Most Recent Links

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 19320

By STEPHANIE FAIRYINGTON A few months ago, I was on a Manhattan-bound D train heading to work when a man with a chunky, noisy newspaper got on and sat next to me. As I watched him softly turn the pages of his paper, a chill spread like carbonated bubbles through the back of my head, instantly relaxing me and bringing me to the verge of sweet slumber. It wasn’t the first time I’d felt this sensation at the sound of rustling paper — I’ve experienced it as far back as I can remember. But it suddenly occurred to me that, as a lifelong insomniac, I might be able to put it to use by reproducing the experience digitally whenever sleep refused to come. Under the sheets of my bed that night, I plugged in some earphones, opened the YouTube app on my phone and searched for “Sound of pages.” What I discovered stunned me. There were nearly 2.6 million videos depicting a phenomenon called autonomous sensory meridian response, or A.S.M.R., designed to evoke a tingling sensation that travels over the scalp or other parts of the body in response to auditory, olfactory or visual forms of stimulation. The sound of rustling pages, it turns out, is just one of many A.S.M.R. triggers. The most popular stimuli include whispering; tapping or scratching; performing repetitive, mundane tasks like folding towels or sorting baseball cards; and role-playing, where the videographer, usually a breathy woman, softly talks into the camera and pretends to give a haircut, for example, or an eye examination. The videos span 30 minutes on average, but some last more than an hour. For those not wired for A.S.M.R. — and even for those who, like me, apparently are — the videos and the cast of characters who produce them — sometimes called “ASMRtists” or “tingle-smiths” — can seem weird, creepy or just plain boring. (Try pitching the pleasures of watching a nerdy German guy slowly and silently assemble a computer for 30 minutes.) © 2014 The New York Times Company

Keyword: Emotions; Aggression
Link ID: 19894 - Posted: 07.29.2014

By Smitha Mundasad Health reporter, BBC News Scientists say a part of the brain, smaller than a pea, triggers the instinctive feeling that something bad is about to happen. Writing in the journal PNAS, they suggest the habenula plays a key role in how humans predict, learn from and respond to nasty experiences. And they question whether hyperactivity in this area is responsible for the pessimism seen in depression. They are now investigating whether the structure is involved in the condition. Animal studies have shown that the habenula fires up when subjects expect or experience adverse events, But in humans this tiny structure (less than 3mm in diameter) has proved difficult to see on scans. Inventing a technique to pinpoint the area, scientists at University College London put 23 people though MRI scanners to monitor their brain activity. Participants were shown a range of abstract pictures. A few seconds later, the images were linked to either punishment (painful electric shocks), reward (money) or neutral responses. For some images, a punishment or reward followed each time but for others this varied - leaving people uncertain whether they were going to feel pain or not. And when people saw pictures associated with shocks the habenula lit up. And the more certain they were a picture was going to result in a punishment, the stronger and faster the activity in this area. Scientists suggests the habenula is involved in helping people learn when it is best to stay away from something and may also signal just how bad a nasty event is likely to be. BBC © 2014

Keyword: Depression; Aggression
Link ID: 19893 - Posted: 07.29.2014

|By Jillian Rose Lim and LiveScience People who don't get enough sleep could be increasing their risk of developing false memories, a new study finds. In the study, when researchers compared the memory of people who'd had a good night's sleep with the memory of those who hadn't slept at all, they found that, under certain conditions, sleep-deprived individuals mix fact with imagination, embellish events and even "remember" things that never actually happened. False memories occur when people's brains distort how they remember a past event — whether it's what they did after work, how a painful relationship ended or what they witnessed at a crime scene. Memory is not an exact recording of past events, said Steven Frenda, a psychology Ph.D. student at the University of California, Irvine, who was involved in the study. Rather, fresh memories are constructed each time people mentally revisit a past event. During this process, people draw from multiple sources — like what they've been told by others, what they've seen in photographs or what they know as stereotypes or expectations, Frenda said. The new findings "have implications for people's everyday lives —recalling information for an exam, or in work contexts, but also for the reliability of eyewitnesses who may have experienced periods of restricted or deprived sleep," said Frenda, who noted that chronic sleep deprivation is on the rise. In a previous study, Frenda and his colleagues observed that people with restricted sleep (less than 5 hours a night) were more likely to incorporate misinformation into their memories of certain photos, and report they had seen video footage of a news event that didn't happen. In the current study, they wanted to see how a complete lack of sleep for 24 hours could influence a person's memory. © 2014 Scientific American

