Most Recent Links

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 41 - 60 of 19787

By Bethany Brookshire WASHINGTON – Moldy houses are hard on the lungs, and new results in mice suggest that they could also be bad for the brain. Inhaling mold spores made mice anxious and forgetful, researchers reported November 15 at the annual meeting of the Society for Neuroscience. Cheryl Harding, a psychologist at the City University of New York, and colleagues dripped low doses of spores from the toxic mold Stachybotrys into mouse noses three times per week. After three weeks, the mice didn’t look sick. But they had trouble remembering a fearful place. The mice were also more anxious than normal counterparts. The anxiety and memory deficits went along with decreases in new brain cells in the hippocampus — a part of the brain that plays a role in memory — compared with control mice. Harding and colleagues also found that the behaviors linked to increased inflammatory proteins in the hippocampus. Exposure to mold’s toxins and structural proteins may trigger an immune response in the brain. The findings, Harding says, may help explain some of the conditions that people living in moldy buildings complain about, such as anxiety and cognitive problems. C. Harding et al. Mold inhalation, brain inflammation, and behavioral dysfunction. Society for Neuroscience Meeting, Washington, DC, November 15, 2014. © Society for Science & the Public 2000 - 2014.

Keyword: Neurotoxins; Emotions
Link ID: 20323 - Posted: 11.18.2014

By Nicholas Bakalar Exposure to secondhand smoke and roadway traffic may be tied to increased body mass index in children and adolescents, a new study suggests. Researchers studied 3,318 children in 12 Southern California communities beginning at an average age of 10, and then followed them through age 18. They used parental questionnaires to establish exposure to smoking, and data on traffic volume and levels of nitrogen dioxide, ozone and particulates to track pollution. The study, in Environmental Health Perspectives, controlled for many other factors: sex, initial B.M.I., asthma, physical activity, insurance status, parental education and income, acres of parks and open space nearby, percentage of people living in poverty in each community. But even after accounting for these issues and more, they found that compared with children exposed to no secondhand smoke or near-roadway air pollution, B.M.I. was 0.80 higher in children exposed to pollution alone, 0.85 higher in those exposed to secondhand smoke alone, and 2.15 higher in those exposed to both. A normal B.M.I. for adults is 18.5 to 24.9. Higher than 25 is considered overweight, and above 30 obese. “It would be interesting to know more about the mechanism,” said the lead author, Dr. Rob McConnell, a professor of preventive medicine at the University of Southern California. “But the finding challenges the view that obesity is due solely to increased caloric intake and reduced physical activity. That’s not the whole story.” © 2014 The New York Times Company

Keyword: Obesity; Neurotoxins
Link ID: 20322 - Posted: 11.18.2014

By Tom Shroder After more than 30 years in which psychedelics were considered dangerous remnants of the 1960s, the drugs have begun to make a comeback, this time as potential remedies for a host of tough-to-treat maladies. Pilot studies and clinical trials of LSD, psilocybin, ketamine and MDMA have shown that the drugs, often in combination with talk therapy, can be given safely under medical supervision and may help people dealing with opiate and tobacco addiction, alcoholism, anxiety, depression and post-traumatic stress disorder, or PTSD. That these investigations have shown potential is not surprising to many researchers. A generation of scientists and practitioners had used psychedelics successfully with thousands of patients until the research was banned in 1970, after the drugs were embraced by an exploding counterculture that seemed to threaten the status quo. In the panicked reaction, psychedelics were listed along with heroin in the highest rungs of prohibition. Ironically, this failed to stop recreational use but it shut the science down cold. As one researcher put it, “It was as if psychedelic drugs had become undiscovered.” But a small cadre of psychiatrists and researchers, often risking careers and reputations, pushed to bring psychedelics back to the lab and the clinic. Their persistence paid off. Beginning in the 1990s, the Food and Drug Administration approved the first human clinical studies of psychedelic drugs in a quarter of a century. By 2004, the first FDA-approved trial of the medicinal use of a psychedelic drug, in this case a trial of MDMA-assisted therapy for PTSD involving 24 subjects, was underway. Now such studies are proliferating.

