Most Recent Links

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 41 - 60 of 20305

By Jerry Adler Smithsonian Magazine | In London, Benjamin Franklin once opened a bottle of fortified wine from Virginia and poured out, along with the refreshment, three drowned flies, two of which revived after a few hours and flew away. Ever the visionary, he wondered about the possibility of incarcerating himself in a wine barrel for future resurrection, “to see and observe the state of America a hundred years hence.” Alas, he wrote to a friend in 1773, “we live in an age too early . . . to see such an art brought in our time to its perfection.” If Franklin were alive today he would find a kindred spirit in Ken Hayworth, a neuroscientist who also wants to be around in 100 years but recognizes that, at 43, he’s not likely to make it on his own. Nor does he expect to get there preserved in alcohol or a freezer; despite the claims made by advocates of cryonics, he says, the ability to revivify a frozen body “isn’t really on the horizon.” So Hayworth is hoping for what he considers the next best thing. He wishes to upload his mind—his memories, skills and personality—to a computer that can be programmed to emulate the processes of his brain, making him, or a simulacrum, effectively immortal (as long as someone keeps the power on). Hayworth’s dream, which he is pursuing as president of the Brain Preservation Foundation, is one version of the “technological singularity.” It envisions a future of “substrate-independent minds,” in which human and machine consciousness will merge, transcending biological limits of time, space and memory. “This new substrate won’t be dependent on an oxygen atmosphere,” says Randal Koene, who works on the same problem at his organization, Carboncopies.org. “It can go on a journey of 1,000 years, it can process more information at a higher speed, it can see in the X-ray spectrum if we build it that way.”

Keyword: Consciousness; Robotics
Link ID: 20841 - Posted: 04.25.2015

Physical activity has little role in tackling obesity - and instead public health messages should squarely focus on unhealthy eating, doctors say. In an editorial in the British Journal of Sports Medicine, three international experts said it was time to "bust the myth" about exercise. They said while activity was a key part of staving off diseases such as diabetes, heart disease and dementia, its impact on obesity was minimal. Instead excess sugar and carbohydrates were key. The experts, including London cardiologist Dr Aseem Malhotra, blamed the food industry for encouraging the belief that exercise could counteract the impact of unhealthy eating. They even likened their tactics as "chillingly similar" to those of Big Tobacco on smoking and said celebratory endorsements of sugary drinks and the association of junk food and sport must end. They said there was evidence that up to 40% of those within a normal weight range will still harbour harmful metabolic abnormalities typically associated with obesity. But despite this public health messaging had "unhelpfully" focused on maintaining a healthy weight through calorie counting when it was the source of calories that mattered most - research has shown that diabetes increases 11-fold for every 150 additional sugar calories consumed compared to fat calories. And they pointed to evidence from the Lancet global burden of disease programme which shows that unhealthy eating was linked to more ill health than physical activity, alcohol and smoking combined. © 2015 BBC

Keyword: Obesity
Link ID: 20840 - Posted: 04.23.2015

by Andy Coghlan These neon cells may be blinding, but targeting them could also help preserve sight. In this close-up image of blood vessels – shown in blue – that supply blood to the retina of a one-week-old mouse, the nuclei of cells lining their walls appear in fluorescent colours. The bright-yellow cells are the ones of interest: they could be targeted to help prevent blindness in ageing eyes. Age-related macular degeneration, or AMD, often strikes in middle age, causing a person's vision to deteriorate. A key driver of the disease is excessive growth of obtrusive blood vessels in the retina. A team led by Alain Chédotal of the Institute of Vision in Paris has now discovered that a protein called Slit2 contributes to the rapid increase in offending blood vessels. The yellow cells in the picture are the ones that are dividing. When this activity occurs in middle age, it triggers the excessive increase in blood vessels that results in AMD. By blocking Slit2, it might be possible to reduce this effect, says Chédotal. When the team genetically altered mice so that they couldn't produce Slit2, the animals no longer overproduced the blood vessels that lead to blindness. The researchers think that drugs targeting Slit2 could generate new treatments for AMD. © Copyright Reed Business Information Ltd

