Chapter 1. Biological Psychology: Scope and Outlook

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 1038

By Partha Mitra Intricate, symmetric patterns, in tiles and stucco, cover the walls and ceilings of Alhambra, the “red fort,” the dreamlike castle of the medieval Moorish kings of Andalusia. Seemingly endless in variety, the two dimensionally periodic patterns are nevertheless governed by the mathematical principles of group theory and can be classified into a finite number of types: precisely seventeen, as shown by Russian crystallographer Evgraf Federov. The artists of medieval Andalusia are unlikely to have been aware of the mathematics of space groups, and Federov was unaware of the art of Alhambra. The two worlds met in the 1943 PhD thesis of Swiss astronomer Edith Alice Muller, who counted eleven of the seventeen planar groups in the adornments of the palace (more have been counted since). All seventeen space groups can also be found in the periodic patterns of Japanese wallpaper. Without conscious intent or explicit knowledge, the creations of artists across cultures at different times nevertheless had to conform to the constraints of periodicity in two dimensional Euclidean space, and were thus subject to mathematically precise theory. Does the same apply to the “endless forms most beautiful,” created by the biological evolutionary process? Are there theoretical principles, ideally ones which may be formulated in mathematical terms, underlying the bewildering complexity of biological phenomema? Without the guidance of such principles, we are only generating ever larger digital butterfly collections with ever better tools. In a recent article, Krakauer and colleagues argue that by marginalizing ethology, the study of adaptive behaviors of animals in their natural settings, modern neuroscience has lost a key theoretical framework. The conceptual framework of ethology contains in it the seeds of a future mathematical theory that might unify neurobiological complexity as Fedorov’s theory of wallpaper groups unified the patterns of the Alhambra. © 2017 Scientific American

Keyword: Miscellaneous
Link ID: 23482 - Posted: 04.12.2017

By George Johnson Who knows what Arturo the polar bear was thinking as he paced back and forth in the dark, air-conditioned chamber behind his artificial grotto? Just down the pathway Cecilia sat quietly in her cage, contemplating whatever chimpanzees contemplate. The idea that something resembling a subjective, contemplative mind exists in other animals has become mainstream — and not just for apes. In recent years, both creatures, inhabitants of the Mendoza Zoological Park in Argentina, have been targets of an international campaign challenging the morality of holding animals captive as living museum exhibits. The issue is not so much physical abuse as mental abuse — the effect confinement has on the inhabitants’ minds. Last July, a few months after I visited the zoo, Arturo, promoted by animal rights activists as “the world’s saddest polar bear,” died of what his keepers said were complications of old age. (His mantle has now been bestowed on Pizza, a polar bear on display at a Chinese shopping mall.) But Cecilia (the “loneliest chimp,” some sympathizers have called her) has been luckier, if luck is a concept a chimpanzee can understand. In November, Judge María Alejandra Mauricio of the Third Court of Guarantees in Mendoza decreed that Cecilia is a “nonhuman person” — one that was being denied “the fundamental right” of all sentient beings “to be born, to live, grow, and die in the proper environment for their species.” Copyright 2017 Undark

Keyword: Consciousness; Animal Rights
Link ID: 23437 - Posted: 04.01.2017

By David Wiegand I just did something great for my brain and you can do the same, when the documentary “My Love Affair With the Brain: The Life and Science of Dr. Marian Diamond” airs on KQED on Wednesday, March 22. According to the UC Berkeley professor emerita, the five things that contribute to the continued development of the brain at any age are: diet, exercise, newness, challenge and love. You can check off three of those elements for the day by watching the film by Catherine Ryan and Gary Weimberg. No matter how smart you are, even about anatomy and neuroscience, you will find newness in the information about the miraculous human brain, how it works, and how it keeps on working no matter how old you are. That’s one of the fundamentals of modern neuroscience, of which Diamond is one of the founders. You will also be challenged to consider your own brain, to consider how Diamond’s favorite expression — “use it or lose it” — applies to your brain and your life. You will be challenged to consider what Diamond means when she says brain plasticity (its ability to keep developing by forming new connections between its cells) makes us “the masters of our own minds. We literally create our own masterpiece.” Before Diamond and her colleagues proved otherwise, the prevailing thought was that brains developed according to a genetically determined pattern, hit a high point and then essentially began to deteriorate. Bushwa: A brain can grow — i.e., learn — at any age, and you can teach an old dog new tricks. © 2017 Hearst Corporation

