Most Recent Links

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 81 - 100 of 22825

By Joshua A. Krisch Alcian blue-stained skateUCSF/JULIUS LABSharks, rays, and skates can detect minute fluctuations in electric fields—signals as subtle as a small fish breathing within the vicinity—and rely on specialized electrosensory cells to navigate, and hunt for prey hidden in the sand. But how these elasmobranch fish separate signal from noise has long baffled scientists. In an environment full of tiny electrical impulses, how does the skate home in on prey? See “Sensory Biology Around the Animal Kingdom” In a study published this week (March 6) in Nature, researchers at the University of California, San Francisco (UCSF), have analyzed the electrosensory cells of the little skate (Leucoraja erinacea). They found that voltage-gated calcium channels within these cells appear to work in concert with calcium-activated potassium channels, both specifically tuned in the little skate to pick up on weak electrical signals. “We have elucidated a molecular basis for electrosensation, at least in the little skate, which accounts for this unusual and highly sensitive mechanism for detecting electrical fields,” said coauthor Nicholas Bellono, a postdoc at USCF. “How general it is, we don’t know. But this is really the first instance in which we’ve been able to drill down and ask what molecules could be involved in this kind of system.” © 1986-2017 The Scientist

Keyword: Pain & Touch
Link ID: 23330 - Posted: 03.09.2017

By Jackie Snow Last month, Facebook announced software that could simply look at a photo and tell, for example, whether it was a picture of a cat or a dog. A related program identifies cancerous skin lesions as well as trained dermatologists can. Both technologies are based on neural networks, sophisticated computer algorithms at the cutting edge of artificial intelligence (AI)—but even their developers aren’t sure exactly how they work. Now, researchers have found a way to "look" at neural networks in action and see how they draw conclusions. Neural networks, also called neural nets, are loosely based on the brain’s use of layers of neurons working together. Like the human brain, they aren't hard-wired to produce a specific result—they “learn” on training sets of data, making and reinforcing connections between multiple inputs. A neural net might have a layer of neurons that look at pixels and a layer that looks at edges, like the outline of a person against a background. After being trained on thousands or millions of data points, a neural network algorithm will come up with its own rules on how to process new data. But it's unclear what the algorithm is using from those data to come to its conclusions. “Neural nets are fascinating mathematical models,” says Wojciech Samek, a researcher at Fraunhofer Institute for Telecommunications at the Heinrich Hertz Institute in Berlin. “They outperform classical methods in many fields, but are often used in a black box manner.” © 2017 American Association for the Advancement of Science.

Keyword: Robotics; Learning & Memory
Link ID: 23329 - Posted: 03.08.2017

By Andy Coghlan In primates such as humans, living in cooperative societies usually means having bigger brains — with brainpower needed to navigate complex social situations. But surprisingly, in birds the opposite may be true. Group-living woodpecker species have been found to have smaller brains than solitary ones. Cooperative societies might in fact enable birds to jettison all that brainpower otherwise needed on their own to constantly out-think, outfox and outcompete wily rivals, say researchers. Socialism in birds may therefore mean the individuals can afford to get dumber. The results are based on a comparison of brain sizes in 61 woodpecker species. The eight group-living species identified typically had brains that were roughly 30 per cent smaller than solitary and pair-living ones. “It’s a pretty big effect,” says lead researcher Richard Byrne at the University of St Andrews in the UK. Byrne’s explanation is that a solitary life is more taxing on the woodpecker brain than for those in cooperative groups, in which a kind of group-wide “social brain” takes the strain off individuals when a challenge arises. Group-living acorn woodpeckers in North America, for example, are well known for creating collective “granaries” of acorns by jamming them into crevices accessible to the whole group during hard times. © Copyright Reed Business Information Ltd.