Keyword: Vision
Link ID: 20839 - Posted: 04.23.2015

By Rachel Feltman This is either fascinating, incredibly creepy, or both. Probably both. But also science! The video wasn't created for an all-MRI production of "The Wizard of Oz." It's an example of a high-speed, high-resolution MRI technique. The technique, which is being developed by the Bioimaging Science and Technology Group at the Beckman Institute, acquires about 100 frames per second. A description of the technique was published Tuesday in the journal Magnetic Resonance in Medicine. Working about 10 times faster than a standard MRI, the machine was able to pick up the muscular nuances required for singing. You can see the vocal folds hard at work creating the tune. These two flaps inside the larynx sit over the windpipe, coming together whenever we're not breathing. Air passes through the closed folds, causing them to vibrate. We use our larynx to control the tension of our vocal folds, which changes the pitch of our vocalizations. The researchers weren't just goofing off in order to display the MRI's capabilities: The high-speed and high-resolution images help them keep tabs on the tongue and neck muscles during vocalization. They're hoping to learn more about what health vocalization looks like, and whether or not singing can be used as a therapy to help the elderly regain more control over their speech.

Keyword: Brain imaging
Link ID: 20838 - Posted: 04.23.2015

By KEN BELSON A federal district court judge on Wednesday gave her final approval to the settlement of a lawsuit brought by more than 5,000 former players who accused the N.F.L. of hiding from them the dangers of concussions, a major step toward ending one of the most contentious legal battles in league history. The settlement provides payments of up to $5 million to players who have one of a handful of severe neurological disorders, medical monitoring for all players to determine if they qualify for a payment and $10 million for education about concussions. The landmark deal, which many players criticized, was originally reached in August 2013, but Judge Anita B. Brody twice asked the two sides to revise their agreement, first to uncap the total amount of damages that could be paid for the conditions covered, and then to remove the limit on how much could be spent on medical monitoring. As part of the deal, the N.F.L. insisted that all retired players — not just the 5,000 or so who sued the league — be covered by the settlement as a way to fend off lawsuits in the future. But about 200 players, including Junior Seau, who committed suicide and was later found to have a degenerative brain disease, opted out of the settlement to preserve their right to continue fighting the league. Critics of the settlement said that even after the revisions, the number and variety of diseases covered by the deal were too small and that many players would receive only a small fraction of the multimillion-dollar payouts promised by the league after their age and years in the N.F.L. were considered. Critics also contended that the settlement needed to acknowledge more classes of plaintiffs, not only those with diagnosable diseases and those without them. © 2015 The New York Times Company

Keyword: Brain Injury/Concussion
Link ID: 20837 - Posted: 04.23.2015

by Clare Wilson I WAS prepared for the blood but the most shocking thing about watching brain surgery was seeing the surgical drapes being stapled to the patient's face. But surgeon Peter Hutchinson dismisses my concern that the tiny holes might bother the patient when she wakes up: "That's nothing compared with the massive hole we're about to make in her head." I am at Addenbrooke's Hospital in Cambridge, UK, to learn about craniectomy, a procedure that involves removing a large part of someone's skull, to relieve the pressure inside. There are no official tallies but it's thought that several hundred surgeries take place in the UK every year on people with head injuries or who have had a stroke. Once the brain is given room to swell, the pressure drops and the scalp is sewn back into place. The skull fragment can be stored in a freezer or kept sterile inside the patient's abdomen for weeks or months before it is reattached. The operation I'm witnessing is part of a randomised trial to compare the effectiveness of craniectomy with that of drugs alone to bring the pressure down. It will involve 400 people with head injuries, half of whom will get the surgery. This is needed as craniectomy has a long and chequered history. Human remains suggest it was done with stone tools in Peru a thousand years ago, a practise known as trepanning, perhaps for similar reasons as today. As a modern surgical procedure, though, it has fallen in and out of favour over the last few decades. Whether you would be sent for surgery today depends on how safe your surgeon thinks it is. © Copyright Reed Business Information Ltd.

