Most Recent Links

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 81 - 100 of 20059

Alison Abbott Fabienne never found out why she went into labour three months too early. But on a quiet afternoon in June 2007, she was hit by accelerating contractions and was rushed to the nearest hospital in rural Switzerland, near Lausanne. When her son, Hugo, was born at 26 weeks of gestation rather than the typical 40, he weighed just 950 grams and was immediately placed in intensive care. Three days later, doctors told Fabienne that ultrasound pictures of Hugo's brain indicated that he had had a severe haemorrhage from his immature blood vessels. “I just exploded into tears,” she says. Both she and her husband understood that the prognosis for Hugo was grim: he had a very high risk of cerebral palsy, a neurological condition that can lead to a life of severe disability. The couple agreed that they did not want to subject their child to that. “We immediately told the doctors that we did not want fierce medical intervention to keep him alive — and saw the relief on the doctors' faces,” recalls Fabienne, who requested that her surname not be used. That night was the most tortured of her life. The next day, however, before any change had been made to Hugo's treatment, his doctors proposed a new option to confirm the diagnosis: a brain scan using magnetic resonance imaging (MRI). This technique, which had been newly adapted for premature babies, would allow the doctors to predict the risk of cerebral palsy more accurately than with ultrasound alone, which has a high false-positive rate. Hugo's MRI scan showed that the damage caused by the brain haemorrhage was limited, and his risk of severe cerebral palsy was likely to be relatively low. So just 24 hours after their decision to let his life end, Hugo's parents did an about-turn. They agreed that the doctors should try to save him. © 2015 Nature Publishing Group

Keyword: Development of the Brain
Link ID: 20555 - Posted: 02.05.2015

By Amanda Baker While we all may vary on just how much time we like spending with other people, humans are overall very social beings. Scientists have already found this to be reflected in our health and well-being – with social isolation being associated with more depression, worse health, and a shorter life. Looking even deeper, they find evidence of our social nature reflected in the very structure of our brains. Just thinking through your daily interactions with your friends or siblings probably gives you dozens of examples of times when it was important to interpret or predict the feelings and behaviors of other people. Our brains agree. Over time parts of our brains have been developed specifically for those tasks, but apparently not all social interaction was created equally. When researchers study the brains of people trying to predict the thoughts and feelings of others, they can actually see a difference in the brain activity depending on whether that person is trying to understand a friend versus a stranger. Even at the level of blood flowing through your brain, you treat people you know well differently than people you don’t. These social interactions also extend into another important area of the brain: the nucleus accumbens. This structure is key in the reward system of the brain, with activity being associated with things that leave you feeling good. Curious if this could have a direct connection with behavior, one group of scientists studied a very current part of our behavior as modern social beings: Facebook use. © 2015 Scientific American

Keyword: Development of the Brain
Link ID: 20554 - Posted: 02.05.2015

By ALAN SCHWARZ High numbers of students are beginning college having felt depressed and overwhelmed during the previous year, according to an annual survey released on Thursday, reinforcing some experts’ concern about the emotional health of college freshmen. The survey of more than 150,000 students nationwide, “The American Freshman: National Norms Fall 2014,” found that 9.5 percent of respondents had frequently “felt depressed” during the past year, a significant rise over the 6.1 percent reported five years ago. Those who “felt overwhelmed” by schoolwork and other commitments rose to 34.6 percent from 27.1 percent. Conducted by the Cooperative Institutional Research Program at the University of California, Los Angeles’s Higher Education Research Institute for almost 50 years, the survey assesses hundreds of matters ranging from political views to exercise habits. It is considered one of the most comprehensive snapshots of trends among recent high school seniors and is of particular interest to people involved in mental well-being. “It’s a public health issue,” said Dr. Anthony L. Rostain, a psychiatrist and co-chairman of a University of Pennsylvania task force on students’ emotional health. “We’re expecting more of students: There’s a sense of having to compete in a global economy, and they think they have to be on top of their game all the time. It’s no wonder they feel overwhelmed.” Other survey results indicated that students were spending more time on academics and socializing less — trends that would normally be lauded. But the lead author of the study, Kevin Eagan, cautioned that the shift could result in higher levels of stress. © 2015 The New York Times Company