Keyword: Learning & Memory
Link ID: 23392 - Posted: 03.23.2017

Sara Reardon, Jeff Tollefson, Alexandra Witze & Erin Ross Funding for the National Oceanic and Atmospheric Administration’s weather satellites, which track hurricanes, would be maintained under the Trump plan. When it comes to science, there are few winners in US President Donald Trump’s first budget proposal. The plan, released on 16 March, calls for double-digit cuts for the Environmental Protection Agency (EPA) and the National Institutes of Health (NIH). It also lays the foundation for a broad shift in the United States’ research priorities, including a retreat from environmental and climate programmes. Rumours of the White House proposal have swirled for weeks, alarming many researchers who depend on government funding — and science advocates who worry that the Trump administration’s stance will jeopardize US leadership in fields ranging from climate science to cancer biology. It is not clear, however, how much of the plan will survive negotiations in Congress over the coming months. What could Trump’s budget for science mean for you? “Cutting [research and development] funding from our budget is the same as cutting the engines off an airplane that’s too heavy for take-off,” says Jason Rao, director of international affairs at the American Society for Microbiology in Washington DC. The greatest threats to the United States, he says, are those presented by infectious diseases, climate change and energy production — none of which can be addressed effectively without scientific research. © 2017 Macmillan Publishers Limited,

Keyword: Miscellaneous
Link ID: 23376 - Posted: 03.20.2017

By Kate Darby Rauch When Marian Diamond was growing up in Southern California, she got her first glimpse of a real brain at Los Angeles County Hospital with her dad, a physician. She was 15. Looking back now, at age 90, Diamond, a Berkeley resident, points to that moment as the start of something profound — a curiosity, wonderment, drive. “It just blew my mind, the fact that a cell could create an idea,” Diamond said in a recent interview, reflecting on her first encounter with that sinewy purple-tinged mass. She didn’t know that this was the start of a distinguished legacy that would stretch for decades, touching millions. But today, she’d be one of the first to scientifically equate that adolescent thrill with her life’s work. Because she helped prove a link. Brains, we now know, thanks in large part to research by Diamond, thrive on challenge, newness, discovery. With this enrichment, brain cells are stimulated and grow. This week, Diamond, a UC Berkeley emeritus professor of integrative biology and the first woman to earn a PhD in anatomy at Cal, is being honored by the Berkeley City Council, which is designating March 14 as Marian Diamond Day. And on March 22, KQED TV will air a new documentary film about her life’s work, My Love Affair With the Brain. © Berkeleyside All Rights Reserved.

Keyword: Development of the Brain
Link ID: 23366 - Posted: 03.16.2017

By Meredith Wadman The U.S. Fish and Wildlife Service (FWS) is considering repealing a rule that exempts captive members of 11 threatened primate species from protection under the federal Endangered Species Act (ESA). If the agency approves a repeal, the captive animals would be designated as threatened, like their wild counterparts, and researchers would need to apply for permits for experiments. To be approved, studies would have to be aimed at species survival and recovery. A rule change would affect biomedical researchers who work with several hundred captive Japanese macaques housed in Oregon. People for the Ethical Treatment of Animals (PETA), a Norfolk, Virginia–based animal rights organization, petitioned FWS this past January, asking it to extend ESA protections to captive members of the 11 species housed in research labs, zoos, and held as pets. For obscure reasons, a “special rule” exempted these captive populations from ESA protection in 1976. Among the 11 species, the Japanese macaque (Macaca fuscata) appears to be the only one regularly used in U.S. research. A troop of roughly 300 resides at the Oregon National Primate Research Center in Hillsboro. That is where the main impact of a successful PETA petition would be felt by scientists. “The importance of protecting endangered animals can’t be minimized,” says Jared Goodman, the director of animal law at the PETA Foundation in Los Angeles, California. “These animals are not listed lightly [under the Endangered Species Act],” he adds. “And the agencies until now have unlawfully provided differential treatment to animals in captivity who are similarly threatened.” © 2017 American Association for the Advancement of Science.