Keyword: Brain Injury/Concussion
Link ID: 20836 - Posted: 04.23.2015

|By Rebecca Harrington It's best to treat the good with the bad, new medical insights into brain attacks suggest. Doctors are beginning to think the side of the brain opposite to a clot in stroke patients is just as important a target for treatment as the damaged tissue when it comes to a faster recovery. Only in the past few years have researchers discovered that the uninjured side of the brain becomes more active after a stroke to help its fallen neighbor. In some instances, it pumps out proteins that induce damaged neurons to begin repairs and others that trigger new blood vessels to form. It can even extend its own neurons across hemispheres to restore function. Current stroke treatments largely target the damaged tissue. “I think everyone thought, ‘The other side of the brain is working pretty well,’” says Stanford University neurologist Gary Steinberg. “‘Why don't we leave that alone?’” In light of the growing evidence that the healthy hemisphere provides aid naturally, however, doctors are now investigating how to boost its healing actions. One such drug, shepherded by Adviye Ergul of Georgia Regents University and Susan Fagan of the University of Georgia, activates receptors on uninjured tissue that trigger pathways to reduce harmful inflammation and support the growth of neurons and blood vessels on the side of the brain with the clot. The drug increases repair rates in rats that have experienced stroke—results described recently in the Journal of Hypertension—and Ergul and Fagan say the therapy could become available to humans in the next five years. © 2015 Scientific American

Keyword: Stroke
Link ID: 20835 - Posted: 04.23.2015

Brendan Borrell A campaign by animal rights activists to establish the legal personhood of chimpanzees took a bizarre turn this week, when a New York judge inadvertently opened a constitutional can of worms only to clamp it shut a day later. On 20 April, New York Supreme Court Justice Barbara Jaffe signed an order forcing Stony Brook University to respond to claims by the Nonhuman Rights Project (NhRP) that two research chimpanzees, Hercules and Leo, were being unlawfully detained. The Coral Springs, Florida, organization declared victory, claiming that because such an order, termed a writ of habeas corpus, can only be granted to a person in New York state, the judge had implicitly determined that the chimps were legal persons. An eruption of news coverage on 21 April sparked a backlash by legal experts claiming the significance of the order had been overblown. By that evening, Jaffe had amended the order, letting arguments on the chimps’ detainment go forward but explicitly scratching out the words WRIT OF HABEAS CORPUS at the top of the document. Nature takes a look at the episode’s significance in the campaign to give animals legal rights and what it means for the research community. What is the basis for the idea of giving chimps personhood rights, rather than improving animal treatment laws? The NhRP stands apart from typical animal welfare and animal rights groups in that it narrowly focuses on getting the most intelligent, autonomous, self-aware animals recognized under the law as “persons” with specific rights, rather than things. “We are only asking for one legal right and that’s bodily liberty,” says the organization’s executive director, Natalie Prosin. Animal welfare laws in New York already allow people and organizations to obtain relief from the courts when animals are being abused or kept in poor conditions. The organization’s petition to the court, filed with affidavits from animal cognition researchers, states that keeping chimps in captivity is unlawful, independent of the conditions in which they are kept and whether animal welfare laws are being violated. © 2015 Nature Publishing Group,

Keyword: Animal Rights
Link ID: 20834 - Posted: 04.23.2015

By Brady Dennis In recent months, Pasadena-based Genervon has galvanized many patients with ALS by repeatedly touting the results of 12-week, 12-person trial involving the company's drug, GM604. The company asserted its early results were “statistically significant,” “very robust” and “dramatic.” It also has said it "submitted an accelerated approval application" to the FDA which, if approved, "would allow immediate access" to patients with ALS, also known as Lou Gehrig's disease. But the Wall Street Journal reported Monday that Genervon said in an email that it is “at the point of communicating with FDA about whether [the agency] would accept our formal application” for accelerated approval. In other words, the company has not yet submitted a New Drug Application, a step needed to officially set the FDA approval process in motion. The company's acknowledgement that it has not filed an NDA appears to contradict earlier press releases and statements made by the firm's owners, Winston and Dorothy Ko -- or at least to have sown confusion about the actual status of GM604. In one February press release, for example, the company said that in a meeting with the FDA, "three times during the one-hour meeting we requested that the FDA grant GM604 accelerated approval." Asking, however, is not the same as filing the necessary paperwork and the accompanying data required for the FDA to accept it as sufficient. The difference might seem to be a matter of semantics. But the real-world consequence is that, if Genervon has no application pending at the FDA, there is no imminent decision for the FDA to make about approving GM604.