Keyword: Sleep; Aggression
Link ID: 19892 - Posted: 07.29.2014

By Erik Schechter The folks who brought us the giant, smartphone-controlled cyborg cockroach are back—this time, with a wired-up scorpion. Be afraid. Backyard Brains, a small Michigan-based company dedicated to spreading the word about neuroscience, has been running surgical experiments on these deadly arachnids for the past two months, using electrical current to induce them to strike. Dylan Miller, a summer intern working the project, insists it's the first time that an electrical current has ever been used to remotely induce a scorpion to strike with its pedipalps (claws) and tail. "I was originally looking at how scorpions sense the ground vibrations of their prey," says Miller, a neuroscience major at Michigan State University, "and I just kind of stumbled on this defensive response." In retrospect, it's easy to see how Miller got there. Scorpions use vibrations and their tactile sense to navigate the world, identifying both prey and predator. A touch on the leg, for instance, tells a scorpion that it's under attack, provoking a defensive fight-or-flight reaction—either fleeing from danger or going full-out Bruce Lee. In nature, the scorpion would have to be physically touched for that to happen. But in the lab, an electrode to the leg nerves and a tiny, remote-controlled function generator feeding a signal will do the trick. The scorpion experiments build on the earlier work Backyard Brains has done with cockroaches, namely RoboRoach. A Kickstarter project back in June 2013 and now a real for-sale home kit, RoboRoach enables purchasers to surgically implant a live roach with three sets of electrodes and then control its movement with a smartphone app via a Bluetooth control unit worn on the roach's back. The controversial kit has been criticized as cruel by people like cognitive ethologist Marc Bekoff, but the company argues that RoboRoach's educational "benefits outweigh the cost." Undaunted by the criticism, Backyard Brains co-founder Gregory Gage was already tossing around the idea of robo-scorpions last October. ©2014 Hearst Communication, Inc

Keyword: Miscellaneous
Link ID: 19891 - Posted: 07.29.2014

By CATHERINE SAINT LOUIS “This has happened before,” she tells herself. “It’s nowhere near as bad as before, and it will pass.” Robbie Pinter’s 21-year-old son, Nicholas, is upset again. He yells. He obsesses about something that can’t be changed. Even good news may throw him off. So Dr. Pinter breathes deeply, as she was taught, focusing on each intake and release. She talks herself through the crisis, reminding herself that this is how Nicholas copes with his autism and bipolar disorder. With these simple techniques, Dr. Pinter, who teaches English at Belmont University in Nashville, blunts the stress of parenting a child with severe developmental disabilities. Dr. Pinter, who said she descends from “a long line of the most nervous women,” credits her mindfulness practice with giving her the tools to cope with whatever might come her way. “It is very powerful,” she said. All parents endure stress, but studies show that parents of children with developmental disabilities, like autism, experience depression and anxiety far more often. Struggling to obtain crucial support services, the financial strain of paying for various therapies, the relentless worry over everything from wandering to the future — all of it can be overwhelming. “The toll stress-wise is just enormous, and we know that we don’t do a really great job of helping parents cope with it,” said Dr. Fred R. Volkmar, the director of Child Study Center at Yale University School of Medicine. “Having a child that has a disability, it’s all-encompassing,” he added. “You could see how people would lose themselves.” But a study published last week in the journal Pediatrics offers hope. It found that just six weeks of training in simple techniques led to significant reductions in stress, depression and anxiety among these parents. © 2014 The New York Times Company