Keyword: Depression; Drug Abuse
Link ID: 20321 - Posted: 11.18.2014

By John Bohannon If you had the choice between hurting yourself or someone else in exchange for money, how altruistic do you think you’d be? In one infamous experiment, people were quite willing to deliver painful shocks to anonymous victims when asked by a scientist. But a new study that forced people into the dilemma of choosing between pain and profit finds that participants cared more about other people’s well-being than their own. It is hailed as the first hard evidence of altruism for the young field of behavioral economics. Human behavior toward others is hard to predict. On the one hand, we stand out in the animal world for our altruism, often making significant sacrifices to help out a stranger in need. And all but the most antisocial people experience psychological distress at witnessing, let alone causing, pain in others. Yet study after study in the field of behavioral economics has demonstrated that we tend to value our own needs and desires above those of others. For example, researchers have found that just thinking about money makes people behave more selfishly. To try to reconcile the angels and devils of our nature, a team led by Molly Crockett, a psychologist at the University of Oxford in the United Kingdom, combined the classic psychological and economics tools for probing altruism: pain and money. Everyone has their own pain threshold, so the first task was a pain calibration. Researchers administered electric shocks with electrodes attached to the wrists of 160 subjects, starting at an almost imperceptible level and amping up until the subject described the pain as intolerable. (For most people, that threshold for pain is similar to holding your wrist under a stream of 50°C water.) © 2014 American Association for the Advancement of Science.

Keyword: Aggression; Emotions
Link ID: 20320 - Posted: 11.18.2014

By DENISE GRADY An electrical device glued to the scalp can slow cancer growth and prolong survival in people with the deadliest type of brain tumor, researchers reported on Saturday. The device is not a cure and, on average, adds only a few months of life when used along with the standard regimen of surgery, radiation and chemotherapy. Some doctors have questioned its usefulness. But scientists conducting a new study said the device was the first therapy in a decade to extend life in people with glioblastomas, brain tumors in which median survival is 15 months even with the best treatment. The disease affects about 10,000 people a year in the United States and is what killed Senator Edward M. Kennedy in 2009. It is so aggressive and hard to treat that even seemingly small gains in survival are considered important. The new findings mean the device should become part of the standard care offered to all patients with newly diagnosed glioblastomas, the researchers conducting the study said. The equipment consists of four pads carrying transducer arrays that patients glue to their scalps and change every few days. Wires lead to a six-pound operating system and power supply. Except for some scalp irritation, the device has no side effects, the study found. But patients have to wear it more or less around the clock and must keep their heads shaved. It generates alternating, low-intensity electrical fields — so-called tumor-treating fields — that can halt tumor growth by stopping cells from dividing, which leads to their death. The researchers said the technology might also help treat other cancers, and would be tested in mesothelioma and cancers of the lung, ovary, breast and pancreas. © 2014 The New York Times Company

Keyword: Miscellaneous
Link ID: 20319 - Posted: 11.17.2014

|By Bret Stetka The brain is protected by formidable defenses. In addition to the skull, the cells that make up the blood-brain barrier keep pathogens and toxic substances from reaching the central nervous system. The protection is a boon, except when we need to deliver drugs to treat illnesses. Now researchers are testing a way to penetrate these bastions: sound waves. Kullervo Hynynen, a medical physicist at Sunnybrook Research Institute in Toronto, and a team of physicians are trying out a technique that involves giving patients a drug followed by an injection of microscopic gas-filled bubbles. Next patients don a cap that directs sound waves to specific brain locations, an approach called high-intensity focused ultrasound. The waves cause the bubbles to vibrate, temporarily forcing apart the cells of the blood-brain barrier and allowing the medication to infiltrate the brain. Hynynen and his colleagues are currently testing whether they can use the method to deliver chemotherapy to patients with brain tumors. They and other groups are planning similar trials for patients with other brain disorders, including Alzheimer's disease. Physicians are also considering high-intensity focused ultrasound as an alternative to brain surgery. Patients with movement disorders such as Parkinson's disease and dystonia are increasingly being treated with implanted electrodes, which can interrupt problematic brain activity. A team at the University of Virginia hopes to use focused ultrasound to deliver thermal lesions deep into the brain without having patients go under the knife. © 2014 Scientific American