Keyword: Evolution
Link ID: 23328 - Posted: 03.08.2017

By Lindzi Wessel You may have seen the ads: Just spray a bit of human pheromone on your skin, and you’re guaranteed to land a date. Scientists have long debated whether humans secrete chemicals that alter the behavior of other people. A new study throws more cold water on the idea, finding that two pheromones that proponents have long contended affect human attraction to each other have no such impact on the opposite sex—and indeed experts are divided about whether human pheromones even exist. The study, published today in Royal Society Open Science, asked heterosexual participants to rate opposite-sex faces on attractiveness while being exposed to two steroids that are putative human pheromones. One is androstadienone (AND), found in male sweat and semen, whereas the second, estratetraenol (EST), is in women’s urine. Researchers also asked participants to judge gender-ambiguous, or “neutral,” faces, created by merging images of men and women together. The authors reasoned that if the steroids were pheromones, female volunteers given AND would see gender-neutral faces as male, and male volunteers given EST would see gender-neutral faces as female. They also theorized that the steroids corresponding to the opposite sex would lead the volunteers to rate opposite sex faces as more attractive. That didn’t happen. The researchers found no effects of the steroids on any behaviors and concluded that the label of “putative human pheromone” for AND and EST should be dropped. “I’ve convinced myself that AND and EST are not worth pursuing,” says the study’s lead author, Leigh Simmons, an evolutionary biologist at the University of Western Australia in Crawley. © 2017 American Association for the Advancement of Science.

Keyword: Chemical Senses (Smell & Taste); Hormones & Behavior
Link ID: 23327 - Posted: 03.08.2017

By Agata Blaszczak-Boxe Recognizing when a friend or colleague feels sad, angry or surprised is key to getting along with others. But a new study suggests that a knack for eavesdropping on feelings may sometimes come with an extra dose of stress. This and other research challenge the prevailing view that emotional intelligence is uniformly beneficial to its bearer. In a study published in the September 2016 issue of Emotion, psychologists Myriam Bechtoldt and Vanessa Schneider of the Frankfurt School of Finance and Management in Germany asked 166 male university students a series of questions to measure their emotional smarts. For example, they showed the students photographs of people's faces and asked them to what extent feelings such as happiness or disgust were being expressed. The students then had to give job talks in front of judges displaying stern facial expressions. The scientists measured concentrations of the stress hormone cortisol in the students' saliva before and after the talk. In students who were rated more emotionally intelligent, the stress measures increased more during the experiment and took longer to go back to baseline. The findings suggest that some people may be too emotionally astute for their own good, says Hillary Anger Elfenbein, a professor of organizational behavior at Washington University in St. Louis, who was not involved in the study. “Sometimes you can be so good at something that it causes trouble,” she notes. Indeed, the study adds to previous research hinting at a dark side of emotional intelligence. A study published in 2002 in Personality and Individual Differences suggested that emotionally perceptive people might be particularly susceptible to feelings of depression and hopelessness. © 2017 Scientific American

Keyword: Emotions; Stress
Link ID: 23326 - Posted: 03.08.2017

By Bahar Gholipour, Spectrum An analysis of whole-genome sequences from more than 5,000 people has unearthed 18 new candidate genes for autism. The study, the largest yet of its kind, was published this week in Nature Neuroscience. The new work identified 61 genes associated with autism, 43 of which turned up in previous studies. An independent study published last month looked at several autism genes and made a strong case for three of the new genes2. Most of the new candidates play roles in cellular processes already implicated in autism and intellectual disability. They also point to possible new treatments. “Eighty percent of them involve common biological pathways that have potential targets for future medicines,” says study investigator Ryan Yuen, research associate at the Hospital for Sick Children in Toronto, Canada. The study is the largest analysis of whole genomes from people with autism and their family members to date. Participants are enrolled in MSSNG, an effort funded by Google and the nonprofit group Autism Speaks to analyze sequences from 10,000 people. Other studies typically focus on the coding regions of the genome, called theexomes. Most of the mutations identified in the new work land in genes, but some affect noncoding regions of the genome. Understanding the role of these noncoding mutations is a “challenging task,” says Ivan Iossifov, associate professor at Cold Spring Harbor Laboratory in New York, who was not involved in the study. “The more data that’s available, the better,” he says. “This paper provides a very useful resource for the community to further study.” © 2017 Scientific American,