Keyword: Depression; Development of the Brain
Link ID: 20553 - Posted: 02.05.2015

|By Andrea Anderson and Victoria Stern Blood type may affect brain function as we age, according to a new large, long-term study. People with the rare AB blood type, present in less than 10 percent of the population, have a higher than usual risk of cognitive problems as they age. University of Vermont hematologist Mary Cushman and her colleagues used data from a national study called REGARDS, which has been following 30,239 African-American and Caucasian individuals older than 45 since 2007. The aim of the study is to understand the heavy stroke toll seen in the southeastern U.S., particularly among African-Americans. Cushman's team focused on information collected twice yearly via phone surveys that evaluate cognitive skills such as learning, short-term memory and executive function. The researchers zeroed in on 495 individuals who showed significant declines on at least two of the three phone survey tests. When they compared that cognitively declining group with 587 participants whose mental muster remained robust, researchers found that impairment in thinking was roughly 82 percent more likely in individuals with AB blood type than in those with A, B or O blood types, even after taking their race, sex and geography into account. The finding was published online last September in Neurology. The seemingly surprising result has some precedent: past studies suggest non-O blood types are linked to elevated incidence of heart disease, stroke and blood clots—vascular conditions that could affect brain function. Yet these cardiovascular consequences are believed to be linked to the way non-O blood types coagulate, which did not seem to contribute to the cognitive effects described in the new study. The researchers speculate that other blood-group differences, such as how likely cells are to stick to one another or to blood vessel walls, might affect brain function. © 2015 Scientific American

Keyword: Alzheimers
Link ID: 20552 - Posted: 02.05.2015

By Monique Brouillette When the first four-legged creatures emerged from the sea roughly 375 million years ago, the transition was anything but smooth. Not only did they have to adjust to the stress of gravity and the dry environment, but they also had to wait another 100 million years to evolve a fully functional ear. But two new studies show that these creatures weren’t deaf; instead, they may have used their lungs to help them hear. Fish hear easily underwater, as sound travels in a wave of vibration that freely passes into their inner ears. If you put a fish in air, however, the difference in the density of the air and tissue is so great that sound waves will mostly be reflected. The modern ear adapted by channeling sound waves onto an elastic membrane (the eardrum), causing it to vibrate. But without this adaptation, how did the first land animals hear? To answer this question, a team of Danish researchers looked at one of the closest living relatives of early land animals, the African lungfish (Protopterus annectens). As its name suggests, the lungfish is equipped with a pair of air-breathing lungs. But like the first animals to walk on land, it lacks a middle ear. The researchers wanted to determine if the fish could sense sound pressure waves underwater, so they filled a long metal tube with water and placed a loudspeaker at one end. They played sounds into the tube in a range of frequencies and carefully positioned the lungfish in areas of the tube where the sound pressure was high. Monitoring the brain stem and auditory nerve activity in the lungfish, the researchers were surprised to discover that the fish could detect pressure waves in frequencies above 200 Hz. © 2015 American Association for the Advancement of Science

Keyword: Hearing; Evolution
Link ID: 20551 - Posted: 02.05.2015

by Jacob Aron Ever struggled to tell the difference between two shades of paint? When it comes to colour, one person's peach is another's puce, but there are 11 basic colours that we all agree on. Now it seems two more should be in the mix: lilac and turquoise. In 1969, two researchers looked at 100 languages and found that all had words for black, white, red, green, yellow, blue, brown, purple, pink, orange and grey. These terms pass a number of tests: they refer to easily distinguishable colours, are widely used and are single words. The chart divided into basic colours (Image: D.Mylonas/L.MacDonald) We might quibble over which shade is cream or peach, for example, but everyone knows yellow when they see it. There are exceptions - Russian and Greek speakers have separate words for light and dark blue. Now Dimitris Mylonas of Queen Mary University of London and Lindsay MacDonald of University College London says the same applies to two more colours, in the case of English-speakers, at least. For the past seven years, they've been running an online test in which people name a range of shades – you can try it for yourself. Results from 330 participants were analysed to pick out basic names. These were ranked in a number of ways, such as how often each colour name came up and whether the name was unique to one shade or common to many. Lilac and turquoise came ninth and tenth overall, beating white, red and orange. The only measure turquoise didn't score highly on was the time it took people to enter an answer, says Mylonas. "Our observers had problems spelling it correctly." © Copyright Reed Business Information Ltd.