Keyword: ALS-Lou Gehrig's Disease
Link ID: 20833 - Posted: 04.22.2015

By Antonio Regalado Various powerful new tools for exploring and manipulating the brain have been developed over the last few years. Some use electronics, while others use light or chemicals. At one MIT lab, materials scientist Polina Anikeeva has hit on a way to manufacture what amounts to a brain-science Swiss Army knife. The neural probes she builds carry light while collecting and transmitting electricity, and they also have tiny channels through which to pump drugs. That’s an advance over metal wires or silicon electrodes conventionally used to study neurons. Anikeeva makes the probes by assembling polymers and metals into large-scale blocks, or preforms, and then stretching them into flexible, ultrathin fibers. Multifunctional fibers offer new ways to study animal behavior, since they can record from neurons as well as stimulating them. New types of medical technology could also result. Imagine, as Anikeeva does, bionic wiring that bridges a spinal-cord injury, collecting electrical signals from the brain and transmitting them to the muscles of a paralyzed hand. Anikeeva made her first multifunctional probe while studying at Stanford. It was crude: she simply wrapped metal wires around a glass filament. But this made it possible to combine standard electrode measurements with a new technology, optogenetics, in which light is fired at neurons to activate them or shut them down.

Keyword: Brain imaging
Link ID: 20832 - Posted: 04.22.2015

By Felicity Muth One of the first things I get asked when I tell people that I work on bee cognition (apart from ‘do you get stung a lot?’) is ‘bees have cognition?’. I usually assume that this question shouldn’t be taken literally otherwise it would mean that whoever was asking me this thought that there was a possibility that bees didn’t have cognition and I had just been making a terrible mistake for the past two years. Instead I guess this question actually means ‘please tell me more about the kind of cognitive abilities bees have, as I am very much surprised to hear that bees can do more than just mindlessly sting people’. So, here it is: a summary of some of the more remarkable things that bees can do with their little brains. In the first part of two articles on this topic, I introduce the history and basics of bee learning. In the second article, I go on to discuss the more advanced cognitive abilities of bees. The study of bee cognition isn’t a new thing. Back in the early 1900s the Austrian scientist Karl von Frisch won the Nobel Prize for his work with honeybees (Apis mellifera). He is perhaps most famous for his research on their remarkable ability to communicate through the waggle dance but he also showed for the first time that honeybees have colour vision and learn the colours of the flowers they visit. Appreciating how he did this is perhaps the first step to understanding everything we know about bee cognition today. Before delving into the cognitive abilities of bees it’s important to think about what kinds of abilities a bee might need, given the environment she lives in (all foraging worker bees are female). Bees are generalists, meaning that they don’t have to just visit one particular flower type for food (nectar and pollen), but can instead visit hundreds of different types. However, not all flowers are the same. © 2015 Scientific American,

