Most Recent Links

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 41 - 60 of 21574

Rachel Becker A highly contagious and deadly animal brain disorder has been detected in Europe for the first time. Scientists are now warning that the single case found in a wild reindeer might represent an unrecognized, widespread infection. Chronic wasting disease (CWD) was thought to be restricted to deer, elk (Cervus canadensis) and moose (Alces alces) in North America and South Korea, but on 4 April researchers announced that the disease had been discovered in a free-ranging reindeer (Rangifer tarandus tarandus) in Norway. This is both the first time that CWD has been found in Europe and the first time that it has been found in this species in the wild anywhere in the world. “It’s worrying — of course, especially for animals. It’s a nasty disease,” says Sylvie Benestad, an animal-disease researcher at the Norwegian Veterinary Institute in Oslo who, along with colleague Turid Vikøren, diagnosed the diseased reindeer. A key question now is whether this is a rare — even unique — case, or if the disease is widespread but so far undetected in Europe. “If it’s similar to our prion disease in the United States and Canada, the disease is subtle and it would be easy to miss,” says Christina Sigurdson, a pathologist at the University of California, San Diego, who has shown that reindeer can contract CWD in a laboratory environment1. © 2016 Nature Publishing Group,

Keyword: Prions
Link ID: 22117 - Posted: 04.19.2016

Ian Sample Science editor The subtle impact of genetics on the age at which people lose their virginity has been teased apart by scientists and shown to have an effect on how well people fare at school. Though mostly driven by upbringing and peer behaviour, a person’s age when they first have sex is also shaped by biological factors where genes have a role to play. Researchers found that differences in DNA could account for a quarter of the variation in the age at which people lost their virginity, with other factors, among them religious beliefs, family background and peer pressure, making up the rest. Genes influence academic ability across all subjects, latest study shows Read more “We were able to calculate for the first time that there is a heritable component to age at first sex, and the heritability is about 25%, so one quarter nature, three quarters nurture,” said John Perry, an expert in reproductive ageing and related health conditions at Cambridge University. Among 38 sections of DNA found to affect the age at which people first had sex were genes that drive reproductive biology, such as the release of sex hormones and the age of puberty. Still others were found that appear to affect behaviour, personality and appearance. A variant of one of the genes, named CADM2, linked an early start to one’s sex life with risk-taking behaviour and having a large number of children. A version of another gene, MSRA, found in people who lost their virginity later than average, was linked to irritability. © 2016 Guardian News and Media Limited

Keyword: Sexual Behavior; Genes & Behavior
Link ID: 22116 - Posted: 04.19.2016

Scientists believe injections of a natural protein may lessen the symptoms and progress of Alzheimer's dementia after promising early trials in mice. The treatment - IL 33 - appeared to improve memory and help clear and prevent brain deposits similar to those seen in people with Alzheimer's. Tentative human studies of the treatment will soon begin, but experts say it will take many years to know if it could help patients in real life. The work is published in PNAS journal. Interleukin 33, or IL 33 for short, is made by the body as part of its immune defence against infection and disease, particularly within the brain and spinal cord. And patients with Alzheimer's have been found to have lower amounts of IL 33 in their brains than healthy adults. The researchers from the University of Glasgow and the Hong Kong University of Science and Technology tested what effect a boost of IL 33 might have on mice bred to have brain changes akin to Alzheimer's. The rodents rapidly improved their memory and cognitive function to that of the age-matched normal mice within a week of having the injections. Prof Eddy Liew, who led the work at the University of Glasgow, is excited but cautious about his findings. "Exciting as it is, there is some distance between laboratory findings and clinical applications. There have been enough false 'breakthroughs' in the medical field to caution us not to hold our breath until rigorous clinical trials have been done." © 2016 BBC.