Keyword: Autism; Genes & Behavior
Link ID: 23325 - Posted: 03.07.2017

Laura Spinney The misinformation was swiftly corrected, but some historical myths have proved difficult to erase. Since at least 2010, for example, an online community has shared the apparently unshakeable recollection of Nelson Mandela dying in prison in the 1980s, despite the fact that he lived until 2013, leaving prison in 1990 and going on to serve as South Africa's first black president. Memory is notoriously fallible, but some experts worry that a new phenomenon is emerging. “Memories are shared among groups in novel ways through sites such as Facebook and Instagram, blurring the line between individual and collective memories,” says psychologist Daniel Schacter, who studies memory at Harvard University in Cambridge, Massachusetts. “The development of Internet-based misinformation, such as recently well-publicized fake news sites, has the potential to distort individual and collective memories in disturbing ways.” Collective memories form the basis of history, and people's understanding of history shapes how they think about the future. The fictitious terrorist attacks, for example, were cited to justify a travel ban on the citizens of seven “countries of concern”. Although history has frequently been interpreted for political ends, psychologists are now investigating the fundamental processes by which collective memories form, to understand what makes them vulnerable to distortion. They show that social networks powerfully shape memory, and that people need little prompting to conform to a majority recollection — even if it is wrong. Not all the findings are gloomy, however. Research is pointing to ways of dislodging false memories or preventing them from forming in the first place. © 2017 Macmillan Publishers Limited,

Keyword: Learning & Memory
Link ID: 23324 - Posted: 03.07.2017

By Clare Wilson The repeated thoughts and urges of obsessive compulsive disorder (OCD) may be caused by an inability to learn to distinguish between safe and risky situations. A brain-scanning study has found that the part of the brain that sends out safety signals seems to be less active in people with the condition. People with OCD feel they have to carry out certain actions, such as washing their hands again and again, checking the oven has been turned off, or repeatedly going over religious thoughts. Those worst affected may spend hours every day on these compulsive “rituals”. To find out more about why this happens, Naomi Fineberg of Hertfordshire Partnership University NHS Foundation Trust in the UK and her team trained 78 people to fear a picture of an angry face. The team did it by sometimes giving the volunteers an electric shock to the wrist when they saw the picture while they were lying in an fMRI brain scanner. About half the group had OCD. The team then tried to “detrain” the volunteers, by showing them the same picture many times, but without any shocks. Judging by how much the volunteers sweated in response to seeing the picture, the team found that people without OCD soon learned to stop associating the face with the shock, but people with the condition remained scared. © Copyright Reed Business Information Ltd.

Keyword: OCD - Obsessive Compulsive Disorder; Learning & Memory
Link ID: 23323 - Posted: 03.07.2017

Nicola Davis The mystery of why sheep get horny in the winter might have been solved, according to new research. Scientists say they have uncovered the key to the mechanism by which changes in the length of the day prompt certain animals to begin breeding, trigger the growth of horns and even change the thickness of their coat. The findings, the team add, could help farmers tinker with the timing of the lambing season. “Now we know what that link is we can start to understand how it can be controlled,” said David Bates, professor of oncology at the University of Nottingham and co-author of the research. It has long been known that changes in animals’ fertility over the seasons is linked to melatonin – a hormone released at night from the pineal gland in the brain. This hormone acts on another gland, the pituitary, affecting the levels of various sex hormones it produces. With the onset of fertility in sheep linked to longer periods of melatonin production, winter is the season for ovine Casanovas. But there is a puzzle. The region of the pituitary gland that detects melatonin is separate to the region that produces sex hormones. As a result, scientists had been baffled as to how melatonin ends up affecting the onset of fertility. “No-one has been able to find what the link is,” said Bates. Now Bates and colleagues from the University of Bristol say they have the answer. Writing in the journal PNAS, the team reveal the missing link is a protein, known as vascular endothelial growth factor, which is made in the region of the pituitary gland that detects melatonin. © 2017 Guardian News and Media Limited