Keyword: Depression; Aggression
Link ID: 19890 - Posted: 07.29.2014

Using data from over 18,000 patients, scientists have identified more than two dozen genetic risk factors involved in Parkinson’s disease, including six that had not been previously reported. The study, published in Nature Genetics, was partially funded by the National Institutes of Health (NIH) and led by scientists working in NIH laboratories. A gene chip. Scientists used gene chips to help discover new genes that may be involved with Parkinson's disease “Unraveling the genetic underpinnings of Parkinson’s is vital to understanding the multiple mechanisms involved in this complex disease, and hopefully, may one day lead to effective therapies,” said Andrew Singleton, Ph.D., a scientist at the NIH’s National Institute on Aging (NIA) and senior author of the study. Dr. Singleton and his colleagues collected and combined data from existing genome-wide association studies (GWAS), which allow scientists to find common variants, or subtle differences, in the genetic codes of large groups of individuals. The combined data included approximately 13,708 Parkinson’s disease cases and 95,282 controls, all of European ancestry. The investigators identified potential genetic risk variants, which increase the chances that a person may develop Parkinson’s disease. Their results suggested that the more variants a person has, the greater the risk, up to three times higher, for developing the disorder in some cases.

Keyword: Parkinsons; Aggression
Link ID: 19889 - Posted: 07.29.2014

By DOUGLAS QUENQUA Like Pavlov’s dogs, most organisms can learn to associate two events that usually occur together. Now, a team of researchers says they have identified a gene that enables such learning. The scientists, at the University of Tokyo, found that worms could learn to avoid unpleasant situations as long as a specific insulin receptor remained intact. Roundworms were exposed to different concentrations of salt; some received food during the initial exposure, others did not. Later, when exposed to various concentrations of salt again, the roundworms that had been fed during the first stage gravitated toward their initial salt concentrations, while those that had been starved avoided them. But the results changed when the researchers repeated the experiment using worms with a defect in a particular receptor for insulin, a protein crucial to metabolism. Those worms could not learn to avoid the salt concentrations associated with starvation. “We looked for different forms of the receptor and found that a new one, which we named DAF-2c, functions in taste-aversion learning,” said Masahiro Tomioka, a geneticist at the University of Tokyo and an author of the study, which was published in the journal Science. “It turned out that only this form of the receptor can support learning” in roundworms. While human insulin receptors bear some resemblance to those of a roundworm, more study is needed to determine if it plays a similar role in memory and decision-making, Dr. Tomioka said. But studies have suggested a link between insulin levels and Alzheimer’s disease in humans. © 2014 The New York Times Company

Keyword: Learning & Memory; Aggression
Link ID: 19888 - Posted: 07.28.2014

By Smitha Mundasad Health reporter, BBC News Scientists have discovered a central hub of brain cells that may put the brakes on a desire to eat, a study in mice shows. And switching on these neurons can stop feeding immediately, according to the Nature Neurosciences report. Researchers say the findings may one day contribute to therapies for obesity and anorexia. Experts say this sheds light on the many complex nerve circuits involved in appetite control. Scientists from the California Institute of Technology suggest the nerve cells act as a central switchboard, combining and relaying many different messages in the brain to help reduce food intake. Using laser beams they were able to stimulate the neurons - leading to a complete and immediate stop to food consumption. Prof David Anderson, lead author of the study told the BBC: "It was incredibly surprising. "It was like you could just flick a switch and prevent the animals from feeding." Researchers then used chemicals to mimic a variety of scenarios - including feelings of satiety, malaise, nausea and a bitter taste. They found the neurons were active in all situations, suggesting they may be integral in the response to many diverse stimuli. BBC © 2014

Keyword: Obesity
Link ID: 19887 - Posted: 07.28.2014

|By James Phillips Our inner ear is a marvel. The labyrinthine vestibular system within it is a delicate, byzantine structure made up of tiny canals, crystals and pouches. When healthy, this system enables us to keep our balance and orient ourselves. Unfortunately, a study in the Archives of Internal Medicine found that 35 percent of adults over age 40 suffer from vestibular dysfunction. A number of treatments are available for vestibular problems. During an acute attack of vertigo, vestibular suppressants and antinausea medications can reduce the sensation of motion as well as nausea and vomiting. Sedatives can help patients sleep and rest. Anti-inflammatory drugs can reduce any damage from acute inflammation and antibiotics can treat an infection. If a structural change in the inner ear has loosened some of its particulate matter—for instance, if otolith (calcareous) crystals, which are normally in tilt-sensitive sacs, end up in the semicircular canals, making the canals tilt-sensitive—simple repositioning exercises in the clinic can shake the loose material, returning it where it belongs. After a successful round of therapy, patients no longer sense that they are tilting whenever they turn their heads. If vertigo is a recurrent problem, injecting certain medications can reduce or eliminate the fluctuating function in the affected ear. As a last resort, a surgeon can effectively destroy the inner ear—either by directly damaging the end organs or by cutting the eighth cranial nerve fibers, which carry vestibular information to the brain. The latter surgery involves removing a portion of the skull and shifting the brain sideways, so it is not for the faint of heart. © 2014 Scientific American