Keyword: Alzheimers
Link ID: 22115 - Posted: 04.19.2016

By Stephen L. Macknik, Susana Martinez-Conde The renowned Slydini holds up an empty box for all to see. It is not really a box—just four connected cloth-covered cardboard walls, forming a floppy parallelogram with no bottom or top. Yet when the magician sets it down on a table, it looks like an ordinary container. Now he begins to roll large yellow sheets of tissue paper into balls. He claps his hands—SMACK!—as he crumples each new ball in a fist and then straightens his arm, wordlessly compelling the audience to gaze after his closed hand. He opens it, and ... the ball is still there. Nothing happened. Huh. Slydini's hand closes once more around the tissue, and it starts snaking around, slowly and gracefully, like a belly dancer's. The performance is mesmerizing. With his free hand, he grabs an imaginary pinch of pixie dust from the box to sprinkle on top of the other hand. This time he opens his hand to reveal that the tissue is gone! Four balls disappear in this fashion. Then, for the finale, Slydini tips the box forward and shows the impossible: all four balls have mysteriously reappeared inside. Slydini famously performed this act on The Dick Cavett Show in 1978. It was one of his iconic tricks. Despite the prestidigitator's incredible showmanship, though, the sleight only works because your brain cannot multitask. © 2016 Scientific American,

Keyword: Attention
Link ID: 22114 - Posted: 04.19.2016

By JEFFREY M. ZACKS and REBECCA TREIMAN OUR favorite Woody Allen joke is the one about taking a speed-reading course. “I read ‘War and Peace’ in 20 minutes,” he says. “It’s about Russia.” The promise of speed reading — to absorb text several times faster than normal, without any significant loss of comprehension — can indeed seem too good to be true. Nonetheless, it has long been an aspiration for many readers, as well as the entrepreneurs seeking to serve them. And as the production rate for new reading matter has increased, and people read on a growing array of devices, the lure of speed reading has only grown stronger. The first popular speed-reading course, introduced in 1959 by Evelyn Wood, was predicated on the idea that reading was slow because it was inefficient. The course focused on teaching people to make fewer back-and-forth eye movements across the page, taking in more information with each glance. Today, apps like SpeedRead With Spritz aim to minimize eye movement even further by having a digital device present you with a stream of single words one after the other at a rapid rate. Unfortunately, the scientific consensus suggests that such enterprises should be viewed with suspicion. In a recent article in Psychological Science in the Public Interest, one of us (Professor Treiman) and colleagues reviewed the empirical literature on reading and concluded that it’s extremely unlikely you can greatly improve your reading speed without missing out on a lot of meaning. Certainly, readers are capable of rapidly scanning a text to find a specific word or piece of information, or to pick up a general idea of what the text is about. But this is skimming, not reading. We can definitely skim, and it may be that speed-reading systems help people skim better. Some speed-reading systems, for example, instruct people to focus only on the beginnings of paragraphs and chapters. This is probably a good skimming strategy. Participants in a 2009 experiment read essays that had half the words covered up — either the beginning of the essay, the end of the essay, or the beginning or end of each individual paragraph. Reading half-paragraphs led to better performance on a test of memory for the passage’s meaning than did reading only the first or second half of the text, and it worked as well as skimming under time pressure. © 2016 The New York Times Company

Keyword: Language; Attention
Link ID: 22113 - Posted: 04.18.2016

For the first time, scientists have scanned the brains of subjects taking LSD, and found that the LSD state mimics that of infants. NPR's Rachel Martin speaks with researcher Robin Carhart-Harris. RACHEL MARTIN, HOST: Picture yourself in a boat on a river with tangerine trees and marmalade skies. Now picture yourself as a baby. You gaze up at your mother. She's got those kaleidoscope eyes. Pretty trippy, right? Turns out in a new study of brain scans, that the minds of people on LSD function in a similar way to babies' brains. Dr. Robin Carhart-Harris from Imperial College London's Center for Neuropsychopharmacology joins us from the studios of the BBC to talk about this study. So I understand this was the first time that brain scans like this have ever been done, looking specifically at the brains of people who have used LSD. How much LSD had your subjects taken? I mean, what were the prerequisites for a brain that you were going to scan? CARHART-HARRIS: Yeah, so they had to have had at least one experience with a psychedelic drug. So that includes LSD. It also includes magic mushrooms, other concoctions like ayahuasca, which is an Amazonian brew that has psychedelic properties. We gave them a moderate dose of LSD, roughly equivalent to what you might call a hit of LSD or one blotter of LSD if it was to be taken recreationally. MARTIN: So what kind of vetting did you have to do of the participants in your study because we should say different people respond to LSD in different ways? There are risks associated with this drug. CARHART-HARRIS: That's quite right. All drugs have risks, and LSD's no exception. One of the risks is that you might recruit someone who has a psychological vulnerability. So we're very, very careful when we recruit our volunteers to ensure that they have a solid mental health background. They don't have any personal or family history of any psychotic disorders - so those are things like schizophrenia. We have a psychiatrist assess them. We also evaluate their health. So they are very thoroughly screened. © 2016 npr

