Most Recent Links

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 41 - 60 of 20389

Alexandra Sifferlin Autism, already a mysterious disorder, is even more puzzling when it comes to gender differences. For every girl diagnosed with autism, four boys are diagnosed, a disparity researchers don’t yet fully understand. In a new study published in the journal Molecular Autism, researchers from the UC Davis MIND Institute tried to figure out a reason why. They looked at 112 boys and 27 girls with autism between ages 3 and 5 years old, as well as a control sample of 53 boys and 29 girls without autism. Using a process called diffusion-tensor imaging, the researchers looked at the corpus callosum — the largest neural fiber bundle in the brain — in the young kids. Prior research has shown differences in that area of the brain among people with autism. They found that the organization of these fibers was different in boys compared with girls, especially in the frontal lobes, which play a role in executive functions. “The sample size is still limited, but this work adds to growing body of work suggesting boys and girls with autism have different underlying neuroanatomical differences,” said study author Christine Wu Nordahl, an assistant professor in the UC Davis Department of Psychiatry and Behavioral Sciences, in an email. In other preliminary research presented at the International Meeting for Autism Research, or IMFAR, in Salt Lake City, the study authors showed that when girls and boys with autism are compared with typically developing boys and girls, the behavioral differences between girls with autism and the female controls are greater than the differences among the boys. Nordahl says this suggests that girls can be more severely affected than boys.

Keyword: Autism; Sexual Behavior
Link ID: 20926 - Posted: 05.14.2015

By SABRINA TAVERNISE WASHINGTON — What would make a smoker more likely to quit, a big reward for succeeding or a little penalty for failing? That is what researchers wanted to know when they assigned a large group of CVS employees, their relatives and friends to different smoking cessation programs. The answer offered a surprising insight into human behavior. Many more people agreed to sign up for the reward program, but once they were in it, only a small share actually quit smoking. A far smaller number agreed to risk the penalty, but those who did were twice as likely to quit. The trial, which was described in The New England Journal of Medicine on Wednesday, was the largest yet to test whether offering people financial incentives could lead to better health. It used theories about human decision making that have been developed in psychology and economics departments over several decades and put them into practice with more than 2,500 people who either worked at CVS Caremark, the country’s largest drugstore chain by sales, or were friends or relatives of those employees. Researchers found that offering incentives was far more effective in getting people to stop smoking than the traditional approach of giving free smoking cessation help, such as counseling or nicotine replacement therapy like gum, medication or patches. But they also found that requiring a $150 deposit that would be lost if the person failed to stay off cigarettes for six months nearly doubled the chances of success. “Adding a bit of a stick was much better than a pure carrot,” said Dr. Scott Halpern, deputy director of the Center for Health Incentives and Behavioral Economics at the University of Pennsylvania School of Medicine, who led the study. © 2015 The New York Times Company

Keyword: Drug Abuse
Link ID: 20925 - Posted: 05.14.2015

Alison Abbott It is only when you read the words that Andreas Vesalius wrote as an angry young man in the 1540s that you get a feeling for what drove him to document every scrap of human anatomy his eye could see. His anger was directed at Galen, the second-century physician whose anatomical teachings had been held as gospel for more than a millennium. Roman Empire law had barred Galen from dissecting humans, so he had extrapolated as best he could from animal dissections — often wrongly. Human dissections were also banned in most of sixteenth-century Europe, so Vesalius travelled to wherever they were allowed. He saw Galen's errors and dared to report them, most explicitly in his seven-volume De Humani Corporis Fabrica (On the Fabric of the Human Body), which he began aged 24, working with some of the best art professionals of the time. His mission to learn through direct and systematic observation marked the start of a new way of doing science. In Brain Renaissance, neuroscientists Marco Catani and Stefano Sandrone present a translation from the Latin of the Fabrica's last volume, which focuses on the brain. Through it we can appreciate Vesalius's extraordinary attention to detail, and his willingness to believe his eyes, even when what he saw contradicted established knowledge. We learn his anatomical vocabulary. For example, he called the rounded surface protuberances near the brain stem “buttocks” and “testes”; these are now known as the inferior and superior colliculi, or 'little hills', which process sound and vision. © 2015 Macmillan Publishers Limited.