Keyword: Brain imaging; Alzheimers
Link ID: 20318 - Posted: 11.17.2014

By Kate Baggaley WASHINGTON, D.C. — Adding magnets to football helmets could reduce the risk of concussions, new research suggests. When two players collide, the magnets in their helmets would repel each other, reducing the force of the collision. “All helmet design companies and manufacturers have the same approach, which is to try to disperse the impact energy after the impact’s already occurred,” neuroscientist Raymond Colello said November 15 at the annual meeting of the Society for Neuroscience. The magnets, he says, would put a brake on the impact before it happens. The idea hasn’t been tested yet in helmets with real players, said Judy Cameron, a neuroscientist at the University of Pittsburgh. “But a lot of thought has gone into it, and the data that was shown about the ability of the magnets to actually repel each other looked extremely promising.” On the field, football players can run at nearly 20 miles per hour and can experience up to 150 g’s of force upon impact. Concussions readily occur at impacts greater than 100 g’s. Every year there are 100,000 concussions at all levels of play among the nearly 1.2 million people who play football in the United States. Colello, of Virginia Commonwealth University in Richmond, is testing magnets made in China from the rare-earth element neodymium. They are the most powerful commercially available magnets and weigh about one-third of a pound each (football helmets weigh from 3.5 to 5.5 pounds). When placed one-fourth of an inch away from each other, two magnets with their same poles face-to-face exert nearly 100 pounds of repulsive force. © Society for Science & the Public 2000 - 2014

Keyword: Brain Injury/Concussion
Link ID: 20317 - Posted: 11.17.2014

By Adam Brimelow Health Correspondent, BBC News A Mediterranean diet may be a better way of tackling obesity than calorie counting, leading doctors have said. Writing in the Postgraduate Medical Journal (PMJ), the doctors said a Mediterranean diet quickly reduced the risk of heart attacks and strokes. And they said it may be better than low-fat diets for sustained weight loss. Official NHS advice is to monitor calorie intake to maintain a healthy weight. Last month NHS leaders stressed the need for urgent action to tackle obesity and the health problems that often go with it. The PMJ editorial argues a focus on food intake is the best approach, but it warns crash dieting is harmful. Signatories of the piece included the chair of the Academy of Medical Royal Colleges, Prof Terence Stephenson, and Dr Mahiben Maruthappu, who has a senior role at NHS England. They criticise the weight-loss industry for focusing on calorie restriction rather than "good nutrition". And they make the case for a Mediterranean diet, including fruit and vegetables, nuts and olive oil, citing research suggesting it quickly reduces the risk of heart attacks and strokes, and may be better than low-fat diets for sustained weight loss. The lead author, cardiologist Dr Aseem Malhotra, says the scientific evidence is overwhelming. "What's more responsible is that we tell people to concentrate on eating nutritious foods. "It's going to have an impact on their health very quickly. We know the traditional Mediterranean diet, which is higher in fat, proven from randomised controlled trials, reduces the risk of heart attack and stroke even within months of implementation." The article also says adopting a Mediterranean diet after a heart attack is almost three times as effective at reducing deaths as taking cholesterol-lowering statin medication. BBC © 2014

Keyword: Obesity
Link ID: 20316 - Posted: 11.17.2014

By Anna North Do you devour the latest neuroscience news, eager to learn more about how your brain works? Or do you click past it to something else, something more applicable to your life? If you’re in the latter camp, you may be in the majority. A new study suggests that many people just don’t pay that much attention to brain science, and its findings may raise a question: Is “neuro-literacy” really necessary? At Wired, Christian Jarrett writes, “It feels to me like interest in the brain has exploded.” He cites the prevalence of the word “brain” in headlines as well as “the emergence of new fields such as neuroleadership, neuroaesthetics and neuro-law.” But as a neuroscience writer, he notes, he may be “heavily biased” — and in fact, some research “suggests neuroscience has yet to make an impact on most people’s everyday lives.” For instance, he reports, Cliodhna O’Connor and Helene Joffe recently interviewed 48 Londoners about brain science for a paper published in the journal Science Communication. Anyone who thinks we live in an era of neuro-fixation may find the results a bit of a shock. Said one participant in the research: “Science of the brain? I haven’t a clue. Nothing at all. I’d be lying if I said there was.” Another: “Brain research I understand, an image of, I don’t know, a monkey or a dog with like the top of their head off and electrodes and stuff on their brain.” And another: “I might have seen it on the news or something, you know, some report of some description. But because they probably mentioned the word ‘science,’ or ‘We’re going to go now to our science correspondent Mr. Lala,’ that’s probably when I go, okay, it’s time for me to make a cup of tea.” According to the study authors, 71 percent of respondents “took pains to convey that neuroscience was not salient in their day-to-day life: it was ‘just not really on my radar.’” Some respondents associated brain research with scientists in white coats or with science classes (asked to free-associate about the term “brain research,” one respondent drew a mean-faced stick figure labeled “cross teacher”). And 42 percent saw science as something alien to them, removed from their own lives. © 2014 The New York Times Company