Keyword: Hearing
Link ID: 19886 - Posted: 07.28.2014

By PAUL VITELLO The conventional wisdom among animal scientists in the 1950s was that birds were genetically programmed to sing, that monkeys made noise to vent their emotions, and that animal communication, in general, was less like human conversation than like a bodily function. Then Peter Marler, a British-born animal behaviorist, showed that certain songbirds not only learned their songs, but also learned to sing in a dialect peculiar to the region in which they were born. And that a vervet monkey made one noise to warn its troop of an approaching leopard, another to report the sighting of an eagle, and a third to alert the group to a python on the forest floor. These and other discoveries by Dr. Marler, who died July 5 in Winters, Calif., at 86, heralded a sea change in the study of animal intelligence. At a time when animal behavior was seen as a set of instinctive, almost robotic responses to environmental stimuli, he was one of the first scientists to embrace the possibility that some animals, like humans, were capable of learning and transmitting their knowledge to other members of their species. His hypothesis attracted a legion of new researchers in ethology, as animal behavior research is also known, and continues to influence thinking about cognition. Dr. Marler, who made his most enduring contributions in the field of birdsong, wrote more than a hundred papers during a long career that began at Cambridge University, where he received his Ph.D. in zoology in 1954 (the second of his two Ph.D.s.), and that took him around the world conducting field research while teaching at a succession of American universities. Dr. Marler taught at the University of California, Berkeley, from 1957 to 1966; at Rockefeller University in New York from 1966 to 1989; and at the University of California, Davis, where he led animal behavior research, from 1989 to 1994. He was an emeritus professor there at his death. © 2014 The New York Times Company

Keyword: Language; Aggression
Link ID: 19885 - Posted: 07.28.2014

By KATE MURPHY ONE of the biggest complaints in modern society is being overscheduled, overcommitted and overextended. Ask people at a social gathering how they are and the stock answer is “super busy,” “crazy busy” or “insanely busy.” Nobody is just “fine” anymore. When people aren’t super busy at work, they are crazy busy exercising, entertaining or taking their kids to Chinese lessons. Or maybe they are insanely busy playing fantasy football, tracing their genealogy or churning their own butter. And if there is ever a still moment for reflective thought — say, while waiting in line at the grocery store or sitting in traffic — out comes the mobile device. So it’s worth noting a study published last month in the journal Science, which shows how far people will go to avoid introspection. “We had noted how wedded to our devices we all seem to be and that people seem to find any excuse they can to keep busy,” said Timothy Wilson, a psychology professor at the University of Virginia and lead author of the study. “No one had done a simple study letting people go off on their own and think.” The results surprised him and have created a stir in the psychology and neuroscience communities. In 11 experiments involving more than 700 people, the majority of participants reported that they found it unpleasant to be alone in a room with their thoughts for just 6 to 15 minutes. Moreover, in one experiment, 64 percent of men and 15 percent of women began self-administering electric shocks when left alone to think. These same people, by the way, had previously said they would pay money to avoid receiving the painful jolt. It didn’t matter if the subjects engaged in the contemplative exercise at home or in the laboratory, or if they were given suggestions of what to think about, like a coming vacation; they just didn’t like being in their own heads. © 2014 The New York Times Company