Keyword: Learning & Memory; Evolution
Link ID: 20831 - Posted: 04.22.2015

Heidi Ledford An experimental antibody drug aimed at protecting nerves from the ravages of multiple sclerosis offers hope for a new way to combat the neurological disease — if researchers can definitively show that it works. The antibody, anti-LINGO-1, is intended to stimulate regrowth of the myelin sheath, the fatty protective covering on nerve cells that is damaged by multiple sclerosis. Its developer, Biogen of Cambridge, Massachusetts, will present results from a small clinical trial at an American Academy of Neurology meeting this week in Washington DC. If the initial promising results from the trial are confirmed, it will be the first such myelin-regeneration therapy. Other researchers are racing to find more targets and compounds that act similarly. “Once we get a positive result, the field will move very quickly,” says Jack Antel, a neurologist at McGill University in Montreal, Canada. But that excitement is tempered by practical hurdles: there is as yet no proven way to measure remyelination of nerve cells in living humans. Myelin sheaths insulate and support axons, the fibres that transmit signals between nerve cells. In multiple sclerosis, immune attack destroys these sheaths. Stripped of this protective coating, the axons gradually wither away, causing the numbness and muscle spasms that are characteristic of the disease. The 12 drugs approved in the United States to treat multiple sclerosis slow this immune attack — although sometimes with dangerous side effects. But none stops it, says Bruce Trapp, a neuroscientist at the Cleveland Clinic in Ohio. © 2015 Nature Publishing Group

Keyword: Multiple Sclerosis; Neuroimmunology
Link ID: 20830 - Posted: 04.22.2015

By Maggie Fox Another study aimed at soothing the fears of some parents shows that vaccines don't cause autism. This one takes a special look at children with older siblings diagnosed with autism, who do themselves have a higher risk of an autism spectrum disorder. But even these high-risk kids aren't more likely to develop autism if they're vaccinated, according to the report in the Journal of the American Medical Association. "We found that there was no harmful association between receipt of the MMR (measles, mumps and rubella) vaccine and development of autism spectrum disorder," said Dr. Anjali Jain of The Lewin Group, a health consulting group in Falls Church, Virginia, who led the study. Kids who had older brothers or sisters with autism were less likely to be vaccinated on time themselves, probably because their parents had vaccine worries. But those who were vaccinated were no more likely than the unvaccinated children to develop autism, Jain's team found. Autism is very common. The Centers for Disease Control and Prevention says one in 68 U.S. kids has an autism spectrum disorder. Numbers have been growing but CDC says much of this almost certainly reflects more awareness and diagnosis of kids who would have been missed in years past.

Keyword: Autism
Link ID: 20829 - Posted: 04.22.2015

By Virginia Morell Baby common marmosets, small primates found in the forests of northeastern Brazil, must learn to take turns when calling, just as human infants learn not to interrupt. Even though the marmosets (Callithrix jacchus) don’t have language, they do exchange calls. And the discovery that a young marmoset (as in the photo above) learns to wait for another marmoset to finish its call before uttering its own sound may help us better understand the origins of human language, say scientists online today in the Proceedings of the Royal Society B. No primate, other than humans, is a vocal learner, with the ability to hear a sound and imitate it—a talent considered essential to speech. But the marmoset researchers say that primates still exchange calls in a manner reminiscent of having a conversation because they wait for another to finish calling before vocalizing—and that this ability is often overlooked in discussions about the evolution of language. If this skill is learned, it would be even more similar to that of humans, because human babies learn to do this while babbling with their mothers. In a lab, the researchers recorded the calls of a marmoset youngster from age 4 months to 12 months and those of its mother or father while they were separated by a dark curtain. In adult exchanges, a marmoset makes a high-pitched contact call (listen to a recording here), and its fellow responds within 10 seconds. The study showed that the youngster’s responses varied depending on who was calling to them. They were less likely to interrupt their mothers, but not their dads—and both mothers and fathers would give the kids the “silent treatment” if they were interrupted. Thus, the youngster learns the first rule of polite conversation: Don’t interrupt! © 2015 American Association for the Advancement of Science.