Keyword: Miscellaneous
Link ID: 20315 - Posted: 11.15.2014

By ALAN SCHWARZ CONCORD, Calif. — Every time Matthias is kicked out of a school or day camp for defying adults and clashing with other children, his mother, Joelle Kendle, inches closer to a decision she dreads. With each morning of arm-twisting and leg-flailing as she tries to get him dressed and out the door for first grade, the temptation intensifies. Ms. Kendle is torn over whether to have Matthias, just 6 and already taking the stimulant Adderall for attention deficit hyperactivity disorder, go on a second and more potent medication: the antipsychotic Risperdal. Her dilemma is shared by a steadily rising number of American families who are using multiple psychotropic drugs — stimulants, antipsychotics, antidepressants and others — to temper their children’s troublesome behavior, even though many doctors who mix such medications acknowledge that little is known about the overall benefits and risks for children. In 2012 about one in 54 youngsters ages 6 through 17 covered by private insurance was taking at least two psychotropic medications — a rise of 44 percent in four years, according to Express Scripts, which processes prescriptions for 85 million Americans. Academic studies of children covered by Medicaid have also found higher rates and growth. Combined, the data suggest that about one million children are currently taking various combinations of psychotropics. Risks of antipsychotics alone, for example, are known to include substantial weight gain and diabetes. Stimulants can cause appetite suppression, insomnia and, far more infrequently, hallucinations. Some combinations of medication classes, like antipsychotics and antidepressants, have shown improved benefits (for psychotic depression) but also heightened risks (for heart rhythm disturbances). But this knowledge has been derived substantially from studies in adults — children are rarely studied because of concerns about safety and ethics — leaving many experts worried that the use of multiple psychotropics in youngsters has not been explored fully. There is also debate over whether the United States Food and Drug Administration’s database of patients’ adverse drug reactions reliably monitors the hazards of psychotropic drug combinations, primarily because only a small fraction of cases are ever reported. Some clinicians are left somewhat queasy about relying mostly on anecdotal reports of benefit and harm. © 2014 The New York Times Company

Keyword: ADHD; Schizophrenia
Link ID: 20314 - Posted: 11.15.2014

By Emma Wilkinson Health reporter, BBC News Taking vitamin B12 and folic acid supplements does not seem to cut the risk of developing dementia in healthy people, say Dutch researchers. In one of the largest studies to date, there was no difference in memory test scores between those who had taken the supplements for two years and those who were given a placebo. The research was published in the journal Neurology. Alzheimer's Research UK said longer trials were needed to be sure. B vitamins have been linked to Alzheimer's for some years, and scientists know that higher levels of a body chemical called homocysteine can raise the risk of both strokes and dementia. Vitamin B12 and folic acid are both known to lower levels of homocysteine. That, along with studies linking low vitamin B12 and folic acid intake with poor memory, had prompted scientists to view the supplements as a way to ward off dementia. Yet in the study of almost 3,000 people - with an average age of 74 - who took 400 micrograms of folic acid and 500 micrograms of vitamin B12 or a placebo every day, researchers found no evidence of a protective effect. All those taking part in the trial had high blood levels of homocysteine, which did drop more in those taking the supplements. But on four different tests of memory and thinking skills taken at the start and end of the study, there was no beneficial effect of the supplements on performance. The researchers did note that the supplements might slightly slow the rate of decline but concluded the small difference they detected could just have been down to chance. Study leader Dr Rosalie Dhonukshe-Rutten, from Wageningen University in the Netherlands, said: "Since homocysteine levels can be lowered with folic acid and vitamin B12 supplements, the hope has been that taking these vitamins could also reduce the risk of memory loss and Alzheimer's disease. BBC © 2014