Keyword: Brain imaging
Link ID: 20924 - Posted: 05.14.2015

By Emily Underwood We’ve all heard how rats will abandon a sinking ship. But will the rodents attempt to save their companions in the process? A new study shows that rats will, indeed, rescue their distressed pals from the drink—even when they’re offered chocolate instead. They’re also more likely to help when they’ve had an unpleasant swimming experience of their own, adding to growing evidence that the rodents feel empathy. Previous studies have shown that rats will lend distressed companions a helping paw, says Peggy Mason, a neurobiologist at the University of Chicago in Illinois who was not involved in the work. In a 2011 study, for example, Mason and colleagues showed that if a rat is trapped in a narrow plastic tube, its unrestrained cagemate will work on the latch until it figures out how to spring the trap. Skeptics, however, have suggested that the rodents help because they crave companionship—not because their fellow rodents were suffering. The new study, by researchers at the Kwansei Gakuin University in Japan, puts those doubts to rest, Mason says. For their test of altruistic behavior, the team devised an experimental box with two compartments divided by a transparent partition. On one side of the box, a rat was forced to swim in a pool of water, which it strongly disliked. Although not at risk of drowning—the animal could cling to a ledge—it did have to tread water for up to 5 minutes. The only way the rodent could escape its watery predicament was if a second rat—sitting safe and dry on a platform—pushed open a small round door separating the two sides, letting it climb onto dry land. © 2015 American Association for the Advancement of Science

Keyword: Emotions; Learning & Memory
Link ID: 20923 - Posted: 05.13.2015

Rob Stein The seasons appear to influence when certain genes are active, with those associated with inflammation being more active in the winter, according to new research released Tuesday. A study involving more than 16,000 people found that the activity of about 4,000 of those genes appears to be affected by the season, researchers reported in the journal Nature Communications. The findings could help explain why certain diseases are more likely than others to strike for the first time during certain seasons, the researchers say. "Certain chronic diseases are very seasonal — like seasonal affective disorder or cardiovascular disease or Type 1 diabetes or multiple sclerosis or rheumatoid arthritis," says John Todd, a geneticist at the University of Cambridge who led the research. "But people have been wondering for decades what the explanation for that is." Todd and his colleagues decided to try to find out. They analyzed the genes in cells from more than 16,000 people in five countries, including the United States and European countries in the Northern Hemisphere, and Australia in the Southern Hemisphere. And they spotted the same trend — in both hemispheres, and among men as well as women. "It's one of those observations where ... the first time you see it, you go, 'Wow, somebody must have seen this before,' " Todd says. Not all young girls avoid dirt. Hannah Rose Akerley, 7, plays in a gigantic lake of mud at the annual Mud Day event in Westland, Mich., last July. © 2015 NPR

Keyword: Biological Rhythms; Neuroimmunology
Link ID: 20922 - Posted: 05.13.2015

By ANDREW POLLACK A study of an obesity drug has ended after the manufacturer released early and ultimately misleading data, researchers said on Tuesday. The company, Orexigen Therapeutics, disclosed in March that early results from a clinical trial of its drug Contrave had shown a 41 percent reduction in the risk of heart attacks, strokes and death from cardiovascular causes. Orexigen’s stock shot up, and the information no doubt helped lift sales of Contrave. But the academic researchers who oversaw the study said on Tuesday that Orexigen had violated an agreement that the early results were not going to be shared widely, even within the company. Moreover, as participants in the trial were followed for a longer period of time, the benefit of the drug in reducing cardiovascular risks vanished. The researchers, in a news release issued by the Cleveland Clinic, said they took the unusual step of terminating the study and releasing the more updated results. “We felt it was unacceptable to allow misleading interim data to be in the public domain and be acted upon by patients and providers,” Dr. Steven Nissen, chairman of cardiovascular medicine at the Cleveland Clinic and head of the trial’s steering committee, said in an interview. He said Orexigen had “acted improperly and unethically in violating the data access agreement” and the premature release of data had made it difficult to continue the study. It’s unlikley that patients would want to stay in the trial and risk getting a placebo if they thought the drug, which is already available on the market, could reduce their risk of heart attacks. © 2015 The New York Times Company