Keyword: Drug Abuse; Brain imaging
Link ID: 22112 - Posted: 04.18.2016

By Jillian Bell, CBC News New medical marijuana products produced by yeast could soon be on the market, the co-founder of a biotech company says. That could potentially lead to a wider range of cannabinoid-based drugs that proponents say could be more effective for treating certain medical conditions than medical marijuana itself. The appropriate use of medical marijuana has been a controversial topic, with many arguing that further research is needed to evaluate its efficacy as a treatment for a variety of ailments. In Canada, where the Liberal government has said it will legalize marijuana, medical marijuana is already used to treat a variety of conditions and symptoms, including lack of appetite in people with HIV/AIDS and nausea in those undergoing cancer treatment. The most well-known cannabinoid is tetrahydrolcannabinol, or THC, which is approved by the U.S. Food and Drug Administration to treat nausea and improve appetite. It's found in large amounts in marijuana plants, which is the reason why medical marijuana is often prescribed to treat nausea and increase appetite. But other cannabinoids, like cannabidiol (CBD) and cannabigerol (CBG) may have the potential to be potent treatments for other conditions as well. CBG also has its own medical properties. But it can also be easily chemically converted into other cannabinoids, including THC. ©2016 CBC/Radio-Canada.

Keyword: Drug Abuse
Link ID: 22111 - Posted: 04.18.2016

By David Shultz Mice supposedly don't speak, so they can't stutter. But by tinkering with a gene that appears to be involved in human speech, researchers have created transgenic mice whose pups produce altered vocalizations in a way that is similar to stuttering in humans. The mice could make a good model for understanding stuttering; they could also shed more light on how mutations in the gene, called Gnptab, cause the speech disorder. Stuttering is one of the most common speech disorders in the world, affecting nearly one out of 100 adults in the United States. But the cause of the stammering, fragmented speech patterns remains unclear. Several years ago, researchers discovered that stutterers often have mutations in a gene called Gnptab. Like a dispatcher directing garbage trucks, Gnptab encodes a protein that helps to direct enzymes into the lysosome—a compartment in animal cells that breaks down waste and recycles old cellular machinery. Mutations to other genes in this system are known to lead to the buildup of cellular waste products and often result in debilitating diseases, such as Tay-Sachs. How mutations in Gnptab causes stuttered speech remains a mystery, however. To get to the bottom of things, neuroscientist Terra Barnes and her team at Washington University in St. Louis in Missouri produced mice with mutation in the Gnptab gene and studied whether it affected the ultrasonic vocalizations that newly born mouse pups emit when separated from their mothers. Determining whether a mouse is stuttering is no easy task; as Barnes points out, it can even be difficult to tell whether people are stuttering if they’re speaking a foreign language. So the team designed a computer program that listens for stuttering vocalization patterns independent of language. © 2016 American Association for the Advancement of Science.

Keyword: Language
Link ID: 22110 - Posted: 04.16.2016

By Matthew Hutson Bad news for believers in clairvoyance. Our brains appear to rewrite history so that the choices we make after an event seem to precede it. In other words, we add loops to our mental timeline that let us feel we can predict things that in reality have already happened. Adam Bear and Paul Bloom at Yale University conducted some simple tests on volunteers. In one experiment, subjects looked at white circles and silently guessed which one would turn red. Once one circle had changed colour, they reported whether or not they had predicted correctly. Over many trials, their reported accuracy was significantly better than the 20 per cent expected by chance, indicating that the volunteers either had psychic abilities or had unwittingly played a mental trick on themselves. The researchers’ study design helped explain what was really going on. They placed different delays between the white circles’ appearance and one of the circles turning red, ranging from 50 milliseconds to one second. Participants’ reported accuracy was highest – surpassing 30 per cent – when the delays were shortest. That’s what you would expect if the appearance of the red circle was actually influencing decisions still in progress. This suggests it’s unlikely that the subjects were merely lying about their predictive abilities to impress the researchers. The mechanism behind this behaviour is still unclear. It’s possible, the researchers suggest, that we perceive the order of events correctly – one circle changes colour before we have actually made our prediction – but then we subconsciously swap the sequence in our memories so the prediction seems to come first. Such a switcheroo could be motivated by a desire to feel in control of our lives. © Copyright Reed Business Information Ltd.