Keyword: Alzheimers
Link ID: 20313 - Posted: 11.15.2014

Carl Zimmer In the early 1970s, Sarah Blaffer Hrdy, then a graduate student at Harvard, traveled to India to study Hanuman langurs, monkeys that live in troops, each made up of several females and a male. From time to time, Dr. Hrdy observed a male invade a troop, driving off the patriarch. And sometimes the new male performed a particularly disturbing act of violence. He attacked the troop’s infants. There had been earlier reports of infanticide by adult male mammals, but scientists mostly dismissed the behavior as an unimportant pathology. But in 1974, Dr. Hrdy made a provocative counter proposal: infanticide, she said, is the product of mammalian evolution. By killing off babies of other fathers, a male improves his chances of having more of his own offspring. Dr. Hrdy went on to become a professor at the University of California, Davis, and over the years she broadened her analysis, arguing that infanticide might well be a common feature of mammalian life. She spurred generations of scientists to document the behavior in hundreds of species. “She’s the goddess of all this stuff,” said Kit Opie, a primatologist at University College London. Forty years after Dr. Hrdy’s initial proposal, two evolutionary biologists at the University of Cambridge have surveyed the evolution of infanticide across all mammals. In a paper published Thursday in Science, the scientists concluded that only certain conditions favor the evolution of infanticide — the conditions that Dr. Hrdy had originally proposed. “My main comment is, ‘Well done,'” said Dr. Hrdy. She said the study was particularly noteworthy for its scope, ranging from opossum to lions. The authors of the new study, Dieter Lukas and Elise Huchard, started by plowing through the scientific literature, looking for evidence of infanticide in a variety of mammalian species. The researchers ended up with data on 260 species, and in 119 of them — over 45 percent — males had been observed killing unrelated young animals. © 2014 The New York Times Company

Keyword: Sexual Behavior; Evolution
Link ID: 20312 - Posted: 11.15.2014

By Agata Blaszczak-Boxe When it comes to lab animal welfare, rats and mice aren’t the only creatures of concern. In 2013, the European Union mandated that cephalopods—a group that includes octopuses and squid—be treated humanely when used for scientific research. In response, researchers have figured out how to anesthetize octopuses so the animals do not feel pain while being transported and handled during scientific experiments, for instance those examining their behavior, physiology, and neurobiology, as well as their use in aquaculture. In a study published online this month in the Journal of Aquatic Animal Health, researchers report immersing 10 specimens of the common octopus (Octopus vulgaris) in seawater with isoflurane, an anesthetic used in humans. They gradually increased the concentration of the substance from 0.5% to 2%. The investigators found that the animals lost the ability to respond to touch and their color paled, which means that their normal motor coordination of color regulation by the brain was lost, concluding that the animals were indeed anesthetized. The octopuses then recovered from the anesthesia within 40 to 60 minutes of being immersed in fresh seawater without the anesthetic, as they were able to respond to touch again and their color was back to normal. The researchers captured the anesthetization process on video, shown above. © 2014 American Association for the Advancement of Science.

Keyword: Animal Rights
Link ID: 20311 - Posted: 11.15.2014

Sara Reardon Companies selling ‘probiotic’ foods have long claimed that cultivating the right gut bacteria can benefit mental well-being, but neuroscientists have generally been sceptical. Now there is hard evidence linking conditions such as autism and depression to the gut’s microbial residents, known as the microbiome. And neuroscientists are taking notice — not just of the clinical implications but also of what the link could mean for experimental design. “The field is going to another level of sophistication,” says Sarkis Mazmanian, a microbiologist at the California Institute of Technology in Pasadena. “Hopefully this will shift this image that there’s too much commercial interest and data from too few labs.” This year, the US National Institute of Mental Health spent more than US$1 million on a new research programme aimed at the microbiome–brain connection. And on 19 November, neuroscientists will present evidence for the link in a symposium at the annual Society for Neuroscience meeting in Washington DC called ‘Gut Microbes and the Brain: Paradigm Shift in Neuroscience’. Although correlations have been noted between the composition of the gut microbiome and behavioural conditions, especially autism1, neuroscientists are only now starting to understand how gut bacteria may influence the brain. The immune system almost certainly plays a part, Mazmanian says, as does the vagus nerve, which connects the brain to the digestive tract. Bacterial waste products can also influence the brain — for example, at least two types of intestinal bacterium produce the neurotransmitter γ-aminobutyric acid (GABA)2. © 2014 Nature Publishing Group