Keyword: Vision
Link ID: 20550 - Posted: 02.05.2015

by Bethany Brookshire The windup before the pitch. The take-away before the golf swing. When you learn to pitch a softball, swing a golf club or shoot a basketball, you learn that preparation is important. You also learn about follow-through — the upswing of the golf club or the bend in the elbow after a softball pitch. It’s the preparation and the execution that get the ball across the plate, so why should we care about follow-through? In theory, once the ball has left your hands or sailed away from your club or racket, there’s no movement you could make that could affect what happens next. So while some follow-through might be important to diffuse the energy you just put into your shot, it shouldn’t really matter whether you swing your golf club up in an arc, whip it off to the side or club your opponent over the head with it. But follow-through is in fact quite important, and not just as an extension of the movements that preceded it. Consistent follow-through actually helps performance, reports neuroscientist Ian Howard and colleagues at the University of Plymouth in England. The finding gives coaches some science to back up their training, and helps scientists understand how the brain accesses motor memories. Howard has always been interested in how the brain learns movement tasks. “The first study we did looked at the preparation movement — you move backwards and then you move forwards [as in a golf swing],” he says. His lab found that the preparation before a particular motion had a strong effect on how our brains learn and recall motor movements. © Society for Science & the Public 2000 - 2015.

Keyword: Movement Disorders
Link ID: 20549 - Posted: 02.05.2015

By Maria Konnikova R. T. first heard about the Challenger explosion as she and her roommate sat watching television in their Emory University dorm room. A news flash came across the screen, shocking them both. R. T., visibly upset, raced upstairs to tell another friend the news. Then she called her parents. Two and a half years after the event, she remembered it as if it were yesterday: the TV, the terrible news, the call home. She could say with absolute certainty that that’s precisely how it happened. Except, it turns out, none of what she remembered was accurate. R. T. was a student in a class taught by Ulric Neisser, a cognitive psychologist who had begun studying memory in the seventies. Early in his career, Neisser became fascinated by the concept of flashbulb memories—the times when a shocking, emotional event seems to leave a particularly vivid imprint on the mind. William James had described such impressions, in 1890, as “so exciting emotionally as almost to leave a scar upon the cerebral tissues.” The day following the explosion of the Challenger, in January, 1986, Neisser, then a professor of cognitive psychology at Emory, and his assistant, Nicole Harsch, handed out a questionnaire about the event to the hundred and six students in their ten o’clock psychology 101 class, “Personality Development.” Where were the students when they heard the news? Whom were they with? What were they doing? The professor and his assistant carefully filed the responses away. In the fall of 1988, two and a half years later, the questionnaire was given a second time to the same students. It was then that R. T. recalled, with absolute confidence, her dorm-room experience. But when Neisser and Harsch compared the two sets of answers, they found barely any similarities.

Keyword: Learning & Memory
Link ID: 20548 - Posted: 02.05.2015

By Virginia Morell To prevent their hives from being attacked by invaders, wasps must quickly distinguish friend from foe. They typically do this by sniffing out foreigners, as outsiders tend to have a different scent than the home colony. Now researchers have discovered that, like a few other wasp species, a tiny social wasp (Liostenogaster flavolineata) from Malaysia employs an additional security measure: facial recognition. The wasps’ nests are typically found in large aggregations with as many as 150 built close together, and each colony faces persistent landing attempts by outsiders from these other nests. To find out why and how these wasps employ both vision and scent to determine if an incoming wasp is a comrade, scientists carried out a series of experiments on 50 colonies (see photo above) in the wild. Close to the nests, the researchers dangled lures made of captured and killed wasps. The lures had been given different treatments. For instance, some lures made from nest mates were coated with a foe’s scent, whereas outsiders were painted with the colony’s odor. The wasps, it turns out, pay more attention to facial markings than to scent when faced with a possible intruder, the team reports online today in the Proceedings of the Royal Society B. Indeed, in tests where the wasps could assess both an intruder’s face and scent, they relied solely on facial recognition and immediately attacked those whose faces they didn’t know, ignoring their odor. That’s the safest strategy, the scientists note, because the wasps can recognize another’s face at a distance, but need to actually touch another wasp to detect her scent—not a bad ploy for a tiny-brained insect. © 2015 American Association for the Advancement of Science