Keyword: Consciousness
Link ID: 22109 - Posted: 04.16.2016

Ian Sample Science editor The risks of heavy cannabis for mental health are serious enough to warrant global public health campaigns, according to international drugs experts who said young people were particularly vulnerable. The warning from scientists in the UK, US, Europe and Australia reflects a growing consensus that frequent use of the drug can increase the risk of psychosis in vulnerable people, and comes as the UN prepares to convene a special session on the global drugs problem for the first time since 1998. The meeting in New York next week aims to unify countries in their efforts to tackle issues around illicit drug use. While the vast majority of people who smoke cannabis will not develop psychotic disorders, those who do can have their lives ruined. Psychosis is defined by hallucinations, delusions and irrational behaviour, and while most patients recover from the episodes, some go on to develop schizophrenia. The risk is higher among patients who continue with heavy cannabis use. Public health warnings over cannabis have been extremely limited because the drug is illegal in most countries, and there are uncertainties over whether it really contributes to mental illness. But many researchers now believe the evidence for harm is strong enough to issue clear warnings. “It’s not sensible to wait for absolute proof that cannabis is a component cause of psychosis,” said Sir Robin Murray, professor of psychiatric research at King’s College London. © 2016 Guardian News and Media Limited

Keyword: Drug Abuse; Schizophrenia
Link ID: 22108 - Posted: 04.16.2016

By Robin Wylie Bottlenose dolphins have been observed chattering while cooperating to solve a tricky puzzle – a feat that suggests they have a type of vocalisation dedicated to cooperating on problem solving. Holli Eskelinen of Dolphins Plus research institute in Florida and her colleagues at the University of Southern Mississippi presented a group of six captive dolphins with a locked canister filled with food. The canister could only be opened by simultaneously pulling on a rope at either end. The team conducted 24 canister trials, during which all six dolphins were present. Only two of the dolphins ever managed to crack the puzzle and get to the food. The successful pair was prolific, though: in 20 of the trials, the same two adult males worked together to open the food canister in a matter of few minutes. In the other four trials, one of the dolphins managed to solve the problem on its own, but this was much trickier and took longer to execute. But the real surprise came from recordings of the vocalisations the dolphins made during the experiment. The team found that when the dolphins worked together to open the canister, they made around three times more vocalisations than they did while opening the canister on their own or when there was either no canister present or no interaction with the canister in the pool. © Copyright Reed Business Information Ltd.

Keyword: Language; Evolution
Link ID: 22107 - Posted: 04.16.2016

By BENEDICT CAREY Five years ago, a college freshman named Ian Burkhart dived into a wave at a beach off the Outer Banks in North Carolina and, in a freakish accident, broke his neck on the sandy floor, permanently losing the feeling in his hands and legs. On Wednesday, doctors reported that Mr. Burkhart, 24, had regained control over his right hand and fingers, using technology that transmits his thoughts directly to his hand muscles and bypasses his spinal injury. The doctors’ study, published by the journal Nature, is the first account of limb reanimation, as it is known, in a person with quadriplegia. Doctors implanted a chip in Mr. Burkhart’s brain two years ago. Seated in a lab with the implant connected through a computer to a sleeve on his arm, he was able to learn by repetition and arduous practice to focus his thoughts to make his hand pour from a bottle, and to pick up a straw and stir. He was even able to play a guitar video game. “It’s crazy because I had lost sensation in my hands, and I had to watch my hand to know whether I was squeezing or extending the fingers,” Mr. Burkhart, a business student who lives in Dublin, Ohio, said in an interview. His injury had left him paralyzed from the chest down; he still has some movement in his shoulders and biceps. The new technology is not a cure for paralysis. Mr. Burkhart could use his hand only when connected to computers in the lab, and the researchers said there was much work to do before the system could provide significant mobile independence. But the field of neural engineering is advancing quickly. Using brain implants, scientists can decode brain signals and match them to specific movements. Previously, people have learned to guide a cursor on a screen with their thoughts, monkeys have learned to skillfully use a robotic arm through neural signals and scientists have taught monkeys who were partly paralyzed to use an arm with a bypass system. This new study demonstrates that the bypass approach can restore critical skills to limbs no longer directly connected to the brain. © 2016 The New York Times Company