Keyword: Obesity
Link ID: 20921 - Posted: 05.13.2015

By Melissa Mancini, Many veterans are turning to marijuana to ease symptoms of post traumatic stress disorder, despite concerns from the medical community about how effective pot is at treating the condition. There are a "tremendous" number of testimonials from patients with post traumatic stress disorder who say dried cannabis helps them, but there is a lack of randomized, controlled trials, said Dr. Stewart Cameron, a family physician and professor at Dalhousie University's faculty of medicine. In September 2014, the College of Family Physicians of Canada released a document to help doctors decide how to use cannabis in their practices. "They strongly recommended that it not be used for PTSD," said Cameron. "They suggested it should be reserved as a third or fourth line agent in people who suffer certain types of pain." Veterans Affairs paid out $5.2 million for medical marijuana to veterans across Canada last year. Of that, $3.4 million went to veterans in Atlantic Canada. The department could not say which ailments the veterans are treating with marijuana, because Veterans Affairs doesn't track cannabis reimbursement by condition. Medical marijuana advocate Fabian Henry says most of the 500 veterans who visited his company last year were looking for authorization to use marijuana to help with post traumatic stress disorder. Henry's company, Marijuana for Trauma, connects veterans with physicians willing to authorize medical cannabis. The organization has helped hundreds of veterans fill out forms for medical pot reimbursement from Veterans Affairs Canada. Marijuana for Trauma calls cannabis "a natural choice medicine" and says it's "proven to be effective in 85 per cent of those who suffer with PTSD." But Canadian medical authorities are far from assigning such a high efficacy rate to the drug. ©2015 CBC/Radio-Canada.

Keyword: Stress; Drug Abuse
Link ID: 20920 - Posted: 05.13.2015

Sarah Boseley Health editor Psychiatric drugs do more harm than good and the use of most antidepressants and dementia drugs could be virtually stopped without causing harm, an expert on clinical trials argues in a leading medical journal. The views expressed in a British Medical Journal debate by Peter Gøtzsche, professor and director of the Nordic Cochrane Centre in Denmark, are strongly opposed by many experts in mental health. However, others say the debate around the use of psychiatric drugs is important and acknowledge that there has been overuse of antipsychotics to quieten aggressive patients with dementia. Gøtzsche says more than half a million people over the age of 65 die as a result of the use of psychiatric drugs every year in the western world. “Their benefits would need to be colossal to justify this, but they are minimal,” he writes. He claims that trials carried out with funding from drug companies into the efficacy of psychiatric drugs have almost all been biased, because the patients involved have usually been on other medication first. They stop their drugs and often experience a withdrawal phase prior to starting the trial drug, which then appears to have a big benefit. He also claims that deaths from suicide in clinical trials are under-reported. In trials of the modern antidepressants fluoxetine and venlafaxine, says Gøtzsche, it takes only a few extra days for depression in the placebo group – given dummy pills – to lift as much as in the group given the drugs. He argues that there is spontaneous remission of the disease over time. © 2015 Guardian News and Media Limited

Keyword: Depression; Schizophrenia
Link ID: 20919 - Posted: 05.13.2015

By Gareth Cook Much has been written on the wonders of human memory: the astounding feats of recall, the way memories shape our identity and are shaped by them, memory as a literary theme and a historical one. But what of forgetting? This is the topic of a new book by Douwe Draaisma, author of The Nostalgia Factory and a professor of the history of psychology at the University of Groningen. In Forgetting, Draaisma considers dreaming, amnesia, dementia and all of the ways that our minds — and lives — are shaped by memory’s opposite. He answered questions from Mind Matters editor Gareth Cook. What is your earliest memory and why, do you suppose, have you not forgotten it? Quite a few early memories in the Netherlands involve bicycles, and mine is no exception. I was two-and-a-half years old when my aunts walked my mother to the train station. They had taken a bike along to transport her bags. I was sitting on the back of the bike. Suddenly the whole procession came to a halt when my foot got caught between the spokes. I’m pretty sure this memory is accurate, since I had to see a doctor and there is a dated medical record. It’s a brief, snapshot-like memory, black-and-white. I don’t remember any pain, but I do remember the consternation among my mom and her sisters. Looking back on this memory from a professional perspective, I would say that it has the flash-like character typical for first memories from before age 3; ‘later’ first memories are usually a bit longer and more elaborate. It also fits the pattern of being about pain and danger. Roughly three in four first memories are associated with negative emotions. This may have an evolutionary origin: I never again had my foot between the spokes. And neither have any of my children. © 2015 Scientific American