Keyword: Attention
Link ID: 20547 - Posted: 02.05.2015

By Pam Belluck A large new study has documented unexpected links in the timing and severity of symptoms of maternal depression, which could help mothers and doctors better anticipate and treat the condition. The study of more than 8,200 women from 19 centers in seven countries, published last month in Lancet Psychiatry, found that in those with the severest symptoms — suicidal thoughts, panic, frequent crying — depression most often began during pregnancy, not after giving birth, as is often assumed. Moderately depressed women often developed their symptoms postpartum, and were more likely than severely depressed women to have experienced complications during pregnancy like pre-eclampsia, gestational diabetes or hypertension. Severely depressed women, however, more often reported complications during delivery. “This is the largest study to date on postpartum depressive symptoms,” said Leah Rubin, an assistant professor in the Women’s Mental Health Research Program at University of Illinois at Chicago, a co-author of a commentary about the study. “This is definitely a first step in the right direction, knowing that depression isn’t one-size-fits-all.” Ten to 20 percent of mothers experience depression, anxiety, bipolar disorder or other symptoms at some point from pregnancy to a year after giving birth. The study could aid efforts to find causes and treatments. The study participants were all mothers. Some had been found to have postpartum depression by clinicians, while others were assessed via a widely used questionnaire. (Some participants fell into both groups.) © 2015 The New York Times Company

Keyword: Depression
Link ID: 20546 - Posted: 02.03.2015

by Penny Sarchet It's a familiar sight: a flock of birds flying overhead in a classic V-formation, each saving energy by stealing lift from the bird flying ahead. But what's in it for the bird out front? For northern bald ibises, it's all about taking turns. The leading bird soon swaps places with the bird immediately behind it, in a rare example of a phenomenon called reciprocal altruism. To understand how birds cooperate in flight, Bernhard Voelkl at the University of Oxford and his team tagged every ibis in a group of 14 with high-precision GPS data loggers, allowing them to measure each individual's position in relation to the rest of the flock. They found that individual birds changed positions frequently, and were only in an aerodynamically helpful position about a third of the time. Most of these formations comprised just two birds sharing duties equally. "For whichever combination of two birds we looked at, we saw that the time bird A was flying in front of bird B matched closely the time bird B was flying in front of bird A," says Voelkl. And this wasn't just an average over the 39 kilometres that the flock flew – Voelkl's team frequently observed swaps within a pair happening within seconds, with the leader moving back behind the same bird for a similarly timed spell of following. "This immediacy of the reciprocation reduces the opportunity for cheating," says Voelkl. "Direct swaps also mean that you do not have to memorise who is 'owing' you leading time, so doesn't require a lot of memory." © Copyright Reed Business Information Ltd.

Keyword: Emotions
Link ID: 20545 - Posted: 02.03.2015

By Katherine Ellison Dr. Mark Bertin is no A.D.H.D. pill-pusher. The Pleasantville, N.Y., developmental pediatrician won’t allow drug marketers in his office, and says he doesn’t always prescribe medication for children diagnosed with attention deficit hyperactivity disorder. Yet Dr. Bertin has recently changed the way he talks about medication, offering parents a powerful argument. Recent research, he says, suggests the pills may “normalize” the child’s brain over time, rewiring neural connections so that a child would feel more focused and in control, long after the last pill was taken. “There might be quite a profound neurological benefit,” he said in an interview. A growing number of doctors who treat the estimated 6.4 million American children diagnosed with A.D.H.D. are hearing that stimulant medications not only help treat the disorder but may actually be good for their patients’ brains. In an interview last spring with Psych Congress Network, http://www.psychcongress.com/video/are-A.D.H.D.-medications-neurotoxic-or-neuroprotective-16223an Internet news site for mental health professionals, Dr. Timothy Wilens, chief of child and adolescent psychiatry at Massachusetts General Hospital, said “we have enough data to say they’re actually neuroprotective.” The pills, he said, help “normalize” the function and structure of brains in children with A.D.H.D., so that, “over years, they turn out to look more like non-A.D.H.D. kids.” Medication is already by far the most common treatment for A.D.H.D., with roughly 4 million American children taking the pills — mostly stimulants, such as amphetamines and methylphenidate. Yet the decision can be anguishing for parents who worry about both short-term and long-term side effects. If the pills can truly produce long-lasting benefits, more parents might be encouraged to start their children on these medications early and continue them for longer. Leading A.D.H.D. experts, however, warn the jury is still out. © 2015 The New York Times Company