Keyword: Robotics
Link ID: 22106 - Posted: 04.14.2016

By Simon Makin Everyone's brain is different. Until recently neuroscience has tended to gloss this over by averaging results from many brain scans in trying to elicit general truths about how the organ works. But in a major development within the field researchers have begun documenting how brain activity differs between individuals. Such differences had been largely thought of as transient and uninteresting but studies are starting to show that they are innate properties of people's brains, and that knowing them better might ultimately help treat neurological disorders. The latest study, published April 8 in Science, found that the brain activity of individuals who were just biding their time in a brain scanner contained enough information to predict how their brains would function during a range of ordinary activities. The researchers used these at-rest signatures to predict which regions would light up—which groups of brain cells would switch on—during gambling, reading and other tasks they were asked to perform in the scanner. The technique might be used one day to assess whether certain areas of the brains of people who are paralyzed or in a comatose state are still functional, the authors say. The study capitalizes on a relatively new method of brain imaging that looks at what is going on when a person essentially does nothing. The technique stems from the mid-1990s work of biomedical engineer Bharat Biswal, now at New Jersey Institute of Technology. Biswal noticed that scans he had taken while participants were resting in a functional magnetic resonance imaging (fMRI) scanner displayed orderly, low-frequency oscillations. He had been looking for ways to remove background noise from fMRI signals but quickly realized these oscillations were not noise. His work paved the way for a new approach known as resting-state fMRI. © 2016 Scientific American

Keyword: Brain imaging; Consciousness
Link ID: 22105 - Posted: 04.14.2016

By Amy Ellis Nutt I saw it all: The beginning of Time and the end of Time. Creation and annihilation. Somehow I’d slipped through a seam in the space-time continuum, and from my privileged mental perch I'd peered into the center of the universe. I was exhilarated and drew diagrams of my visions, trying to figure out what it all meant. But when I shared those visions with friends, they were confused and concerned. I was manic, they said, and making no sense. We were at an impasse. Was I sick – or simply in search of myself? Those questions from my own past hovered in the background while I watched two very different documentaries recently. Both explore bipolar illness -- a diagnosis I received more than 25 years ago and one that 5.5 million Americans share. But the films come from very different perspectives. The first, "Ride the Tiger: A Guide Through the Bipolar Brain," was produced by Detroit Public TV and airs on PBS Wednesday. It chronicles the latest in cutting-edge research into bipolar disorder and in doing so firmly plants its flag in the biological camp: The disorder is about misfiring brain circuits, genetic mutations, neurochemical disruptions and other neurological processes not yet delineated. The result is dramatic swings in mood and behavior that affect a person's ability to think clearly. "Ride the Tiger" features appearances by former congressman Patrick Kennedy and the late actress Patty Duke, both of whom talk about their own experiences. The second documentary, "Bipolarized: Re-Thinking Mental Illness," questions the very reality of the disorder -- at least for one former psychiatric patient.

Keyword: Schizophrenia
Link ID: 22104 - Posted: 04.14.2016

Eleanor Ainge Roy in Dunedin An octopus has made a brazen escape from the national aquarium in New Zealand by breaking out of its tank, slithering down a 50-metre drainpipe and disappearing into the sea. In scenes reminiscent of Finding Nemo, Inky – a common New Zealand octopus – made his dash for freedom after the lid of his tank was accidentally left slightly ajar. Staff believe that in the middle of the night, while the aquarium was deserted, Inky clambered to the top of his cage, down the side of the tank and travelled across the floor of the aquarium. Rob Yarrell, national manager of the National Aquarium of New Zealand in Napier, said: “Octopuses are famous escape artists. “But Inky really tested the waters here. I don’t think he was unhappy with us, or lonely, as octopus are solitary creatures. But he is such a curious boy. He would want to know what’s happening on the outside. That’s just his personality.” One theory is that Inky slid across the aquarium floor – a journey of three or four metres – and then, sensing freedom was at hand, into a drainpipe that lead directly to the sea. The drainpipe was 50 metres long, and opened on to the waters of Hawke’s Bay, on the east coast of New Zealand’s North Island. Another possible escape route could have involved Inky squeezing into an open pipe at the top of his tank, which led under the floor to the drain. © 2016 Guardian News and Media Limited