Keyword: Animal Rights
Link ID: 23335 - Posted: 03.10.2017

There has been much gnashing of teeth in the science-journalism community this week, with the release of an infographic that claims to rate the best and worst sites for scientific news. According to the American Council on Science and Health, which helped to prepare the ranking, the field is in a shoddy state. “If journalism as a whole is bad (and it is),” says the council, “science journalism is even worse. Not only is it susceptible to the same sorts of biases that afflict regular journalism, but it is uniquely vulnerable to outrageous sensationalism”. News aggregator RealClearScience, which also worked on the analysis, goes further: “Much of science reporting is a morass of ideologically driven junk science, hyped research, or thick, technical jargon that almost no one can understand”. How — without bias or outrageous sensationalism, of course — do they judge the newspapers and magazines that emerge from this sludge? Simple: they rank each by how evidence-based and compelling they subjectively judge its content to be. Modesty (almost) prevents us from naming the publication graded highest on both (okay, it’s Nature), but some names are lower than they would like. Big hitters including The New York Times, The Washington Post and The Guardian score relatively poorly. It’s a curious exercise, and one that fails to satisfy on any level. It is, of course, flattering to be judged as producing compelling content. But one audience’s compelling is another’s snoozefest, so it seems strikingly unfair to directly compare publications that serve readers with such different interests as, say, The Economist and Chemistry World. It is equally unfair to damn all who work on a publication because of some stories that do not meet the grade. (This is especially pertinent now that online offerings spread the brand and the content so much thinner.) © 2017 Macmillan Publishers Limited

Keyword: Miscellaneous
Link ID: 23334 - Posted: 03.09.2017

Sam Nastase was taking a break from his lab work to peruse Twitter when he saw a tweet about his manuscript. A PhD in cognitive neuroscience at Dartmouth College, Nastase had sent his research out for review at a journal, and hadn’t yet heard back from the scientists who would read the paper and—normally—provide anonymous comments. But here, in this tweet, was a link to a review of his paper. “I was like, ‘Oh that’s my paper, OK.’ So that was a little bit nerve-wracking,” says Nastase. A few weeks later, he received the same review as part of a response from the journal, “copied and pasted, basically.” So much for secret, anonymous peer review. The tweet linked to the blog of a neuroscientist named Niko Kriegeskorte, a cognitive neuroscientist at the Medical Research Council in the UK who, since December 2015, has performed all of his peer review openly. That means he publishes his reviews as he finishes them on his personal blog—sharing on Twitter and Facebook, too—before a paper is even accepted. Scientists traditionally keep reviews of their papers to themselves. The reviewers are anonymous, and publishers protect their reviewers’ identities fastidiously, all in the name of honest, uncensored appraisal of scientific work. But for many, the negatives of this system have started to outweigh the positives. So scientists like Kriegeskorte, and even the journals themselves, are starting to experiment. Kriegeskorte’s posting policy has made a lot of people uncomfortable. He’s faced resistance from journal staff, scientific editors, and even one scientist who anonymously reviewed a paper that he reviewed openly. “People in the publishing business, my feeling is that they feel that this is deeply illicit,” Kriegeskorte says, “but they don’t know exactly which rule it breaks.” Still, after more than a year of this experiment with exclusively writing reviews on his blog—he’s done 12 now—Kriegeskorte says he’ll never write a secret review again.