Keyword: ADHD; Development of the Brain
Link ID: 20544 - Posted: 02.03.2015

The longer a teenager spends using electronic devices such as tablets and smartphones, the worse their sleep will be, a study of nearly 10,000 16- to 19-year-olds suggests. More than two hours of screen time after school was strongly linked to both delayed and shorter sleep. Almost all the teens from Norway said they used the devices shortly before going to bed. Many said they often got less than five hours sleep a night, BMJ Open reports. The teens were asked questions about their sleep routine on weekdays and at weekends, as well as how much screen time they clocked up outside school hours. On average, girls said they spent around five and a half hours a day watching TV or using computers, smartphones or other electronic devices. And boys spent slightly more time in front of a screen - around six and a half hours a day, on average. Playing computer games was more popular among the boys, whereas girls were more likely to spend their time chatting online. teen using a laptop Any type of screen use during the day and in the hour before bedtime appeared to disrupt sleep - making it more difficult for teenagers to nod off. And the more hours they spent on gadgets, the more disturbed their sleep became. When daytime screen use totalled four or more hours, teens had a 49% greater risk of taking longer than an hour to fall asleep. These teens also tended to get less than five hours of sleep per night. Sleep duration went steadily down as gadget use increased. © 2015 BBC

Keyword: Sleep; Development of the Brain
Link ID: 20543 - Posted: 02.03.2015

By Lenny Bernstein Parkinson's Disease patients secretly treated with a placebo instead of their regular medication performed better when told they were receiving a more expensive version of the "drug," researchers reported Wednesday in an unprecedented study that involved real patients. The research shows that the well-documented "placebo effect" -- actual symptom relief brought about by a sham treatment or medication -- can be enhanced by adding information about cost, according to the lead author of the study. It is the first time that concept has been demonstrated using people with a real illness, in this case Parkinson's, a progressive neurological disease that has no cure, according to an expert not involved in the study. "The potentially large benefit of placebo, with or without price manipulations, is waiting to be untapped for patients with [Parkinson's Disease], as well as those with other neurologic and medical diseases," the authors wrote in a study published online Wednesday in the journal Neurology. But deceiving actual patients in a research study raised ethical questions about violating the trust involved in a doctor-patient relationship. Most studies in which researchers conceal their true aims or other information from subjects are conducted with healthy volunteers. This one was subjected to a lengthy review before it was allowed to proceed, and, in an editorial that accompanied the article, two other physicians wrote that "the authors do not mention whether there was any possible effect (reduction) on trust in doctors or on willingness to engage in future clinical research."