Keyword: Learning & Memory
Link ID: 20918 - Posted: 05.13.2015

Jessica Hamzelou Don't be too hard on them. Amoebas that weasel their way into our brains and chow down on our grey matter aren't welcome, but it's how our immune system reacts that's really lethal. Setting the story straight could help us deal with them better. Brain-eating amoebas (Naegleria fowleri) are found in warm freshwater pools around the world, feeding on bacteria. If someone swims in one of these pools and gets water up their nose, the amoeba heads for the brain in search of a meal. Once there, it starts to destroy tissue by ingesting cells and releasing proteins that make other cells disintegrate. The immune system launches a counter-attack by flooding the brain with immune cells, causing inflammation and swelling. It seldom works: of the 132 people known to have been infected in the US since 1962, only three survived. Brain-eating amoeba infections are more common elsewhere. "In Pakistan, we have something like 20 deaths per year," says Abdul Mannan Baig at the Aga Khan University in Karachi. There is no standard treatment. Doctors in the US have recently started trying to kill the amoebas with miltefosine, a drug known to work on the leishmaniasis parasite. Mannan thinks they should take a different approach, because the immune response may be more damaging than the amoeba itself. The problem is that enzymes released by the immune cells can also end up destroying brain tissue. And the swelling triggered by the immune system eventually squashes the brainstem, fatally shutting off communication between the body and the brain. © Copyright Reed Business Information Ltd

Keyword: Neuroimmunology
Link ID: 20917 - Posted: 05.13.2015

By C. CLAIBORNE RAY Q. I heard that people can’t look at a color in one room and then pick it out of a set of similar colors in the next room. But there are people with perfect pitch, so are there people with “perfect hue”? A. “The short answer is no,” said Mark D. Fairchild, director of the program of color science at the Munsell Color Science Laboratory of Rochester Institute of Technology. “Color is almost always judged relative to other colors,” Dr. Fairchild said, and the human ability to remember colors over any period of time, or even from room to room, is extremely poor. “Based on memory alone, we can probably reliably identify tens of colors, with some people perhaps able to study hard and get up to a hundred or so,” he said. “If we were to learn a systematic way to scale colors, we might be able to get up to several hundred.” If colors are compared side by side, however, “then we can easily distinguish several thousand colors, and some estimate more than a million,” Dr. Fairchild said. Such ability is somewhat analogous to differentiating tones in hearing, he said. Almost everyone can distinguish tones when they are compared in close succession, he said, but only a very small percentage of people have what is called perfect pitch or absolute pitch: the ability to recall and identify tones after a considerable period of time, without a reference tone for comparison. “Unfortunately, color appearance seems to be even more difficult to remember,” Dr. Fairchild said, “to the point that we don’t speak of anyone as having perfect hue.” © 2015 The New York Times Company

Keyword: Vision
Link ID: 20916 - Posted: 05.13.2015

By Simon Makin After wandering around an unfamiliar part of town, can you sense which direction to travel to get back to the subway or your car? If so, you can thank your entorhinal cortex, a brain area recently identified as being responsible for our sense of direction. Variation in the signals in this area might even explain why some people are better navigators than others. The new work adds to a growing understanding of how our brain knows where we are. Groundbreaking discoveries in this field won last year's Nobel Prize in Physiology or Medicine for John O'Keefe, a neuroscientist at University College London, who discovered “place cells” in the hippocampus, a brain region most associated with memory. These cells activate when we move into a specific location, so that groups of them form a map of the environment. O'Keefe shared the prize with his former students Edvard Moser and May-Britt Moser, both now at the Kavli Institute for Systems Neuroscience in Norway, who discovered “grid cells” in the entorhinal cortex, a region adjacent to the hippocampus. Grid cells have been called the brain's GPS system. They are thought to tell us where we are relative to where we started. A third type—head-direction cells, also found in the entorhinal region—fires when we face a certain direction (such as “toward the mountain”). Together these specialized neurons appear to enable navigation, but precisely how is still unclear. For instance, in addition to knowing which direction we are facing, we need to know which direction to travel. Little was known about how or where such a goal-direction signal might be generated in the brain until the new study. © 2015 Scientific American

