Most Recent Links

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 41 - 60 of 20685

By Karen Weintraub Can I ever re-pay my sleep debt? (I estimate it at 15 years of poor sleep.) It is unclear whether you can make up a long-term sleep debt, because most studies have looked at the effects of sleep loss and recovery only over a few nights or weeks, said Dr. Matt T. Bianchi, the chief of the division of sleep medicine at Massachusetts General Hospital and an assistant professor of neurology at Harvard Medical School. Simulated driving performance and reaction times are affected by just one sleepless night, research has shown. There’s no doubt that sleeping just four hours a night catches up to people within a few nights, leading to impairments of attention, learning and memory and worse performance in school and at work. And making up for lost sleep over the weekend doesn’t work. Five brief nights quickly add up to a shortfall of 20 hours, but people don’t sleep more than five to 10 extra hours to compensate, Dr. Bianchi said. “The interpretation has been you can’t pay off your sleep debt, you just carry it with you,” though it’s also possible that people don’t sleep an extra 20 hours because they don’t need it, Dr. Bianchi said. He cited research by Jim Horne of Loughborough University in Britain showing that a timely nap of less than 20 minutes can equate to an extra hour of nighttime sleep. Different people need somewhat different amounts of sleep, but anything less than six hours a night is definitely not enough, said Dr. Charles Czeisler, a professor of sleep medicine at Harvard. In one sleep study, people were brought into a lab and required to stay in bed for 14 hours a day. They slept 10 to 12 hours a night at first, Dr. Czeisler said. Then they gradually slept less over the next few weeks until they stabilized at about 8.4 hours per night. © 2015 The New York Times Company

Keyword: Sleep
Link ID: 21223 - Posted: 07.27.2015

Alexandra Sims Intelligent people are not only smarter than the average person - it seems they could also live longer as well. A study by the London School of Economics found that smarter siblings are more likely to outlive their less clever brothers and sisters, with genetics accounting for 95 per cent of the connection between intelligence and life span. The scientists examined the differences in longevity between identical twins, who share all of their genes and non-identical twins, who on average share half of their genes. Writing in the International Journal of Epidemiology, scientists noted the difference in intellect between the twins and the age at which they died. Focusing on three different twin studies from Sweden, Denmark and the United States the researchers examined sets of twins for whom both intelligence and age of death had been recorded in pairs where at least one of the twins had died. In both types of twins it was found that the smarter of the two lived longer, but this effect was far more prominent in non-identical twins. Rosalind Arden, a research associate at the LSE, told The Times that "the association between top jobs and longer lifespans is more a result of genes than having a big desk.” She added though that the research does not mean parents can "deduce your child’s likely lifespan from how he or she does in their exams this summer”.

Keyword: Intelligence; Genes & Behavior
Link ID: 21222 - Posted: 07.27.2015

By Claire Asher City folk have a reputation for being less friendly than their rural counterparts, and the same appears to be true for garden birds. Urban song sparrows (Melospiza melodia, pictured) are more aggressive toward their neighbors than are sparrows out in the country, researchers report this month in Behavioral Ecology. But whereras the temperament of human city-dwellers is often attributed to the sheer density of people, this isn’t the case for sparrows. The team measured birds’ responses to recordings of another male’s song, noting how often males approached or attacked the speakers, and found that aggression depended not on the density of sparrows, but on the availability of food in the environment. Counterintuitively, male sparrows responded more aggressively in the city, where there tends to be more food, and rural birds became more aggressive when provided with food supplements. The authors explain that the sparrows defend food-rich, high-quality territories more aggressively, but it isn’t clear whether this is an offensive or a defensive strategy; city birds may be more aggressive because a territory with more food is more valuable to them, or because their abundant resources attract more thieves. © 2015 American Association for the Advancement of Science.

Keyword: Aggression
Link ID: 21221 - Posted: 07.27.2015

Alison Abbott Neuroscientists have identified an area of the brain that might give the human mind its unique abilities, including language. The area lit up in human, but not monkey, brains when they were presented with different types of abstract information. The idea that integrating abstract information drives many of the human brain's unique abilities has been around for decades. But a paper published1 in Current Biology, which directly compares activity in human and macaque monkey brains as they listen to simple auditory patterns, provides the first physical evidence that a specific area for such integration may exist in humans. Other studies that compare monkeys and humans have revealed differences in the brain’s anatomy, for example, but not differences that could explain where humans’ abstract abilities come from, say neuroscientists. “This gives us a powerful clue about what is special about our minds,” says psychologist Gary Marcus at New York University. “Nothing is more important than understanding how we got to be how we are.” A team of researchers headed by Stanislas Dehaene at the INSERM Cognitive Neuroimaging Unit at Gif-sur-Yvette near Paris, looked at changing patterns of activation in the brain as untrained monkeys and human adults listened to a simple sequence of tones, for example three identical tones followed by a different tone (like the famous four-note opening of Beethoven’s fifth symphony: da-da-da-DAH). The researchers played several different sequences with this structure — known as AAAB — and other sequences to the subjects while they lay in a functional magnetic resonance imaging (fMRI) scanner. The fMRI technique picks up changes in blood flow in the brain that correlate with regional brain activity. © 2015 Nature Publishing Group,