Keyword: Intelligence; Evolution
Link ID: 22103 - Posted: 04.14.2016

By Frank McGurty More than 40 percent of retired NFL players tested with advanced scanning technology showed signs of traumatic brain injury, a much higher rate than in the general population, according to a new study of the long-term risks of playing American football. The research, presented at an American Academy of Neurology meeting that began in Vancouver on Monday, is one of the first to provide "objective evidence" of traumatic brain injury in a large sample of National Football League veterans while they are living, said Dr. Francis X. Conidi, one of the study's authors. Conidi, a neurologist at the Florida Center for Headache and Sports Neurology and a faculty member at the Florida State University College of Medicine, said traumatic brain injury was often a "precursor" to CTE, a degenerative brain disease. "What we do know is that players with traumatic brain injury have a high incidence of going on to develop neurological degenerative disease later on in life," Conidi told Reuters. CTE, or chronic traumatic encephalopathy, has been found in dozens of the NFL's top players after they died. At present, a CTE diagnosis is only possible after death. The brain tissue of 59 or 62 deceased former NFL players examined by Boston University's CTE Center have tested positive for CTE, according to its website. The disease, which can lead to aggression and dementia, may have led to the suicides of several NFL athletes, including Hall of Famer Junior Seau. In the new study, the largest of its kind, 40 living former players were given sensitive brain scans, known as diffusion tensor imaging (DTI), as well as thinking and memory tests. © 2016 Scientific American,

Keyword: Brain Injury/Concussion; Brain imaging
Link ID: 22102 - Posted: 04.13.2016

By Gareth Cook What are the most intelligent creatures on the planet? Humans come first. (Though there are days when we have to wonder.) After Homo sapiens, most people might answer chimpanzees, and then maybe dogs and dolphins. But what of birds? The science writer Jennifer Ackerman offers a lyrical testimony to the wonders of avian intelligence in her new book, “The Genius of Birds.” There have long been hints of bird smarts, but it’s become an active field of scientific inquiry, and Ackerman serves as tour guide. She answered questions from Mind Matters editor Gareth Cook. What drew you to birds? I’ve watched birds for most of my life. I admire all the usual things about them. Their plumage and song. Their intense way of living. Their flight. I also admire their resourcefulness and pluck. I’ve always been intrigued by their apparently smart behavior, whether learned or innate. I grew up in Washington, D.C. — the second youngest in a gaggle of five girls. My parents had precious little time for one-on-one. Especially my dad, who had a demanding government job. So when he asked me if I wanted to go birdwatching with him one spring morning when I was seven or eight, I jumped at the chance. It was magical, going out in the dark woods along the C&O canal and listening for bird song. My father had learned his calls and songs in Boy Scout camp from an expert, an elderly Greek man named Apollo, so he was pretty good at identifying birds, even the shy woodland species. Eventually he gave me my own copy of Peterson’s Field Guide, along with a small pair of binoculars. I’ve loved birds ever since. My first run in with a clever bird was on our dining room table. We had a pet parakeet, a budgerigar named Gre-Gre, who was allowed to fly around the dining room and perch on our head or shoulders. He had a kind of social genius. He made you love him. But at breakfast, it was impossible to eat your cereal without his constant harassment. He liked to perch on the edge of my bowl and peck at the cereal, flapping his wings frantically to keep his balance, splashing my milk. I’d build a barricade of boxes around my place setting, but he always found a way in, moving a box or popping over the top. He was a good problem-solver. © 2016 Scientific American