Keyword: Learning & Memory
Link ID: 20915 - Posted: 05.13.2015

By GREGORY HICKOK IN 1890, the American psychologist William James famously likened our conscious experience to the flow of a stream. “A ‘river’ or a ‘stream’ are the metaphors by which it is most naturally described,” he wrote. “In talking of it hereafter, let’s call it the stream of thought, consciousness, or subjective life.” While there is no disputing the aptness of this metaphor in capturing our subjective experience of the world, recent research has shown that the “stream” of consciousness is, in fact, an illusion. We actually perceive the world in rhythmic pulses rather than as a continuous flow. Some of the first hints of this new understanding came as early as the 1920s, when physiologists discovered brain waves: rhythmic electrical currents measurable on the surface of the scalp by means of electroencephalography. Subsequent research cataloged a spectrum of such rhythms (alpha waves, delta waves and so on) that correlated with various mental states, such as calm alertness and deep sleep. Researchers also found that the properties of these rhythms varied with perceptual or cognitive events. The phase and amplitude of your brain waves, for example, might change if you saw or heard something, or if you increased your concentration on something, or if you shifted your attention. But those early discoveries themselves did not change scientific thinking about the stream-like nature of conscious perception. Instead, brain waves were largely viewed as a tool for indexing mental experience, much like the waves that a ship generates in the water can be used to index the ship’s size and motion (e.g., the bigger the waves, the bigger the ship). Recently, however, scientists have flipped this thinking on its head. We are exploring the possibility that brain rhythms are not merely a reflection of mental activity but a cause of it, helping shape perception, movement, memory and even consciousness itself. What this means is that the brain samples the world in rhythmic pulses, perhaps even discrete time chunks, much like the individual frames of a movie. From the brain’s perspective, experience is not continuous but quantized. © 2015 The New York Times Company

Keyword: Consciousness; Attention
Link ID: 20914 - Posted: 05.12.2015

By David Shultz We no longer live in a world governed by the sun. Artificial light lets millions of people stay up late, or work in the predawn hours. But the price many of us pay for this extra illumination is a disrupted internal clock—and, growing evidence suggests, obesity. Now, a study of mice suggests that excessive light exposure causes the rodents to burn less fat, a finding that if confirmed could lead to new paths to weight loss in humans. Many mammals have two types of tissues that store fat: brown fat and white fat. Both store energy, but white fat releases its energy stores to power other cells, while brown fat produces heat from metabolizing its contents. For years, scientists have been trying to coax brown fat into action as a way to stimulate weight loss. They’ve identified a protein called β3 adrenergic receptor that, when activated, encourages brown fat cells to burn off more fat and produce more heat. To test the relationship between light exposure and brown fat activity, researchers exposed groups of mice to artificial light for 12, 16, or 24 hours per day and monitored their levels of β3 adrenergic receptor activity. The team also monitored the rate at which energy molecules such as glucose and fatty acids were absorbed from the bloodstream by brown fat tissue to test whether the tissue was using less energy to begin with. Both metrics showed the same trend: Brown fat in mice exposed to prolonged periods of light, 16 or 24 hours compared with a normal 12, absorbed less nutrients from the blood and burned less fat as a result of reduced β3 adrenergic receptor activity. In essence, their furnaces were using less fuel and burning less intensely. To compound the problem, the fatty molecules left in the blood stream were absorbed elsewhere—often in white adipose tissue that makes up the classical body fat that causes obesity, says team leader Patrick Rensen, a biochemist at Leiden University Medical Center in the Netherlands. © 2015 American Association for the Advancement of Science.

Keyword: Obesity; Biological Rhythms
Link ID: 20913 - Posted: 05.12.2015

By Smitha Mundasad Health reporter There has been a worrying rise in the number of working-age men and women having strokes, a charity has warned. In England in 2014 there were 6,221 hospital admissions for men aged 40-54 - a rise of 1,961 on 14 years earlier, a Stroke Association study shows. Experts said unhealthy lifestyles were partly to blame for the rise, though the growing population and changes to hospital practice also played a part. Overall the rate of strokes is going down in the UK, however. Researchers say based on their findings strokes should not be considered as a disease of the old. Strokes are caused by blood clots or bleeds to the brain and can lead to long-lasting disability. The majority occur in people aged over 65, and though rates are decreasing in this group, this report suggests growing numbers of younger people are at risk. Experts analysed national hospital admission data spanning 2000 to 2014. Trends for people in their 40s and early 50s appeared to be getting worse. In women aged 40-54, there were an extra 1,075 strokes recorded in 2014, compared with 2000. Experts said growing obesity levels, sedentary lives and unhealthy diets - which raise the risks of dangerous blood clots - all played a part. And they argued strokes among this age group had long-lasting personal and financial impacts on individuals and their families, as well as on the economy. Recovering patients can find it difficult to return to work and should have more support from employers, the report suggests. Jon Barrick, of the Stroke Association, said: "These figures show stroke can no longer be seen as a disease of older people. "There is an alarming increase in the numbers of people having a stroke in working age. © 2015 BBC.