Keyword: Sexual Behavior; Hormones & Behavior
Link ID: 23322 - Posted: 03.07.2017

By The Scientist Staff For thousands of years, people have appreciated birdsong as one of nature’s most melodic sounds. And for at least a few centuries, researchers have been talking about—and analyzing— birdsong, some attaching the label “music” to the avian behavior. In the mid-17th century, for example, German scholar Athanasius Kircher transcribed bird song with musical notation. Whether singing avian species hear their calls in a musical sense is, of course, anybody’s guess. But still today, it’s fairly uncontroversial to speak about bird vocalizations using terms such as “song” and “music.” Around the animal kingdom, several nonavians also produce sounds that are sometimes discussed using a musical vocabulary. Whale songs echo through the ocean for hundreds of miles, while frogs and crickets chorus on warm summer nights throughout much of the world. The stringency of the criteria for earning a label such as song varies by taxon, however. Birds, whales, mice, and even bats have a vocal repertoire that includes songs and simpler calls, while any insect or fish that produces sound for the sake of communication is considered, at least by some, to be “singing”—though no scientist seriously compares these species’ chirps and grunts to birdsong. Semantics aside, more and more tonal or cadenced animal communication signals are attracting the attention of researchers. Technological advancements have enabled the study of mouse and bat calls that are broadcast in the ultrasonic range, as well as of the love songs of fruit flies, which vibrate their wings to produce sound within the frequency range of human hearing, but do so a million times more quietly than our ears can detect. And research continues to delve into the musical skills of diverse bird species that have long been recognized for their singing prowess, confirming that there is an overlap between the genes and brain areas involved in bird and human vocal learning. © 1986-2017 The Scientist

Keyword: Sexual Behavior; Animal Communication
Link ID: 23321 - Posted: 03.07.2017

Ian Sample Science editor Selling high calorie foods in plain packaging could help in the battle against obesity according to a leading researcher who has won a share of the most lucrative prize in neuroscience for his work on the brain’s reward system. The colourful wrapping and attractive advertising of calorie-rich foods encourage people to buy items that put them at risk of overeating and becoming obese in the future, said Wolfram Schultz, a professor of neuroscience at the University of Cambridge. “We should not advertise, propagate or encourage the unnecessary ingestion of calories,” Schultz said at a press conference held on Monday to announce the winners of the 2017 Brain Prize. “There should be some way of regulating the desire to get more calories. We don’t need these calories.” “Colourful wrapping of high energy foods of course makes you buy more of that stuff and once you have it in your fridge, it’s in front of you every time you open the fridge and ultimately you’re going to eat it and eat too much,” he added. Schultz shares the €1m prize from the Lundbeck Foundation in Denmark with professors Peter Dayan, director of the Gatsby Computational Neuroscience Unit at UCL, and Ray Dolan, director of the Max Planck UCL Centre for Computational Psychiatry and Ageing. Together, the scientists unravelled how the brain uses rewards to learn and shape behaviour.

Keyword: Drug Abuse; Obesity
Link ID: 23320 - Posted: 03.06.2017

by Laura Sanders If your young child is facing ear tubes, an MRI or even extensive dental work, you’ve probably got a lot of concerns. One of them may be about whether the drugs used to render your child briefly unconscious can permanently harm his brain. Here’s the frustrating answer: No one knows. “It’s a tough conundrum for parents of kids who need procedures,” says pediatric anesthesiologist Mary Ellen McCann, a pediatric anesthesiologist at Boston Children’s Hospital. “Everything has risks and benefits,” but in this case, the decision to go ahead with surgery is made more difficult by an incomplete understanding of anesthesia’s risks for babies and young children. Some studies suggest that single, short exposures to anesthesia aren’t dangerous. Still, scientists and doctors say that we desperately need more data before we really understand what anesthesia does to developing brains. It helps to know this nonanswer comes with a lot of baggage, a sign that a lot of very smart and committed people are trying to answer the question. In December, the FDA issued a drug safety communication about anesthetics that sounded alarming, beginning with a warning that “repeated or lengthy use of general anesthetic and sedation drugs during surgeries or procedures in children younger than 3 years or in pregnant women during their third trimester may affect the development of children’s brains.” FDA recommended more conversations between parents and doctors, in the hopes of delaying surgeries that can safely wait, and the amount of anesthesia exposure in this potentially vulnerable population. |© Society for Science & the Public 2000 - 2017.