Keyword: Parkinsons; Pain & Touch
Link ID: 20542 - Posted: 02.02.2015

|By Esther Landhuis One in nine Americans aged 65 and older has Alzheimer's disease, a fatal brain disorder with no cure or effective treatment. Therapy could come in the form of new drugs, but some experts suspect drug trials have failed so far because compounds were tested too late in the disease's progression. By the time people show signs of dementia, their brains have lost neurons. No therapy can revive dead cells, and little can be done to create new ones. So researchers running trials now seek participants who still pass as cognitively normal but are on the verge of decline. These “preclinical” Alzheimer's patients may represent a window of opportunity for therapeutic intervention. How to identify such individuals before they have symptoms presents a challenge, however. Today most Alzheimer's patients are diagnosed after a detailed medical workup and extensive tests that gauge mental function. Other tests, such as spinal fluid analyses and positron-emission tomography (PET) scans, can detect signs of approaching disease and help pinpoint the preclinical window but are cumbersome or expensive. “There's no cheap, fast, noninvasive test that can identify people at risk of Alzheimer's,” says Brad Dolin, chief technology officer of Neurotrack in Palo Alto, Calif.—a company developing a computerized visual screening test for Alzheimer's. Unlike other cognitive batteries, the Neurotrack test requires no language or motor skills. Participants view images on a monitor while a camera tracks their eye movements. The test draws on research by co-founder Stuart Zola of Emory University, who studies learning and memory in monkeys. When presented with a pair of images—one novel, the other familiar—primates fixate longer on the novel one. But if the hippocampus is damaged, as it is in people with Alzheimer's, the subject does not show a clear preference for the novel images. © 2015 Scientific American

Keyword: Alzheimers; Attention
Link ID: 20541 - Posted: 02.02.2015

By James Gallagher Health editor, Our internal body clock has such a dramatic impact on sporting ability that it could alter the chances of Olympic gold, say researchers. The team at the University of Birmingham showed performance times varied by 26% throughout the day. Early risers reached their athletic peak around lunchtime, while night owls were best in the evening. The researchers say it could even explain why Spanish teams have more success in European football. The body clock controls everything - from alertness to the risk of a heart attack - in a daily rhythm. Some aspects of sporting ability were thought to peak in early afternoon but a study in the journal Current Biology suggests each competitor's sleeping habits have a powerful impact. They took 20 female hockey players and asked them to perform a series of 20m runs in shorter and shorter times. And they did it at six different times of day between 07:00 and 22:00. The results showed a peak performance in late afternoon, but then the scientists looked separately at early-type people, late-type people and those in the middle. This time the gap between the best and worst times was 26%, and a far more complicated picture emerged. Lead researcher Dr Roland Brandstaetter told the BBC News website: "Athletes and coaches would benefit greatly if they knew when optimal or suboptimal performance time was." He said a 1% difference in performance would be the difference between fourth place and a medal in many Olympic events. Body clocks can be adjusted. Jet lag is when you feel rough before adjusting to a new time. "So if you're an early type in a competition in the evening, then you're impaired, so you could adjust sleeping times to the competition," Dr Brandstaetter said. © 2015 BBC.

Keyword: Biological Rhythms
Link ID: 20540 - Posted: 02.02.2015

Alison Abbott German police seized documents in a raid on Tuesday on the Max Planck Institute for Biological Cybernetics in Tübingen, as part of an investigation into alleged violations of animal-protection laws. The investigation was launched last year after a video shot by an animal-rights activist who infiltrated the institute was broadcast on television in September. An independent investigation carried out by the Max Planck Society found no systematic problems, and this month the state government of Baden-Württemberg said that, following its own investigations, it saw no reason to revoke any animal licences. A spokesperson for the Max Planck Society in Munich, who asked not to be named, told Nature that activists were carrying out an unjustified campaign against the institute, where some scientists use monkeys in their research on how the brain works. “There is an agreed consensus within society about how much research can be done with animals and in what conditions,” the spokesperson said, adding that society wants researchers to tackle diseases such as dementia — but that this cannot be done without using animals. “The work is carried out correctly in Tübingen — we have nothing to hide.” Friedrich Mülln, head of the Augsburg-based activist group SOKO Tierschutz — which last year pledged to continue actions against the institute until it stopped its monkey research — says that the Max Planck Society is lying about the animals' treatment, and that the Tübingen institute is a “black mark on an otherwise admirable organization”. He added that his group is working closely with police. © 2015 Nature Publishing Group,