Keyword: Language; Evolution
Link ID: 20828 - Posted: 04.22.2015

|By Tara Haelle When it comes to treating attention-deficit hyperactivity disorder (ADHD) a lot of kids are getting the meds they need—but they may be missing out on other treatments. Despite clinical guidelines that urge that behavioral therapy always be used alongside medication, less than half of the children with ADHD received therapy as part of treatment in 2009 and 2010, according to the first nationally representative study of ADHD treatment in U.S. children. The findings, published online March 31 in The Journal of Pediatrics, come from data collected during that period on 9,459 children, aged four to 17, with diagnosed ADHD—just before the American Academy of Pediatrics (AAP) issued its clinical practice guidelines on treatments of the condition in 2011. They provide a baseline for comparison when the next report is issued in 2017. Medication alone was the most common treatment for children with ADHD: 74 percent had taken medication in the previous week whereas 44 percent had received behavioral therapy in the past year. Just under a third of children of all ages had received both medication and behavioral therapy, the AAP-recommended treatment for all ages. “It’s not at all surprising that medication is the most common treatment,” says Heidi Feldman, a professor of developmental and behavioral pediatrics at Stanford University School of Medicine who served on the AAP clinical practice guidelines committee. “It works very effectively to reduce the core symptoms of the condition,” she adds, “and stimulants are relatively safe if used properly. The limitation of stimulant medications for ADHD is that studies do not show a long-term functional benefit from medication use.” © 2015 Scientific American

Keyword: ADHD
Link ID: 20827 - Posted: 04.21.2015

By Smitha Mundasad Health reporter, BBC News A mindfulness-based therapy could offer a "new choice for millions of people" with recurrent depression, a Lancet report suggests. Scientists tested it against anti-depressant pills for people at risk of relapse and found it worked just as well. The therapy trains people to focus their minds and understand that negative thoughts may come and go. In England and Wales doctors are already encouraged to offer it. Patients who have had recurrent clinical depression are often prescribed long-term anti-depressant drugs to help prevent further episodes. And experts stress that drug therapy is still essential for many. In this study, UK scientists enrolled 212 people who were at risk of further depression on a course of mindfulness-based cognitive therapy (MBCT) while carefully reducing their medication. Patients took part in group sessions where they learned guided meditation and mindfulness skills. The therapy aimed to help people focus on the present, recognise any early warning signs of depression and respond to them in ways that did not trigger further reoccurrences. Researchers compared these results to 212 people who continued to take a full course of medication over two years. By the end of the study, a similar proportion of people had relapsed in both groups. And many in the MBCT group had been tapered off their medication. Scientists say these findings suggest MBCT could provide a much-needed alternative for people who cannot or do not wish to take long-term drugs. In their report, they conclude it "may be a new choice for millions of people with recurrent depression on repeat prescriptions." © 2015 BBC

Keyword: Depression; Stress
Link ID: 20826 - Posted: 04.21.2015

Two drugs already on the market — an antifungal and a steroid — may potentially take on new roles as treatments for multiple sclerosis. According to a study published in Nature today, researchers discovered that these drugs may activate stem cells in the brain to stimulate myelin producing cells and repair white matter, which is damaged in multiple sclerosis. The study was partially funded by the National Institute of Neurological Disorders and Stroke (NINDS), part of the National Institutes of Health. Specialized cells called oligodendrocytes lay down multiple layers of a fatty white substance known as myelin around axons, the long “wires” that connect brain cells. Myelin acts as an insulator and enables fast communication between brain cells. In multiple sclerosis there is breakdown of myelin and this deterioration leads to muscle weakness, numbness and problems with vision, coordination and balance. “To replace damaged cells, the scientific field has focused on direct transplantation of stem cell-derived tissues for regenerative medicine, and that approach is likely to provide enormous benefit down the road. We asked if we could find a faster and less invasive approach by using drugs to activate native nervous system stem cells and direct them to form new myelin. Our ultimate goal was to enhance the body’s ability to repair itself,” said Paul J. Tesar, Ph.D., associate professor at Case Western Reserve School of Medicine in Cleveland, and senior author of the study. It is unknown how myelin-producing cells are damaged, but research suggests they may be targeted by malfunctioning immune cells and that multiple sclerosis may start as an autoimmune disorder. Current therapies for multiple sclerosis include anti-inflammatory drugs, which help prevent the episodic relapses common in multiple sclerosis, but are less effective at preventing long-term disability. Scientists believe that therapies that promote myelin repair might improve neurologic disability in people with multiple sclerosis.