Keyword: Miscellaneous
Link ID: 23306 - Posted: 03.03.2017

JoAnna Klein Some microscopes today are so powerful that they can create a picture of the gap between brain cells, which is thousands of times smaller than the width of a human hair. They can even reveal the tiny sacs carrying even tinier nuggets of information to cross over that gap to form memories. And in colorful snapshots made possible by a giant magnet, we can see the activity of 100 billion brain cells talking. Decades before these technologies existed, a man hunched over a microscope in Spain at the turn of the 20th century was making prescient hypotheses about how the brain works. At the time, William James was still developing psychology as a science and Sir Charles Scott Sherrington was defining our integrated nervous system. Meet Santiago Ramón y Cajal, an artist, photographer, doctor, bodybuilder, scientist, chess player and publisher. He was also the father of modern neuroscience. “He’s one of these guys who was really every bit as influential as Pasteur and Darwin in the 19th century,” said Larry Swanson, a neurobiologist at the University of Southern California who contributed a biographical section to the new book “The Beautiful Brain: The Drawings of Santiago Ramón y Cajal.” “He’s harder to explain to the general public, which is probably why he’s not as famous.” Last month, the Weisman Art Museum in Minneapolis opened a traveling exhibit that is the first dedicated solely to Ramón y Cajal’s work. It will make stops in Minneapolis; Vancouver, British Columbia; New York; Cambridge, Mass.; and Chapel Hill, N.C., through April 2019. Ramón y Cajal started out with an interest in the visual arts and photography — he even invented a method for making color photos. But his father pushed him into medical school. Without his artistic background, his work might not have had as much impact, Dr. Swanson said. © 2017 The New York Times Company

Keyword: Brain imaging
Link ID: 23251 - Posted: 02.18.2017

By Meredith Wadman The Humane Society of the United States (HSUS) today put the U.S. Department of Agriculture (USDA) on notice that it intends to use legal tools to force the agency to restore tens of thousands of documents on animal welfare that it removed from its website on Friday. In this letter to the U.S. Department of Justice, the animal welfare organization reminded the government that under the terms of a 2009 legal settlement with HSUS, USDA had agreed to make public some of the records it has now scrubbed from its public database. HSUS, its lawyers write, “is exercising its rights under [the 2009 settlement] and intends to take further action unless USDA agrees to reconsider this bizarre reversal of the agency’s longstanding policy” of making inspection records and others publicly available. The animal organization’s letter notes that under the terms of the 2009 settlement, the two parties, HSUS and USDA, now have 30 days to settle their differences. After that, HSUS can ask the court to reopen the lawsuit. A spokesperson for USDA did not in the course of 3 hours return an email and a call requesting comment. The HSUS letter also argues that USDA’s actions violate laws governing the electronic release of data under the Freedom of Information Act (FOIA). One of the laws requires agencies to “make available for public inspection … [By] electronic means” all FOIA requests that it releases to anyone and that it determines are likely to be asked for again, by others. When they were public, many of USDA’s inspection reports, especially those of troubled facilities, were accessed repeatedly by a number of different users. © 2017 American Association for the Advancement of Science

Keyword: Animal Rights
Link ID: 23192 - Posted: 02.07.2017

Sara Reardon The welfare of research animals, including primates, will be much harder for the public to track after a US regulatory agency removes information from its website. The US Department of Agriculture (USDA) agency charged with ensuring the humane treatment of large research animals, such as primates and goats, has quietly scrubbed all inspection reports and enforcement records from its website. The move has drawn criticism from animal welfare and transparency activists who say the public has the right to know how their tax dollars are being used. The USDA’s Animal and Plant Health Inspection Service (APHIS), which also oversees animals in circuses, zoos and those sold commercially as pets, says that making the data publicly available posed a threat to individuals’ privacy. USDA spokesperson Tanya Espinosa would not specify what personal information the agency wanted to protect, but said that it would be impossible to redact it from all the tens of thousands of inspection reports, complaints and enforcement action documents that used to be public. The decision is a result of the USDA’s “commitment to being transparent, remaining responsive to our stakeholders’ informational needs, and maintaining the privacy rights of individuals”, according to a statement on the agency’s website. The records will still be available in redacted form through freedom-of-information requests. ”If the same records are frequently requested via the Freedom of Information Act process, APHIS may post the appropriately redacted versions to its website,” the statement concludes. © 2017 Macmillan Publishers Limited