Keyword: Development of the Brain; Sleep
Link ID: 23319 - Posted: 03.06.2017

Aaron E. Carroll While we have long known about the existence of microbes — the tiny bacteria, fungi and archaea that live all around, on and in us — our full relationship has become one of the hottest topics for research only in recent years. Scientists believe that every person contains as many independent microbial cells as human cells. This collection of life, known as the microbiome, provides useful functions for us. Indeed, some of the things we think our bodies do are actually the abilities and enzymes of life-forms living within us. They can help with digestion, vitamin synthesis and even immunological responses. But, as with many new breakthroughs and advances, the hype of the microbiome often outweighs the reality. This seems especially likely in the field of nutrition. Doing research on the microbiome is not easy, and there are many opportunities to foul things up. To accomplish human studies, large samples of people and microbiomes are needed to account for potential confounding variables. Specimens have to be collected and stored carefully because contamination has been a big problem. DNA has to be extracted, amplified and sequenced. Finally, powerful bioinformatics tools are necessary to assemble and analyze the huge amount of data contained in a sequence of nucleotides — all of which has resulted in a wide range of new “omics,” including genomics, proteomics, transcriptomics and metabolomics. Of course, if we think that microbes play a large role in health, we have to rethink the role that antimicrobials play in our lives. In this thinking, antibiotics and antifungals could be life-changing or life-threatening. But that’s not the case. There are many reasons to avoid unnecessary use of these medications, but the microbiome appears able to withstand most treatment. © 2017 The New York Times Company

Keyword: Obesity
Link ID: 23318 - Posted: 03.06.2017

By Jia Naqvi He loves dancing to songs, such as Michael Jackson’s "Beat It" and the "Macarena," but he can't listen to music in the usual way. He laughs whenever someone takes his picture with a camera flash, which is the only intensity of light he can perceive. He loves trying to balance himself, but his legs don't allow him to walk without support. He is one in a million, literally. Born deaf-blind and with a condition, osteopetrosis, that makes bones both dense and fragile, 6-year-old Orion Theodore Withrow is among an unknown number of children with a newly identified genetic disorder that researchers are just beginning to decipher. It goes by an acronym, COMMAD, that gives little away until each letter is explained, revealing an array of problems that also affect eye formation and pigmentation in eyes, skin and hair. The rare disorder severely impairs the person's ability to communicate. Children such as Orion, who are born to genetically deaf parents, are at a higher risk, according to a recent study published in the American Journal of Human Genetics. The finding has important implications for the deaf community, said its senior author, Brian Brooks, clinical director and chief of the Pediatric, Developmental and Genetic Ophthalmology Section at the National Eye Institute. “It is relatively common for folks in deaf community to marry each other,” he said, and what's key is whether each of the couple has a specific genetic "misspelling" that causes a syndrome called Waardenburg 2A. If yes, there's the likelihood of a child inheriting the mutation from both parents. The result, researchers found, is COMMAD. © 1996-2017 The Washington Post