Keyword: Attention; Evolution
Link ID: 21220 - Posted: 07.25.2015

Qazi Rahman In a recent Guardian article , Simon Copland argued that it is very unlikely people are born gay (or presumably any other sexual orientation). Scientific evidence says otherwise. It points strongly to a biological origin for our sexualities. Finding evidence for a biological basis should not scare us or undermine gay, lesbian and bisexual (LGB) rights (the studies I refer to do not include transgendered individuals, so I’ll confine my comments to lesbian, gay and bisexual people). I would argue that understanding our fundamental biological nature should make us more vigorous in promoting LGB rights. Let’s get some facts and perspective on the issue. Evidence from independent research groups who studied twins shows that genetic factors explain about 25-30% of the differences between people in sexual orientation (heterosexual, gay, lesbian, and bisexual). Twin studies are a first look into the genetics of a trait and tell us that there are such things as “genes for sexual orientation” (I hate the phrase “gay gene”). Three gene finding studies showed that gay brothers share genetic markers on the X chromosome; the most recent study also found shared markers on chromosome 8. This latest research overcomes the problems of three prior studies which did not find the same results. Gene finding efforts have issues, as Copland argues, but these are technical and not catastrophic errors in the science. For example, complex psychological traits have many causal genes (not simply “a gay gene”). But each of these genes has a small effect on the trait so do not reach traditional levels of statistical significance. In other words, lots of genes which do influence sexual orientation may fall under the radar. But scientific techniques will eventually catch up. In fact there are more pressing problems that I would like to see addressed, such as the inadequate research on female sexuality. Perhaps this is due to the stereotype that female sexuality is “too complex” or that lesbians are rarer than gay men. © 2015 Guardian News and Media Limited

Keyword: Sexual Behavior; Genes & Behavior
Link ID: 21219 - Posted: 07.25.2015

A panel of independent experts has decided that a clot-busting drug often used to treat strokes is "safe and effective". The UK medicines watchdog wanted the benefits and risks of alteplase to be analysed after concerns were raised about its safety. The panel concluded that the best time to use the drug is up to four and a half hours after the start of symptoms. But some other doctors are still not convinced by the evidence. Most strokes are caused by a clot blocking the flow of blood to the brain. Many patients are given the drug alteplase to break down and disperse the clot - a treatment known as thrombolysis. The independent expert panel, chaired by Prof Sir Ian Weller, said it had looked at all available data on alteplase and decided that the earlier the drug was given to patients, the greater the chance of a good outcome. Used up to four and a half hours after the onset of symptoms, the benefits of the drug were found to outweigh the risks. But it added that the benefits of using alteplase to treat strokes were "highly time-dependent" and, in a small number of people, there was a risk of haemorrhage. Prof Weller explained: "The evidence shows that for every 100 patients treated with alteplase, whilst there is an early risk of a fatal bleed in two patients, after three to six months, around 10 more in every 100 are disability-free when treated within three hours." © 2015 BBC.

Keyword: Stroke
Link ID: 21218 - Posted: 07.25.2015

By THE ASSOCIATED PRESS WASHINGTON — Move over sweet and salty: Researchers say we have a distinct and basic taste for fat, too. But it's nowhere near as delicious as it sounds. They propose expanding our taste palate to include fat along with sweet, salty, bitter, sour and relative newcomer umami. A research team at Purdue University tested look-alike mixtures with different tastes. More than half of the 28 special tasters could distinguish fatty acids from the other tastes, according to a study published in the journal Chemical Senses. Past research showed fat had a distinct feel in the mouth, but scientists removed texture and smell clues and people could still tell the difference. "The fatty acid part of taste is very unpleasant," study author Richard Mattes, a Purdue nutrition science professor, said Thursday. "I haven't met anybody who likes it alone. You usually get a gag reflex." Stinky cheese has high levels of the fat taste and so does food that goes rancid, Mattes said. Yet we like it because it mixes well and brings out the best of other flavors, just like the bitter in coffee or chocolate, he added. To qualify as a basic taste, a flavor has to have unique chemical signature, have specific receptors in our bodies for the taste, and people have to distinguish it from other tastes. Scientists had found the chemical signature and two specific receptors for fat, but showing that people could distinguish it was the sticky point. Initially Mattes found that people couldn't quite tell fat tastes when given a broad array of flavors. But when just given yucky tastes — bitter, umami, sour — they could find the fat. © 2015 The New York Times Company

