinson’s UK, whose Parkinson Awareness week ends on Sunday. “Frequently these patients manifest symptoms several years before it becomes apparent they have the disease. We now believe there is a link.” © 2015 Guardian News and Media Limited

Keyword: Parkinsons
Link ID: 20855 - Posted: 04.28.2015

By Emily Dwass In the frightening world of brain tumors, “benign” is a good word to hear. But even a nonmalignant tumor can be dangerous — especially if, as in my case, it goes undetected, becoming a stealth invader. “Anecdotally, we often hear about women who were originally misdiagnosed — sometimes for years,” said Tom Halkin, a spokesman for the patient advocacy nonprofit National Brain Tumor Society. When I developed tingling in my limbs 12 years ago, two Los Angeles neurologists diagnosed Guillain-Barré syndrome, a disorder in which the immune system attacks the nervous system. The symptoms of numbness and weakness ebbed and flowed for three years. Then one day, I couldn’t slide my right foot into a flip-flop. This got me a ride in a magnetic resonance imaging machine, which revealed a brain mass the size of a tennis ball. It was a benign meningioma, a tumor that grows in the membranes surrounding the brain and spinal cord. After the diagnosis, I consulted with Los Angeles surgeons. “We’re going to cut your head open like a pumpkin,” one told me. I chose someone else, who had a stellar reputation, who was compassionate, and who did not compare my skull to a squash. “You’re cured,” he said as I awoke in the operating room. Recovery took about six weeks and went smoothly, except for my right foot, which remains partly numb. I relearned to walk and to drive with my left foot, using adaptive equipment. Had my tumor been diagnosed earlier, I might have avoided a large craniotomy and permanent foot issues. “It’s critical to find these tumors when they are small, when radiosurgery is an option, rather than when they are very big or produce a lot of symptoms, at which point it’s not optimal to treat them without doing open surgery,” said Dr. Susan Pannullo, the director of neuro-oncology and neurosurgical radiosurgery at NewYork-Presbyterian Hospital and Weill Cornell Medical College. © 2015 The New York Times Company

Keyword: Movement Disorders
Link ID: 20854 - Posted: 04.28.2015

By Laura Sanders Studying the human brain requires grandiose thinking, but rarely do actual theatrical skills come into play. In her latest stint as a video star, MIT neuroscientist Nancy Kanwisher does not buzz saw her skull open to give viewers a glimpse of her brain. But she does perhaps the next best thing: She clips off her shoulder-length gray hair and shaves her head on camera. Kanwisher’s smooth, bald head then becomes a canvas for graduate student and artist Rosa Lafer-Sousa, who meticulously draws in the brain’s wrinkles — the sulci and the gyri that give rise to thoughts, memories and behaviors. All the while, Kanwisher provides a voice-over describing which areas of the brain recognize faces, process language and even think about what another person is thinking. The video is the latest in Kanwisher’s occasional online series, Nancy’s Brain Talks. Pithy, clever and cleanly produced, the more than two dozen videos she has made so far bring brain science to people who might otherwise miss out. In another neurostunt, brain-zapping technology called transcranial magnetic stimulation makes Kanwisher’s hand jump involuntarily. These demonstrations capture people’s attention more than a dry scientific paper would. “I think scientists owe it to the public to share the cool stuff we discover,” Kanwisher says. Her own lab’s discoveries focus on how the brain’s disparate parts work together to construct a mind. Some brain areas have very specific job descriptions while others are far more general. Compiling a tally of brain regions and figuring out what they do is one of the first steps toward understanding the brain. “It starts to give us a set of basic components of the mind,” Kanwisher says. “It’s like a parts list.” © Society for Science & the Public 2000 - 2015.

Keyword: Brain imaging
Link ID: 20853 - Posted: 04.28.2015