Keyword: Animal Rights
Link ID: 23188 - Posted: 02.04.2017

By SHERI FINK, STEVE EDER and MATTHEW GOLDSTEIN A group of brain performance centers backed by Betsy DeVos, the nominee for education secretary, promotes results that are nothing short of stunning: improvements reported by 91 percent of patients with depression, 90 percent with attention deficit disorder, 90 percent with anxiety. The treatment offered by Neurocore, a business in which Ms. DeVos and her husband, Dick, are the chief investors, consists of showing movies to patients and interrupting them when the viewers become distracted, in an effort to retrain their brains. With eight centers in Michigan and Florida and plans to expand, Neurocore says it has assessed about 10,000 people for health problems that often require medication. “Is it time for a mind makeover?” the company asks in its advertising. “All it takes is science.” But a review of Neurocore’s claims and interviews with medical experts suggest its conclusions are unproven and its methods questionable. Neurocore has not published its results in peer-reviewed medical literature. Its techniques — including mapping brain waves to diagnose problems and using neurofeedback, a form of biofeedback, to treat them — are not considered standards of care for the majority of the disorders it treats, including autism. Social workers, not doctors, perform assessments, and low-paid technicians with little training apply the methods to patients, including children with complex problems. In interviews, nearly a dozen child psychiatrists and psychologists with expertise in autism and attention deficit hyperactivity disorder, or A.D.H.D., expressed caution regarding some of Neurocore’s assertions, advertising and methods. “This causes real harm to children because it diverts attention, hope and resources,” said Dr. Matthew Siegel, a child psychiatrist at Maine Behavioral Healthcare and associate professor at Tufts School of Medicine, who co-wrote autism practice standards for the American Academy of Child and Adolescent Psychiatry. “If there were something out there that was uniquely powerful and wonderful, we’d all be using it.” © 2017 The New York Times Company

Keyword: Learning & Memory
Link ID: 23171 - Posted: 01.31.2017

Jon Hamilton What Einstein did for physics, a Spaniard named Santiago Ramón y Cajal did for neuroscience more than a century ago. Back in the 1890s, Cajal produced a series of drawings of brain cells that would radically change scientists' understanding of the brain. And Cajal's drawings aren't just important to science. They are considered so striking that the Weisman Art Museum in Minneapolis has organized a traveling exhibition of Cajal's work called The Beautiful Brain. "Cahal was the founder of modern neuroscience," says Larry Swanson, a brain scientist at the University of Southern California who wrote an essay for the book that accompanies the exhibit. "Before Cajal it was just completely different," Swanson says. "Most of the neuroscientists in the mid-19th century thought the nervous system was organized almost like a fishing net." They saw the brain and nervous system as a single, continuous web, not a collection of separate cells. But Cajal reached a different conclusion. "Cajal looked under the microscope at different parts of the brain and said, 'It's not like a fishing net,'" Swanson says. "There are individual units called nerve cells or neurons that are put together in chains to form circuits." Cajal didn't just take notes on what he saw. He made thousands of highly detailed drawings, many of which are considered works of art. © 2017 npr

Keyword: Brain imaging
Link ID: 23152 - Posted: 01.27.2017

By R. Douglas Fields With American restrictions on travel lifting, interest in Cuba has skyrocketed, especially among scientists considering developing collaborations and student exchange programs with their Caribbean neighbors. But few researchers in the United States know how science and higher education are conducted in communist Cuba. Undark met with Dr. Mitchell Valdés-Sosa, director of the Cuban Neuroscience Center, in his office in Havana to learn how someone becomes a neuroscientist in Cuba, and to discuss what the future may hold for scientific collaborations between the two nations. It is helpful to appreciate some of the ways that higher education and research operate differently in communist Cuba. In contrast to the local institutional and individual control of decisions in the U.S., the central government in Cuba makes career and educational decisions for its citizens. Scientific research is directed by authorities to meet the needs of the developing country, and Ph.D. dissertation proposals must satisfy this goal for approval. Much of the graduate education takes place in biotechnology companies and research centers that are authorized by the government — a situation resembling internships in the U.S. Development, production, and marketing of products from biomedical research and education are all carried out in the same center, and the sales of these products provide financial support to the institution. Copyright 2017 Undark