Keyword: Consciousness; Aggression
Link ID: 19884 - Posted: 07.26.2014

By Michael Brooks Occasionally, scientific research comes up with banal findings that should nonetheless stop us in our tracks. For example, researchers recently published a study showing that a father’s brain will change its hormonal outputs and neural activity depending on his parenting duties. The conclusion of the research is, in essence, that men make good parents, too. Surely this is not news. Yet it does provide evidence that is sadly still useful. Those involved with issues of adoption, fathers’ rights, gay rights, child custody, and religion-fuelled bigotry will all benefit from understanding what we now know about what makes a good parent. The biggest enemy of progress has been the natural world, or at least our view of it. Females are the primary caregivers in 95 percent of mammal species. That is mainly because of lactation. Infants are nourished by their mothers’ milk, so it makes sense for most early caring to be done by females. Human beings, however, have developed more sophisticated means of nourishing and raising our offspring. Should the circumstances require a different set-up, we have ways to cope. It turns out that this is not just in terms of formula milk, nannies or day care: We also have a flexible brain. The new study, published in Proceedings of the National Academy of Sciences, scanned the brains of parents while they watched videos of their interactions with their children. The researchers found that this stimulated activity in two systems of the brain. One is an emotional network that deals with social bonding, ensures vigilance and coordinates responses to distress, providing chemical rewards for behaviours that maintain the child’s well-being. The other network is concerned with mental processing. It monitors the child’s likely state of mind, emotional condition, and future needs, allowing for planning. 2014 © The New Republic.

Keyword: Sexual Behavior
Link ID: 19883 - Posted: 07.26.2014

By MICHAEL INZLICHT and SUKHVINDER OBHI I FEEL your pain. These words are famously associated with Bill Clinton, who as a politician seemed to ooze empathy. A skeptic might wonder, though, whether he truly was personally distressed by the suffering of average Americans. Can people in high positions of power — presidents, bosses, celebrities, even dominant spouses — easily empathize with those beneath them? Psychological research suggests the answer is no. Studies have repeatedly shown that participants who are in high positions of power (or who are temporarily induced to feel powerful) are less able to adopt the visual, cognitive or emotional perspective of other people, compared to participants who are powerless (or are made to feel so). For example, Michael Kraus, a psychologist now at the University of Illinois at Urbana-Champaign, and two colleagues found that among full-time employees of a public university, those who were higher in social class (as determined by level of education) were less able to accurately identify emotions in photographs of human faces than were co-workers who were lower in social class. (While social class and social power are admittedly not the same, they are strongly related.) Why does power leave people seemingly coldhearted? Some, like the Princeton psychologist Susan Fiske, have suggested that powerful people don’t attend well to others around them because they don’t need them in order to access important resources; as powerful people, they already have plentiful access to those. We suggest a different, albeit complementary, reason from cognitive neuroscience. On the basis of a study we recently published with the researcher Jeremy Hogeveen, in the Journal of Experimental Psychology: General, we contend that when people experience power, their brains fundamentally change how sensitive they are to the actions of others. © 2014 The New York Times Company

Keyword: Emotions; Aggression
Link ID: 19882 - Posted: 07.26.2014

By James Gallagher Health editor, BBC News website Even low levels of light in bedrooms may stop breast cancer drugs from working, US researchers have warned. Animal tests showed light, equivalent to that from street lamps, could lead to tumours becoming resistant to the widely used drug Tamoxifen. The study, published in the journal Cancer Research, showed the light affected sleep hormones, which in turn altered cancer cell function. UK experts said it was an intriguing finding, but not proven in people. Tamoxifen has transformed the treatment of breast cancer by extending lives and increasing survival times. It stops the female hormone oestrogen fuelling the growth of tumours although the cancerous cells may eventually become resistant to the drug. Light Researchers at the Tulane University School of Medicine investigated the role of the body clock in Tamoxifen resistance. They focused their research on the sleep-promoting hormone melatonin, which normally begins to rise in the evening and continues through the night, before falling away as dawn approaches. However, light in the evening - such as from a smartphone, tablet or artificial lights - can lower melatonin levels. Rats, with human breast cancer and treated with Tamoxifen, were left to sleep in a completely dark cage or one that had dim light. The scientists showed that in dim light, melatonin levels were lower, the tumours were bigger and were resistant to Tamoxifen. A second set of tests showed that giving those mice melatonin supplements kept Tamoxifen working and resulted in smaller tumours. BBC © 2014