Keyword: Hearing; Genes & Behavior
Link ID: 23317 - Posted: 03.06.2017

By PHILIP FERNBACH and STEVEN SLOMAN How can so many people believe things that are demonstrably false? The question has taken on new urgency as the Trump administration propagates falsehoods about voter fraud, climate change and crime statistics that large swaths of the population have bought into. But collective delusion is not new, nor is it the sole province of the political right. Plenty of liberals believe, counter to scientific consensus, that G.M.O.s are poisonous, and that vaccines cause autism. The situation is vexing because it seems so easy to solve. The truth is obvious if you bother to look for it, right? This line of thinking leads to explanations of the hoodwinked masses that amount to little more than name calling: “Those people are foolish” or “Those people are monsters.” Such accounts may make us feel good about ourselves, but they are misguided and simplistic: They reflect a misunderstanding of knowledge that focuses too narrowly on what goes on between our ears. Here is the humbler truth: On their own, individuals are not well equipped to separate fact from fiction, and they never will be. Ignorance is our natural state; it is a product of the way the mind works. What really sets human beings apart is not our individual mental capacity. The secret to our success is our ability to jointly pursue complex goals by dividing cognitive labor. Hunting, trade, agriculture, manufacturing — all of our world-altering innovations — were made possible by this ability. Chimpanzees can surpass young children on numerical and spatial reasoning tasks, but they cannot come close on tasks that require collaborating with another individual to achieve a goal. Each of us knows only a little bit, but together we can achieve remarkable feats. © 2017 The New York Times Company

Keyword: Attention
Link ID: 23316 - Posted: 03.06.2017

Bruce Bower The social lives of macaques and baboons play out in what primatologist Julia Fischer calls “a magnificent opera.” When young Barbary macaques reach about 6 months, they fight nightly with their mothers. Young ones want the “maternal embrace” as they snooze; mothers want precious alone time. Getting pushed away and bitten by dear old mom doesn’t deter young macaques. But they’re on their own when a new brother or sister comes along. In Monkeytalk, Fischer describes how the monkey species she studies have evolved their own forms of intelligence and communication. Connections exist between monkey and human minds, but Fischer regards differences among primate species as particularly compelling. She connects lab studies of monkeys and apes to her observations of wild monkeys while mixing in offbeat personal anecdotes of life in the field. Fischer catapulted into a career chasing down monkeys in 1993. While still in college, she monitored captive Barbary macaques. That led to fieldwork among wild macaques in Morocco. In macaque communities, females hold central roles because young males move to other groups to mate. Members of closely related, cooperative female clans gain an edge in competing for status with male newcomers. Still, adult males typically outrank females. Fischer describes how the monkeys strategically alternate between attacking and forging alliances. After forging her own key scientific alliances, Fischer moved on to study baboons in Africa, where she entered the bureaucratic jungle. Obtaining papers for a car in Senegal, for instance, took Fischer several days. She first had to shop for a snazzy outfit to impress male paper-pushers, she says. |© Society for Science & the Public 2000 - 2017.

Keyword: Language; Animal Communication
Link ID: 23315 - Posted: 03.06.2017

By Ruth Williams Scientists at New York University’s School of Medicine have probed the deepest layers of the cerebral cortices of mice to record the activities of inhibitory interneurons when the animals are alert and perceptive. The team’s findings reveal that these cells exhibit different activities depending on the cortical layer they occupy, suggesting a level of complexity not previously appreciated. In their paper published in Science today (March 2), the researchers also described the stimulatory and inhibitory inputs that regulate these cells, adding further details to the picture of interneuron operations within the cortical circuitry. “It is an outstanding example of circuit analysis and a real experimental tour de force,” said neuroscientist Massimo Scanziani of the University of California, San Diego, who was not involved in the work. Christopher Moore of Brown University in Providence, Rhode Island, who also did not participate in the research, echoed Scanziani’s sentiments. “It’s just a beautiful paper,” he said. “They do really hard experiments and come up with what seem to be really valid [observations]. It’s a well-done piece of work.” The mammalian cerebral cortex is a melting pot of information, where signals from sensory inputs, emotions, and memories are combined and processed to produce a coherent perception of the world. Excitatory cells are the most abundant type of cortical neurons and are thought to be responsible for the relay and integration of this information, while the rarer interneurons inhibit the excitatory cells to suppress information flow. Interneurons are “a sort of gatekeeper in the cortex,” said Scanziani. © 1986-2017 The Scientist