Keyword: Miscellaneous
Link ID: 23124 - Posted: 01.19.2017

Bret Stetka With a president-elect who has publicly supported the debunked claim that vaccines cause autism, suggested that climate change is a hoax dreamed up by the Chinese, and appointed to his Cabinet a retired neurosurgeon who doesn't buy the theory of evolution, things might look grim for science. Yet watching Patti Smith sing "A Hard Rain's a-Gonna Fall" live streamed from the Nobel Prize ceremony in early December to a room full of physicists, chemists and physicians — watching her twice choke up, each time stopping the song altogether, only to push on through all seven wordy minutes of one of Bob Dylan's most beloved songs — left me optimistic. Taking nothing away from the very real anxieties about future funding and support for science, neuroscience in particular has had plenty of promising leads that could help fulfill Alfred Nobel's mission to better humanity. In the spirit of optimism, and with input from the Society for Neuroscience, here are a few of the noteworthy neuroscientific achievements of 2016. One of the more fascinating fields of neuroscience of late entails mapping the crosstalk between our biomes, brains and immune systems. In July, a group from the University of Virginia published a study in Nature showing that the immune system, in addition to protecting us from a daily barrage of potentially infectious microbes, can also influence social behavior. The researchers had previously shown that a type of white blood cells called T cells influence learning behavior in mice by communicating with the brain. Now they've shown that blocking T cell access to the brain influences rodent social preferences. © 2016 npr

Keyword: Alzheimers; Learning & Memory
Link ID: 23041 - Posted: 12.31.2016

by Tom Siegfried SAN DIEGO — Society’s record for protecting public health has been pretty good in the developed world, not so much in developing countries. That disparity has long been recognized. But there’s another disparity in society’s approach to public health — the divide between attention to traditional diseases and the resources devoted to mental disorders. “When it comes to mental health, all countries are developing countries,” says Shekhar Saxena, director of the World Health Organization’s department of Mental Health and Substance Abuse. Despite a breadth of scope and depth of impact exceeding that of many more highly publicized diseases, mental illness has long been regarded as a second-class medical concern. And modern medicine’s success at diagnosing, treating and curing many other diseases has not been duplicated for major mental disorders. Saxena thinks that neuroscience research can help. He sees an opportunity for progress through increased interdisciplinary collaboration between neuroscience and mental health researchers. “The collaboration seems to be improving, but much more is needed and not only in a few countries, but all countries,” he said November 12 at the annual meeting of the Society for Neuroscience. |© Society for Science & the Public 2000 - 2016.

Keyword: Depression; Schizophrenia
Link ID: 22972 - Posted: 12.10.2016

A graduate student has been charged with murder in the fatal stabbing of beloved USC neuroscience professor, Bosco Tjan on campus Friday. David Jonathan Brown, 28, of Los Angeles is expected to be arraigned Tuesday in downtown Los Angeles, according to the L.A. County district attorney’s office. If he is convicted, Brown faces up to 26 years to life in prison. Prosecutors allege that Brown used a knife when he attacked and stabbed Tjan in the chest at 4:30 p.m. Friday in his office in the Seeley G. Mudd Building on campus. Brown was immediately taken into custody. It was the last day of classes. Tjan, who joined the faculty in 2001, was a professor of psychology at the USC Dornsife College of Letters, Arts and Sciences and a vision loss expert. As co-director of the Dornsife Cognitive Neuroimaging Center, Tjan ran a laboratory devoted to studying human sight. Brown was a doctoral student in Tjan’s lab, according to a USC website. The district attorney’s announcement comes a day after hundreds of students, staff and faculty gathered to honor the slain professor. “Bosco died doing what he loved, doing what he believed in — serving his students and building up a new generation of scholars,” USC President C.L. Max Nikias said. “His achievements are real, his influence enduring.” Tjan led a number of research projects and conducted a lab course on functional imaging. He was also a member of the Society for Neuroscience and Vision Sciences Society.