Keyword: Biological Rhythms
Link ID: 19881 - Posted: 07.26.2014

by Claudia Caruana GOT that ringing in your ears? Tinnitus, the debilitating condition that plagued Beethoven and Darwin, affects roughly 10 per cent of the world's population, including 30 million people in the US alone. Now, a device based on vagus nerve stimulation promises to eliminate the sounds for good by retraining the brain. At the moment, many chronic sufferers turn to state of the art hearing aids configured to play specific tones meant to cancel out the tinnitus. But these do not always work because they just mask the noise. The new device, developed by MicroTransponder in Dallas, Texas, works in an entirely different way. The Serenity System uses a transmitter connected to the vagus nerve in the neck – the vagus nerve connects the brain to many of the body's organs. The thinking goes that most cases of chronic tinnitus result from changes in the signals sent from the ear to neurons in the brain's auditory cortex. This device is meant to retrain those neurons to forget the annoying noise. To use the system, a person wears headphones and listens to computer-generated sounds. First, they listen to tones that trigger the tinnitus before being played different frequencies close to the problematic one. Meanwhile, the implant stimulates the vagus nerve with small pulses. The pulses trigger the release of chemicals that increase the brain's ability to reconfigure itself. The process has already worked in rats (Nature, doi.org/b63kt9) and in a small human trial this year, where it helped around half of the participants. "Vagus nerve stimulation takes advantage of the brain's neuroplasticity – the ability to reconfigure itself," says Michael Kilgard at the University of Texas at Dallas, and a consultant to MicroTransponder. © Copyright Reed Business Information Ltd.

Keyword: Hearing; Aggression
Link ID: 19880 - Posted: 07.26.2014

By Helen Briggs Health editor, BBC News website The timing of when a girl reaches puberty is controlled by hundreds of genes, say scientists. And age at first period may vary in daughters from the same family because of genetic factors, research shows. The findings, published in Nature, could give clues to why early puberty may be linked to an increased risk of health conditions. Scientists at 166 institutions analysed the DNA of more than 180,000 women in one of the largest studies of its kind. They found that hundreds of genes were involved in the timing of puberty. Unusually, a girl's first period was also influenced by imprinted genes - a rare event where genes from either the mother of father are silenced. "Our findings imply that in a family, one parent may more profoundly affect puberty timing in their daughters than the other parent," said lead researcher Dr John Perry of the University of Cambridge. He said the biological complexity revealed in the study was "amazing". "We identified more than 100 regions of the genome associated with puberty timing, but our analysis suggests there are likely to be thousands," he told BBC News. Lifestyle BBC © 2014

Keyword: Hormones & Behavior; Aggression
Link ID: 19879 - Posted: 07.26.2014

Posted by Katie Langin In a battle of wits, could a bird outsmart a kindergartner? Don’t be too quick to say no: One clever young bird solved a problem that has stumped 5-year-old children, according to a new study. The bird—a New Caledonian crow named Kitty—figured out that dropping rocks in one water-filled tube was the key to raising the water level in another, seemingly unconnected tube, giving her access to a floating morsel of meat. To solve this problem, Kitty needed to decipher a confusing cause-and-effect relationship, basically akin to figuring out that if you flip a switch on the wall, a ceiling light will turn on. This mental ability was once thought to be restricted to humans, but causal reasoning—the ability to understand cause and effect—has now been identified in a handful of animals, from chimpanzees to rats. Crows are the Einsteins of the bird world, renowned for their ability to make tools and solve complex puzzles. (Watch a video of a New Caledonian crow solving problems.) Their impressive mental capacity was even apparent to the ancient Greeks. In one of Aesop’s fables, a thirsty crow is presented with a dilemma when he cannot reach the water at the bottom of a pitcher. He figures out that the water level rises when he drops pebbles into the pitcher, and many pebbles later he is rewarded with a drink. As it turns out, there’s some truth to this fictional story. A study published earlier this year reported that New Caledonian crows will place rocks in water-filled tubes if they can’t reach a piece of meat that is attached to a floating cork. © 1996-2013 National Geographic Society.