Keyword: Multiple Sclerosis; Neuroimmunology
Link ID: 20825 - Posted: 04.21.2015

The brains of babies “light up” in a similar way to adults when exposed to the same painful stimulus, suggesting they feel pain much like adults do, researchers said on Tuesday. In the first of its kind study using magnetic resonance imaging (MRI), scientists from Britain’s Oxford University found that 18 of the 20 brain regions active in adults experiencing pain were also active in babies. Brain scans of the sleeping infants while they were subjected to mild pokes on the bottom of their feet with a special rod – creating a sensation “like being poked with a pencil” – also showed their brains had the same response to a slighter “poke” as adults did to a stimulus four times as strong, suggesting babies have a much lower pain threshold. “Obviously babies can’t tell us about their experience of pain and it is difficult to infer pain from visual observations,” said Rebeccah Slater, a doctor at Oxford’s paediatrics department who led the study. “In fact some people have argued that babies’ brains are not developed enough for them to really feel pain ... [yet] our study provides the first really strong evidence this is not the case.” Even as recently as the 1980s it was common practice for babies undergoing surgery to be given neuromuscular blocks but no pain relief medication. Last year, a review of neonatal pain management in intensive care found that although these babies experience an average of 11 painful procedures per day, 60% do not receive any kind of pain medication. © 2015 Guardian News and Media Limited

Keyword: Pain & Touch; Development of the Brain
Link ID: 20824 - Posted: 04.21.2015

By Sandra G. Boodman A Braced by her partner, Suzanne Tobin shuffled back to her car parked in the cavernous garage at Johns Hopkins Hospital late on the evening of Oct. 22, 2013, distraught about what might happen next. Tobin, then 60, had been driven by her partner, James Rapp, from their Germantown home to the Hopkins ER in hopes that doctors there could determine what was causing her relentless deterioration. Three months earlier, Tobin had held a full-time job as a copy editor at AARP in the District. She spent an hour before work striding around the Mall for exercise. Now she could no longer walk unassisted, her speech was nearly unintelligible and her left hand was so weak she could no longer hold a book. Doctors in suburban Maryland had diagnosed a stroke — or possibly a series of strokes — but were unable to explain why Tobin kept getting worse by the week. Her neurologist counseled patience and offered to prescribe antidepressants, drugs that Tobin had told him she had taken for years. An occupational therapist she’d been seeing had expressed alarm; stroke patients tended to plateau or even improve over time, not to experience a steady downward spiral. “You need to get a new neurologist,” she advised Tobin. Tobin and Rapp decided their best bet was to head to Hopkins in Baltimore. But after 12 hours and a battery of tests, including a CT, MRI and other scans, emergency physicians sent Tobin home. They found no new stroke — an earlier MRI that Rapp had brought along appeared to show an old one — nor any other problem that would require immediate hospitalization. They advised her to follow up with her regular doctors.

Keyword: Stroke; Neuroimmunology
Link ID: 20823 - Posted: 04.21.2015

By David Grimm In a decision that effectively recognizes chimpanzees as legal persons for the first time, a New York judge today granted a pair of Stony Brook University lab animals the right to have their day in court. The ruling marks the first time in U.S. history that an animal has been covered by a writ of habeus corpus, which typically allows human prisoners to challenge their detention. The judicial action could force the university, which is believed to be holding the chimps, to release the primates, and could sway additional judges to do the same with other research animals. “This is a big step forward to getting what we are ultimately seeking: the right to bodily liberty for chimpanzees and other cognitively complex animals,” says Natalie Prosin, the Executive Director of the animal rights organization, the Nonhuman Rights Project (NhRP), which filed the case. “We got our foot in the door. And no matter what happens, that door can never be completely shut again.” Richard Cupp, a law professor at Pepperdine University in Malibu, California, and a noted opponent of personhood for animals, cautions against reading too much into the ruling, however. “The judge may merely want more information to make a decision on the legal personhood claim, and may have ordered a hearing simply as a vehicle for hearing out both parties in more depth,” he writes in an email to Science. “It would be quite surprising if the judge intended to make a momentous substantive finding that chimpanzees are legal persons if the judge has not yet heard the other side’s arguments.” © 2015 American Association for the Advancement of Science

Keyword: Animal Rights
Link ID: 20822 - Posted: 04.21.2015