Keyword: Obesity; Autism
Link ID: 20310 - Posted: 11.13.2014

by Helen Thomson Could a futuristic society of humans with the power to control their own biological functions ever become reality? It's not as out there as it sounds, now the technical foundations have been laid. Researchers have created a link between thoughts and cells, allowing people to switch on genes in mice using just their thoughts. "We wanted to be able to use brainwaves to control genes. It's the first time anyone has linked synthetic biology and the mind," says Martin Fussenegger, a bioengineer at ETH Zurich in Basel, Switzerland, who led the team behind the work. They hope to use the technology to help people who are "locked-in" – that is, fully conscious but unable to move or speak – to do things like self-administer pain medication. It might also be able to help people with epilepsy control their seizures. In theory, the technology could be used for non-medical purposes, too. For example, we could give ourselves a hormone burst on demand, much like in the Culture – Iain M. Banks's utopian society, where people are able to secrete hormones and other chemicals to change their mood. Fussenegger's team started by inserting a light-responsive gene into human kidney cells in a dish. The gene is activated, or expressed, when exposed to infrared light. The cells were engineered so that when the gene activated, it caused a cascade of chemical reactions leading to the expression of another gene – the one the team wanted to switch on. © Copyright Reed Business Information Ltd.

Keyword: Genes & Behavior; Robotics
Link ID: 20309 - Posted: 11.13.2014

Details of the role of glutamate, the brain’s excitatory chemical, in a drug reward pathway have been identified for the first time. This discovery in rodents — published today in Nature Communications — shows that stimulation of glutamate neurons in a specific brain region (the dorsal raphe nucleus) leads to activation of dopamine-containing neurons in the brain’s reward circuit (dopamine reward system). Dopamine is a neurotransmitter present in regions of the brain that regulate movement, emotion, motivation, and feelings of pleasure. Glutamate is a neurotransmitter whose receptors are important for neural communication, memory formation, and learning. The research was conducted at the Intramural Research Program (IRP) of the National Institute on Drug Abuse (NIDA), which is part of the National Institutes of Health. The research focused on the dorsal raphe nucleus, which has long been a brain region of interest to drug abuse researchers, since nerve cells in this area connect to part of the dopamine reward system. Many of the pathways are rich in serotonin, a neurotransmitter linked to mood regulation. Even though electrical stimulation of the dorsal raphe nucleus promotes reward-related behaviors, drugs that increase serotonin have low abuse potential. As a result, this region of the brain has always presented a seeming contradiction, since it is involved in drug reward but is also abundant in serotonin - a chemical not known for a role in drug reinforcement. This has led researchers to theorize that another neurotransmitter may be responsible for the role that the dorsal raphe nucleus plays in reward.

Keyword: Drug Abuse
Link ID: 20308 - Posted: 11.13.2014

By Kate Kelland LONDON (Reuters) - British scientists say they have found the best way yet to analyze the effects of smoking on the brain -- by taking functional magnetic resonance imaging (fMRI) scans of people while they puff on e-cigarettes. In a small pilot study, the researchers used electronic cigarettes, or e-cigarettes, to mimic the behavioral aspects of smoking tobacco cigarettes, and say future studies could help scientists understand why smoking is so addictive. E-cigarettes use battery-powered cartridges to produce a nicotine-laced vapor to inhale -- hence the new term "vaping". Their use has rocketed in recent years, but there is fierce debate about the risks and benefits. Some public health experts say they could help millions quit tobacco cigarettes, while others argue they could "normalize" the habit and lure children into smoking. While that argument rages, tobacco kills some 6 million people a year, and the World Health Organization estimates that could rise beyond 8 million by 2030. Matt Wall, an imaging scientist at Imperial College London who led the study using e-cigarettes, said he was not aiming to pass judgment on their rights or wrongs, but to use them to dig deeper into smoking addiction. The fact that other forms of nicotine replacement therapy, such as patches or gum, have had only limited success in getting hardened smokers to quit suggests they are hooked on more than just nicotine, he noted. © 2014 Scientific American