Keyword: Attention
Link ID: 23314 - Posted: 03.04.2017

By Timothy Revell A smartphone app that uses deep learning lets people with Parkinson’s disease test their symptoms at home in just 4 minutes. The app could help people monitor the disease’s progression more closely, and uncover how lifestyle factors may affect their symptoms. “There’s very little understanding as to how Parkinson’s arises, and patients say that every day the condition is different,” says George Roussos at Birkbeck, University of London. People report symptom changes related to everything from exercise to socialising to diet, but it’s not yet possible to build a solid picture of how these factors interact. “To understand these differences, we need to monitor the condition regularly, in a quick and easy way, over a long period of time,” says Roussos. People with Parkinson’s usually only see a specialist once or twice a year. This makes it hard to track the disease progression in an individual in detail, and means that side effects of medication such as deterioration of mood can go unnoticed. With their Android app, called CloudUPDRS, Roussos and his colleagues want to make it easier to track symptoms and flag potential problems earlier. Similar to how a clinician would conduct a Parkinson’s severity test, the app includes both self-assessment questions and physical tests using a smartphone’s sensors. © Copyright Reed Business Information Ltd.

Keyword: Parkinsons
Link ID: 23313 - Posted: 03.04.2017

By Alistair Steele, CBC News The opioid crisis that's claiming lives across the country has taken a particularly sinister turn in the nation's capital. Or so it appears. Much of the public discussion — and a good deal of the news coverage — surrounding the growing number of deaths by opioid overdose in Ottawa has concentrated on the cruel toll the drugs are taking on the city's teenagers, particularly those living in the western suburb of Kanata. The fake prescription pills they take recreationally are cheap and easy to find, but they can also be laced with potentially lethal doses of fentanyl. This tragic trend was given a fresh, young face when Grade 9 student Chloe Kotval, just 14, died from an overdose on Valentine's Day. Police later confirmed pills found near the girl's body contained fentanyl. In a statement released the day of their daughter's funeral, Kotval's parents wrote: "We are concerned about the epidemic nature of the use of high-grade pharmaceuticals amongst young people and their lack of knowledge about them — the consequences of using them are real and terrible." While families have every right to be concerned and to prepare for the worst, there's no evidence showing young people are any more susceptible to opioid overdoses than any other group of drug users in Ottawa. Sean O'Leary, whose own teenage daughter became addicted to counterfeit percocets, told CBC about coming home one night to find a 17-year-old boy who had overdosed in his garage. ©2017 CBC/Radio-Canada.

Keyword: Drug Abuse; Pain & Touch
Link ID: 23312 - Posted: 03.04.2017

By Catherine Caruso When a football player clocks an opponent on the field, it often does not look so bad—until we see it in slow motion. Suddenly, a clean, fair tackle becomes a dirty play, premeditated to maim (as any bar full of indignant fans will loudly confirm). But why? A study published last August in the Proceedings of the National Academy of Sciences USA suggests that slow motion leads us to believe that the people involved were acting with greater intent. Researchers designed experiments based on a place where slow-motion video comes up a lot: the courtroom. They asked subjects to imagine themselves as jurors and watch a video of a convenience store robbery and shooting, either in slow motion or in real time. Those who watched the slow-motion video reported thinking the robber had more time to act and was acting with greater intent. The effect persisted even when the researchers displayed a timer on the screen to emphasize exactly how much time was passing, and it was reduced yet still present when subjects watched a combination of real-time and slow-motion videos of the crime (as they might in an actual courtroom). Participants also ascribed greater intent to a football player ramming an opponent when they viewed the play in slow motion. Werner Helsen, a kinesiologist at the University of Leuven in Belgium, who was not involved in the study, says the findings are in line with his own research on perception and decision making in crime scene interventions and violent soccer plays. One possible explanation for this slo-mo effect stems from our sense of time, which author Benjamin Converse, a psychologist at the University of Virginia, describes as “quite malleable.” He explains that when we watch footage in slow motion, we cannot help but assume that because we as viewers have more time to think through the events as they unfold, the same holds true for the people in the video. © 2017 Scientific American

Keyword: Attention
Link ID: 23311 - Posted: 03.04.2017