Keyword: Intelligence; Evolution
Link ID: 22101 - Posted: 04.13.2016

By Virginia Morell Moths have an almost fatal attraction to lights—so much so that we say people are drawn to bad ends “like moths to a flame.” But in this age of global light pollution, that saying has a new poignancy: Moths, which are typically nocturnal insects, are dying in droves at artificial lights. The high levels of mortality should have evolutionary consequences, leading to moths that avoid lights, biologists say. To find out, two scientists tested the flight-to-light behavior of 1048 adult ermine moths (Yponomeuta cagnagella, shown above) in Europe. The researchers collected the insects in 2007 as larvae that had just completed their first molt. Three hundred and twenty came from populations that lived where the skies were largely dark; 728 were gathered in light polluted areas. They were raised in a lab with 16 hours of daylight and 8 hours of darkness daily while they completed their life stages. Two to 3 days after emerging as moths, they were released in a flight cage with a fluorescent tube at one side. Moths from high light pollution areas were significantly less attracted to the light than those from the darker zones, the scientists report in today’s issue of Biology Letters. Overall, moths from the light-polluted populations had a 30% reduction in the flight-to-light behavior, indicating that this species is evolving, as predicted, to stay away from artificial lights. That change should increase these city moths’ reproductive success. But their success comes at a cost: To avoid the lights, the moths are likely flying less, say the scientists, so they aren’t pollinating as many flowers or feeding as many spiders and bats. © 2016 American Association for the Advancement of Science.

Keyword: Evolution
Link ID: 22100 - Posted: 04.13.2016

Zoe Cormier Researchers have published the first images showing the effects of LSD on the human brain, as part of a series of studies to examine how the drug causes its characteristic hallucinogenic effects1. David Nutt, a neuropsychopharmacologist at Imperial College London who has previously examined the neural effects of mind-altering drugs such as the hallucinogen psilocybin, found in magic mushrooms, was one of the study's leaders. He tells Nature what the research revealed, and how he hopes LSD (lysergic acid diethylamide) might ultimately be useful in therapies. Why study the effects of LSD on the brain? For brain researchers, studying how psychedelic drugs such as LSD alter the ‘normal’ brain state is a way to study the biological phenomenon that is consciousness. We ultimately would also like to see LSD deployed as a therapeutic tool. The idea has old roots. In the 1950s and 60s thousands of people took LSD for alcoholism; in 2012, a retrospective analysis of some of these studies suggested that it helped cut down on drinking. Since the 1970s there have been lots of studies with LSD on animals, but not on the human brain. We need that data to validate the trial of this drug as a potential therapy for addiction or depression. Why hasn’t anyone done brain scans before? Before the 1960s, LSD was studied for its potential therapeutic uses, as were other hallucinogens. But the drug was heavily restricted in the UK, the United States and around the world after 1967 — in my view, due to unfounded hysteria over its potential dangers. The restrictions vary worldwide, but in general, countries have insisted that LSD has ‘no medical value’, making it tremendously difficult to work with. © 2016 Nature Publishing Group

Keyword: Drug Abuse; Brain imaging
Link ID: 22099 - Posted: 04.12.2016

Ian Dunt There is a remarkable lack of research into a drug that some scientists initially considered to be a key tool in understanding consciousness, and that has since been shown to help people deal with anxiety and depression. The new study on the impact of LSD on the brain is the first in the UK since the drug was banned in 1966. Incredibly, it’s also the first anywhere to use brain scans taken while a person is under the influence of the drug. Nowadays, we associate LSD with hippies murmuring about the nature of reality, but it wasn’t always this way. Between the invention of the drug in 1952 and its banning in the UK, around a thousand papers on it were published. Then LSD was made illegal. The UK Home Office promised to allow scientists to continue experiments with the drug, and it’s true that they remain legal. But they are also effectively impossible. The obstacles against research – regulatory, financial, professional and political – are just too high for any sensible person to cope with. Research using outlawed drugs with no accepted medical value requires a “schedule 1” licence from the Home Office. It takes about a year to get and involves a barrage of criminal record checks. All told, its price tag comes in at about £5000, with a costly annual top-up assessment to follow. © Copyright Reed Business Information Ltd.

Keyword: Drug Abuse; Brain imaging
Link ID: 22098 - Posted: 04.12.2016