Keyword: Stroke
Link ID: 20912 - Posted: 05.12.2015

Tina Hesman Saey COLD SPRING HARBOR, N.Y. — Taming animals makes an impression on their DNA. Domesticated animals tend to have genetic variants that affect similar biological processes, such as brain and facial development and fur coloration. Alex Cagan of the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany, reported the results May 6 at the Biology of Genomes conference. Cagan and colleagues examined DNA in Norway rats (Rattus norvegicus) that had been bred for 70 generations to be either tame or aggressive toward humans. Docility was associated with genetic changes in 1,880 genes in the rats. American minks (Neovison vison) bred for tameness over 15 generations had tameness-associated variants in 525 genes, including 82 that were also changed in the rats. The researchers also compared other domesticated animals, including dogs, cats, pigs and rabbits, with their wild counterparts. The domestic species and the minks had tameness-associated changes in genes for epidermal growth factor and associated proteins that stimulate growth of cells. Those proteins are important for the movement of neural crest cells within an embryo. That finding seems to support a recent hypothesis that changes in neural crest cells could be responsible for domestication syndrome, physical traits, including floppy ears, spotted coats and juvenile faces, which accompany tameness in many domestic animals. © Society for Science & the Public 2000 - 2015.

Keyword: Aggression; Genes & Behavior
Link ID: 20911 - Posted: 05.12.2015

Jane Brody With people worldwide living longer, marketers are seizing on every opportunity to sell remedies and devices that they claim can enhance memory and other cognitive functions and perhaps stave off dementia as people age. Among them are “all-natural” herbal supplements like Luminene, with ingredients that include the antioxidant alpha lipoic acid, the purported brain stimulant ginkgo biloba, and huperzine A, said to increase levels of the neurotransmitter acetylcholine; brain-training games on computers and smartphones; and all manner of puzzles, including crosswords, sudoku and jigsaw, that give the brain a workout, albeit a sedentary one. Unfortunately, few such potions and gizmos have been proven to have a meaningful, sustainable benefit beyond lining the pockets of their sellers. Before you invest in them, you’d be wise to look for well-designed, placebo-controlled studies that attest to their ability to promote a youthful memory and other cognitive functions. Even the widely acclaimed value of doing crossword puzzles has been called into question, beyond its unmistakable benefit to one’s font of miscellaneous knowledge. Although there is some evidence that doing crosswords may help to delay memory decline, Molly Wagster, a neuroscientist at the National Institute on Aging, said they are best done for personal pleasure, not brain health. “People who have done puzzles all their lives have no particular cognitive advantage over anyone else,” she said. The institute is one of several scientific organizations sponsoring rigorous trials of ways to cash in on the brain’s lifelong ability to generate new cells and connections. One such trial, Advanced Cognitive Training for Independent and Vital Elderly, or Active, was a 10-year follow-up study of 2,832 cognitively healthy community-dwelling adults 65 and older. © 2015 The New York Times Company

Keyword: Learning & Memory; Alzheimers
Link ID: 20910 - Posted: 05.12.2015

Andrew Griffin Scientists have created an electronic memory cell that mimics the way that human brains work, potentially unlocking the possibility of the making bionic brains. The cell can process and store multiple bits of information, like the human brain. Scientists hope that developing it could make for artificial cells that simulate the brain’s processes, leading to treatments for neurological conditions and for replica brains that scientists can experiment on. The new cells have been likened to the difference between having an on-off light switch and a dimmer, or the difference between black and white pictures or those with full colour, including shade light and texture. While traditional memory cells for computers can only process one binary thing at a time, the new discovery allows for much more complex memory processes like those found in the brain. They are also able to retain previous information, allowing for artificial systems that have the extraordinary memory powers found in human beings. While the new discovery is a long way from leading to a bionic brain, the discovery is an important step towards the dense and fast memory cells that will be needed to imitate the human brain's processes. “This is the closest we have come to creating a brain-like system with memory that learns and stores analog information and is quick at retrieving this stored information,” Sharath Sriram, who led the project, said.