Keyword: Drug Abuse; Brain imaging
Link ID: 20307 - Posted: 11.13.2014

Emily Anthes Anna's life began to unravel in 2005 when her husband of 30 years announced that he had fallen in love with another woman. “It had never even occurred to me that my marriage could ever end,” recalls Anna, a retired lawyer then living in Philadelphia, Pennsylvania. “It was pretty shocking.” Over the course of several months, Anna stopped wanting to get up in the morning. She felt tired all the time, and consumed by negative thoughts. “'I'm worthless.' 'I messed up everything.' 'It's all my fault.'” She needed help, but her first therapist bored her and antidepressants only made her more tired. Then she found Cory Newman, director of the Center for Cognitive Therapy at the University of Pennsylvania, who started her on a different kind of therapy. Anna learned how to obsess less over her setbacks and give herself more credit for her triumphs. “It was so helpful to talk to someone who steered me to more positive ways of thinking,” says Anna, whose name has been changed at her request. Cognitive therapy, commonly known as cognitive behavioural therapy (CBT), aims to help people to identify and change negative, self-destructive thought patterns. And although it does not work for everyone with depression, data have been accumulating in its favour. “CBT is one of the clear success stories in psychotherapy,” says Stefan Hofmann, a psychologist at Boston University in Massachusetts. Antidepressant drugs are usually the first-line treatment for depression. They are seen as a quick, inexpensive fix — but clinical trials reveal that only 22–40% of patients emerge from depression with drugs alone. Although there are various approaches to psychotherapy, CBT is the most widely studied; a meta-analysis1 published this year revealed that, depending on how scientists measure outcomes, between 42% and 66% of patients no longer meet the criteria for depression after therapy. © 2014 Nature Publishing Group

Keyword: Depression
Link ID: 20306 - Posted: 11.13.2014

Heidi Ledford If the extent of human suffering were used to decide which diseases deserve the most medical attention, then depression would be near the top of the list. More than 350 million people are affected by depression, making it one of the most common disorders in the world. It is the biggest cause of disability, and as many as two-thirds of those who commit suicide have the condition. But although depression is common, it is often ignored. Three-quarters of people with depression in the United Kingdom go undiagnosed or untreated — and even if the disorder is diagnosed, today's medications will work well for only about half of those who seek help. “It's unbelievable,” says Tom Foley, a psychiatrist at Newcastle University, UK. “If that was the case in cancer care, it would be an absolute scandal.” The comparison between depression and cancer is a common one. Cancer, too, is a terrible blight: it affects more than 32 million people and kills some 8 million a year, many more than depression. But at least in developed countries, the vast majority of people with recognized cancers do receive treatment. In research, too, depression has failed to keep up with cancer. Cancer research today is a thriving field, unearthing vast catalogues of disease-associated mutations, cranking out genetically targeted therapies and developing sophisticated animal models. Research into depression, meanwhile, seems to have floundered: once-hopeful therapies have failed in clinical trials, genetic studies have come up empty-handed. The field is still struggling to even define the disease — and overcome the stigma associated with it. © 2014 Nature Publishing Grou

Keyword: Depression
Link ID: 20305 - Posted: 11.13.2014

By Abby Phillip You know the ones: They seem to be swaying to their own music or clapping along to a beat only they can hear. You may even think that describes you. The majority of humans, however, do this very well. We clap, dance, march in unison with few problems; that ability is part of what sets us apart from other animals. But it is true that rhythm — specifically, coordinating your movement with something you hear — doesn't come naturally to some people. Those people represent a very small sliver of the population and have a real disorder called "beat deafness." Unfortunately, your difficulty dancing or keeping time in band class probably doesn't quite qualify. A new study by McGill University researchers looked more closely at what might be going on with "beat deaf" individuals, and the findings may shed light on why some people seem to be rhythm masters while others struggle. Truly beat deaf people have a very difficult time clapping or tapping to an auditory beat or swaying to one. It's a problem that is far more severe than a lack of coordination. And it isn't attributable to motor skills, hearing problems or even a person's inability to create a regular rhythm. Illustrating how rare the disorder really is, McGill scientists received hundreds of inquiries from people who thought they were beat deaf, but only two qualified as having truly severe problems.

Keyword: Hearing
Link ID: 20304 - Posted: 11.13.2014