Keyword: Animal Rights
Link ID: 20539 - Posted: 02.02.2015

By ERICA GOODE A study suggests that newborn chicks map numbers spatially, associating low numerical values with space to their left. Credit Rosa Rugani/University of Padova Asked to picture the numbers from one to 10, most people will imagine a straight line with one at the left end and 10 at the right. This “mental number line,” as researchers have termed it, is so pervasive that some scientists have argued that the spatial representation of numbers is hard-wired into the brain, part of a primitive number system that underlies humans’ capacity for higher mathematics. Now a team of Italian researchers has found that newborn chicks, like humans, appear to map numbers spatially, associating smaller amounts with the left side and larger amounts with the right side. The chicks, trained to seek out mealworms behind white plastic panels printed with varying numbers of identical red squares, repeatedly demonstrated a preference for the left when the number of squares was small and for the right when the number was larger. The research, led by Rosa Rugani, a psychologist who at the time was at the University of Padova, will appear in Friday’s issue of the journal Science. Researchers demonstrated that chickens naturally order numbers left to right. When the number five is in the middle, chickens naturally go left for lower numbers and to the right for higher numbers. Publish Date January 29, 2015. In their report, the researchers said the findings supported the idea that the left-right orientation for numbers is innate rather than determined by culture or education — a possibility that was raised by some studies that found that in Arabic-speaking countries where letters and numbers are read right to left, the mental number scale was reversed. But the new research, Dr. Rugani and her colleagues wrote, indicates that orienting numbers in space may represent “a universal cognitive strategy available soon after birth.” Tyler Marghetis, a doctoral candidate in psychology at the University of California, San Diego, who has published research on the spatial association of numbers, called the researcher’s studies “very cool.” © 2015 The New York Times Company

Keyword: Attention; Laterality
Link ID: 20538 - Posted: 01.31.2015

by Clare Wilson Once only possible in an MRI scanner, vibrating pads and electrode caps could soon help locked-in people communicate on a day-to-day basis YOU wake up in hospital unable to move, to speak, to twitch so much as an eyelid. You hear doctors telling your relatives you are in a vegetative state – unaware of everything around you – and you have no way of letting anyone know this is not the case. Years go by, until one day, you're connected to a machine that allows you to communicate through your brain waves. It only allows yes or no answers, but it makes all the difference – now you can tell your carers if you are thirsty, if you'd like to sit up, even which TV programmes you want to watch. In recent years, breakthroughs in mind-reading technology have brought this story close to reality for a handful of people who may have a severe type of locked-in syndrome, previously diagnosed as being in a vegetative state. So far, most work has required a lab and a giant fMRI scanner. Now two teams are developing devices that are portable enough to be taken out to homes, to help people communicate on a day-to-day basis. The technology might also be able to identify people who have been misdiagnosed. People with "classic" locked-in syndrome are fully conscious but completely paralysed apart from eye movements. Adrian Owen of Western University in London, Canada, fears that there is another form of the condition where the paralysis is total. He thinks that a proportion of people diagnosed as being in a vegetative state – in which people are thought to have no mental awareness at all – are actually aware but unable to let anyone know. "The possibility is that we are missing people with some sort of complete locked-in syndrome," he says. © Copyright Reed Business Information Ltd.

Keyword: Consciousness; Brain imaging
Link ID: 20537 - Posted: 01.31.2015

By Janice Neumann (Reuters Health) - Moderate-intensity exercise, or even just walking, can improve quality of life for depressed middle-aged women, a large Australian study suggests. Women who averaged 150 minutes of moderate exercise (golf, tennis, aerobics classes, swimming, or line-dancing) or 200 minutes of walking every week had more energy, socialized more, felt better emotionally, and weren't as limited by their depression when researchers followed up after three years. They also had less pain and did better physically, although the psychological benefit was greater. With depression so prevalent, "there is an urgent need" to identify treatments, including non-medical options that people can do themselves, said Kristiann Heesch, who led the study. Heesch, senior lecturer at Queensland University of Technology, and her colleagues point out in a January 13 online article in the American Journal of Preventive Medicine that depression is expected to be the second-leading cause of global disease by 2030 and the leading cause in high-income countries. One in 10 U.S. adults suffers from depression, according to the Centers for Disease Control and Prevention. Women are 70% more likely to be depressed at some point in their lives than men, according to the National Institute of Mental Health. In previous research, Heesch found that exercise and walking could boost physical and emotional health in women who are not depressed. © 2015 Scientific American

Keyword: Depression
Link ID: 20536 - Posted: 01.31.2015