Keyword: Intelligence; Aggression
Link ID: 19878 - Posted: 07.26.2014

by Douglas Heaven Hijacking how neurons of nematode worms are wired is the first step in an approach that could revolutionise our understanding of brains and consciousness CALL it the first brain hack. The humble nematode worm has had its neural connections hot-wired, changing the way it responds to salt and smells. As well as offering a way to create souped-up organisms, changing neural connectivity could one day allow us to treat brain damage in people by rerouting signals around damaged neurons. What's more, it offers a different approach to probing brain mysteries such as how consciousness arises from wiring patterns – much like exploring the function of an electronic circuit by plugging and unplugging cables. In our attempts to understand the brain, a lot of attention is given to neurons. A technique known as optogenetics, for example, lets researchers study the function of individual neurons by genetically altering them so they can be turned on and off by a light switch. But looking at the brain's connections is as important as watching the activity of neurons. Higher cognitive functions, such as an awareness of our place in the world, do not spring from a specific area, says Fani Deligianni at University College London. Deligianni and her colleagues are developing imaging techniques to map the brain's connections, as are other groups around the world (see "Start with a worm..."). "From this we can begin to answer some of the big questions about the workings of the brain and consciousness which seem to depend on connectivity," she says. Tracing how the brain is wired is a great first step but to find out how this linking pattern produces a particular behaviour we need to be able to see how changing these links affects brain function. This is what a team led by William Schafer at the MRC Laboratory of Molecular Biology in Cambridge, UK, is attempting. © Copyright Reed Business Information Ltd.

Keyword: Brain imaging; Aggression
Link ID: 19877 - Posted: 07.24.2014

By JAMES GORMAN Any dog owner would testify that dogs are just as prone to jealousy as humans. But can one really compare Othello’s agony to Roscoe’s pique? The answer, according to Christine Harris, a psychologist at the University of California, San Diego, is that if you are petting another dog, Roscoe is going to show something that Dr. Harris thinks is a form of jealousy, even if not as complex and twisted as the adult human form. Other scientists agree there is something going on, but not all are convinced it is jealousy. And Roscoe and the rest of his tribe were, without exception, unavailable for comment. Dr. Harris had been studying human jealousy for years when she took this question on, inspired partly by the antics of her parents’ Border collies. When she petted them, “one would take his head and knock the other’s head away,” she said. It certainly looked like jealousy. But having studied humans, she was aware of different schools of thought about jealousy. Some scientists argue that jealousy requires complex thinking about self and others, which seems beyond dogs’ abilities. Others think that although our descriptions of jealousy are complex, the emotion itself may not be that complex. Dog emotions, as owners perceive them, have been studied before. In one case, Alexandra Horowitz, a cognitive scientist who is an adjunct associate professor at Barnard College and the author of “Inside of a Dog,” found that the so-called guilty look that dogs exhibit seemed to be more related to fear of punishment. Dr. Harris ventured into the tricky turf of dog emotion by devising a test based on work done with infants. © 2014 The New York Times Company

Keyword: Emotions; Aggression
Link ID: 19876 - Posted: 07.24.2014

by Helen Thomson How do you smell after a drink? Quite well, it turns out. A modest amount of alcohol boosts your sense of smell. It is well known that we can improve our sense of smell through practice. But a few people have also experienced a boost after drug use or brain damage. This suggests our sensitivity to smell may be damped by some sort of inhibition in the brain, which can be lifted under some circumstances, says Yaara Endevelt of the Weizmann Institute of Science in Rehovot, Israel. To explore this notion, Endevelt and her colleagues investigated whether drinking alcohol – known to lower inhibitory signals in the brain – affected the sense of smell. In one odour-discrimination test, 20 volunteers were asked to smell three different liquids. Two were a mixture of the same six odours, the third contained a similar mixture with one odour replaced. Each volunteer was given 2 seconds to smell each of the liquids and say which was the odd one out. The test was repeated six times with each of three trios of liquids. They were then given a drink that consisted of 35 millilitres of vodka and sweetened grape juice, or the juice alone, before repeating the experiment with the same set of liquids. In a second experiment with a similar drinking structure, the same volunteers were asked which of three liquids had a rose-like odour. The researchers increased the concentration of the odour until the volunteers got the right answer three times in a row. © Copyright Reed Business Information Ltd.

Keyword: Chemical Senses (Smell & Taste)
Link ID: 19875 - Posted: 07.24.2014