Keyword: Learning & Memory; Robotics
Link ID: 20909 - Posted: 05.12.2015

Aaron E. Carroll When I was a kid, my parents refused to let me drink coffee because they believed it would “stunt my growth.” It turns out, of course, that this is a myth. Studies have failed, again and again, to show that coffee or caffeine consumption are related to reduced bone mass or how tall people are. Coffee has long had a reputation as being unhealthy. But in almost every single respect that reputation is backward. The potential health benefits are surprisingly large. When I set out to look at the research on coffee and health, I thought I’d see it being associated with some good outcomes and some bad ones, mirroring the contradictory reports you can often find in the news media. This didn’t turn out to be the case. Just last year, a systematic review and meta-analysis of studies looking at long-term consumption of coffee and the risk of cardiovascular disease was published. The researchers found 36 studies involving more than 1,270,000 participants. The combined data showed that those who consumed a moderate amount of coffee, about three to five cups a day, were at the lowest risk for problems. Those who consumed five or more cups a day had no higher risk than those who consumed none. Of course, everything I’m saying here concerns coffee — black coffee. I am not talking about the mostly milk and sugar coffee-based beverages that lots of people consume. These could include, but aren’t limited to, things like a McDonald’s large mocha (500 calories, 17 grams of fat, 72 grams of carbohydrates), a Starbucks Venti White Chocolate Mocha (580 calories, 22 grams of fat, 79 grams of carbs), and a Large Dunkin’ Donuts frozen caramel coffee Coolatta (670 calories, 8 grams of fat, 144 grams of carbs). I won’t even mention the Cold Stone Creamery Gotta-Have-It-Sized Lotta Caramel Latte (1,790 calories, 90 grams of fat, 223 grams of carbs). Regular brewed coffee has 5 or fewer calories and no fat or carbohydrates. © 2015 The New York Times Company

Keyword: Drug Abuse
Link ID: 20908 - Posted: 05.12.2015

Margaret Wente Child psychiatrist Susan Bradley was a pioneer in treating kids with gender-identity disorders. In the 1970s, she founded the child and adolescent gender identity clinic at the Clarke Institute in Toronto, which eventually became part of the Centre for Addiction and Mental Health (CAMH). Back then, the field was virtually unknown. Today, it is Ground Zero in a fierce battle between oldfangled psychiatry and transgender activists who insist that practitioners like Dr. Bradley are guilty of child abuse. Caught in the middle are confused parents, well-meaning schools, and – most important of all – troubled and bewildered kids. The new rush to turn little Jason into Janey, or Sally into Sam, is generally regarded (in the media, at least) as progress – proof of what a tolerant and progressive society we’ve become. But what if it’s just another fad? What if the radical step of changing genders isn’t always the right answer for a child’s emotional distress – especially when that child is only 10 or 6, or 3? “Some of these kids are quite significantly ill,” says Dr. Bradley. “They often have serious family problems and anxiety disorders. Or they’ve had serious trauma. A girl I saw had been raped, and after that she decided she was going to be a male. If you didn’t pay attention to the trauma you’re not doing that kid a service.” These days, that eminently reasonable view is being challenged by people who believe that children’s sexual confusion should automatically be taken at face value. The clinic that Dr. Bradley helped to found – which does, in fact, support gender transition for a sizable minority of its patients – is being pilloried as transphobic. “Is CAMH trying to turn trans kids straight?” screamed a headline in NOW magazine. Under pressure from activists, CAMH has put its gender clinic under six-month review. And a new bill before the Ontario legislature, which is supported by Premier Kathleen Wynne, would explicitly bar the therapeutic approach taken by the clinic, wrongly equating it to the notorious “conversion” therapy that seeks to turn gay people straight. © Copyright 2015 The Globe and Mail Inc.

Keyword: Sexual Behavior; Development of the Brain
Link ID: 20907 - Posted: 05.11.2015