Keyword: Miscellaneous
Link ID: 22957 - Posted: 12.07.2016

By David Grimm Animal research has a publication problem. About half of all animal experiments in academic labs, including those testing for cancer and heart drugs, are never published in scientific journals, and those that are have been notoriously hard to replicate. That’s part of the reason that most drugs that work in animals don’t work in people—only 11% of oncology compounds that show promise in mice are ever approved for humans—despite billions of dollars spent by pharmaceutical and biotech companies. Meanwhile, academic labs waste money, mice, and other resources on experiments that, unbeknownst to them, have already been done but were never reported. In response to similar concerns about human studies, the U.S Food and Drug Administration (FDA) in 2007 mandated that researchers conducting human clinical trials preregister the details in an online database like ClinicalTrials.gov. Now, some scientists are wondering whether a similar approach makes sense for animal experiments. In a study published this month in PLOS Biology, Daniel Strech, a bioethicist at Hannover Medical School in Germany, and colleagues investigated the idea of so-called animal study registries. They scoured the literature and interviewed nearly two dozen scientists to determine the pros and cons of such registries—and whether they would actually make a difference. Strech chatted with Science to discuss the group’s findings. This interview has been edited for clarity and length. Q: What would these registries look like? © 2016 American Association for the Advancement of Science

Keyword: Animal Rights
Link ID: 22930 - Posted: 11.30.2016

Twenty-seven Canadians a day are diagnosed with a brain tumour. Often, the prognosis isn't good, but it might be improved thanks to a new technique that targets tumours deep inside the brain that are too dangerous to remove surgically. The technique was created by Mark Torchia and Richard Tyc of the University of Manitoba and consists of heating the cancerous tissue with a laser, making it more receptive to chemotherapy. Carling Muir of B.C. is hoping the method, known as NeuroBlate, will help her survive the rare form of recurring brain cancer that she has been living with for the past decade. Muir, who was diagnosed when she was 19, has taken some inspiration from how Tragically Hip singer Gord Downie has handled his own diagnosis of brain cancer this past summer. "I worry more about, like, what it does to my family? That's the part that gets me," she told CBC's Reg Sherren. Sherren was granted exclusive access to the operating room at Vancouver General Hospital where Muir underwent the NeuroBlate procedure. Watch the video to see how surgeons used the laser ablation method to target the cancer cells in Muir's left frontal lobe and read more about the procedure below. ©2016 CBC/Radio-Canada

Keyword: Miscellaneous
Link ID: 22902 - Posted: 11.23.2016

James Gorman The Goffin’s cockatoo is a smart bird, so smart it has been compared to a 3-year-old human. But even for this species, a bird named Figaro stands out for his creativity with tools. Hand-raised at the Veterinary University of Vienna, the male bird was trying to play with a pebble that fell outside his aviary onto a wooden beam about four years ago. First he used a piece of bamboo to try to rake the stone back in. Impressed, scientists in the university Goffin’s lab, which specializes in testing the thinking abilities of the birds, put a cashew nut where the pebble had been. Figaro extended his beak through the wire mesh to bite a splinter off the wooden beam. He used the splinter to fish the cashew in, a fairly difficult process because he had to work the splinter through the mesh and position it at the right angle. In later trials, Figaro made his tools much more quickly, and also picked a bamboo twig from the bottom of the aviary and trimmed it to make a similar tool. Cockatoos don’t do anything like this in nature, as far as anyone knows. They don’t use tools. They don’t even build nests, so they are not used to manipulating sticks. And they have curved bills, unlike the straight beaks of crows and jays that make manipulating tools a bit easier. Blue jays have been observed creating tools from newspaper to pull food pellets to them. Alice M.I. Auersperg, a researcher at the Veterinary University of Vienna who studies cognition in animals, and her colleagues reported those first accomplishments by Figaro in 2012. Since then, they have continued to test Figaro and other birds in the lab that were able to learn tool use or tool making, sometimes both, by watching Figaro. © 2016 The New York Times Company

Keyword: Intelligence; Evolution
Link ID: 22892 - Posted: 11.21.2016