Keyword: Chemical Senses (Smell & Taste); Obesity
Link ID: 21217 - Posted: 07.25.2015

Chris Woolston A study that did not find cognitive benefits of musical training for young children triggered a “media firestorm”. Researchers often complain about inaccurate science stories in the popular press, but few air their grievances in a journal. Samuel Mehr, a PhD student at Harvard University in Cambridge, Massachusetts, discussed in a Frontiers in Psychology article1 some examples of media missteps from his own field — the effects of music on cognition. The opinion piece gained widespread attention online. Arseny Khakhalin, a neuroscientist at Bard College in Annandale-on-Hudson, New York, tweeted: Mehr gained first-hand experience of the media as the first author of a 2013 study in PLoS ONE2. The study involved two randomized, controlled trials of a total of 74 four-year-olds. For children who did six weeks of music classes, there was no sign that musical activities improved scores on specific cognitive tests compared to children who did six weeks of art projects or took part in no organized activities. The authors cautioned, however, that the lack of effect of the music classes could have been a result of how they did the studies. The intervention in the trials was brief and not especially intensive — the children mainly sang songs and played with rhythm instruments — and older children might have had a different response than the four-year-olds. There are many possible benefits of musical training, Mehr said in an interview, but finding them was beyond the scope of the study. © 2015 Nature Publishing Group

Keyword: Hearing; Intelligence
Link ID: 21216 - Posted: 07.25.2015

By Christie Wilcox Venomous cone snails have been a gift to biomedical researchers. Over the past 50 years, scientists have isolated compounds from these predatory marine animals that do everything from stop pain to protect cells during a heart attack. Now, researchers have isolated a cone snail compound that does something unexpected: It puts mice to sleep. All of these compounds belong to a group of ion channels modifiers known as conotoxins. In the wild, the snails use these toxins for capturing prey, and typically when researchers inject them into mice, the rodents either have no response or become paralyzed. In the new study, published this month in Toxicon, researchers isolated and sequenced 14 novel peptide toxins from the venom of the cobweb cone, Conus araneosus (pictured above with its dissected venom gland). When they injected five of them into mice, one put the rodents to sleep for several hours, whereas the others had no effect. The team says the discovery expands the range of therapeutic uses for conotoxins, and could lead to drugs to treat sleep disorders. © 2015 American Association for the Advancement of Science

Keyword: Sleep; Neurotoxins
Link ID: 21215 - Posted: 07.25.2015

By Karen Weintraub Can I ever re-pay my sleep debt? (I estimate it at 15 years of poor sleep.) It is unclear whether you can make up a long-term sleep debt, because most studies have looked at the effects of sleep loss and recovery only over a few nights or weeks, said Dr. Matt T. Bianchi, the chief of the division of sleep medicine at Massachusetts General Hospital and an assistant professor of neurology at Harvard Medical School. Simulated driving performance and reaction times are affected by just one sleepless night, research has shown. There’s no doubt that sleeping just four hours a night catches up to people within a few nights, leading to impairments of attention, learning and memory and worse performance in school and at work. And making up for lost sleep over the weekend doesn’t work. Five brief nights quickly add up to a shortfall of 20 hours, but people don’t sleep more than five to 10 extra hours to compensate, Dr. Bianchi said. “The interpretation has been you can’t pay off your sleep debt, you just carry it with you,” though it’s also possible that people don’t sleep an extra 20 hours because they don’t need it, Dr. Bianchi said. He cited research by Jim Horne of Loughborough University in Britain showing that a timely nap of less than 20 minutes can equate to an extra hour of nighttime sleep. Different people need somewhat different amounts of sleep, but anything less than six hours a night is definitely not enough, said Dr. Charles Czeisler, a professor of sleep medicine at Harvard. © 2015 The New York Times Company

Keyword: Sleep
Link ID: 21214 - Posted: 07.25.2015

By Annick Laurent Can you tell a pygmy blue whale from an Antarctic blue whale? If not, you aren’t alone. Marine biologists have had trouble distinguishing these enormous mammals with mottled skin patterns ever since they began studying them—and that has complicated efforts to figure out where they breed and how to best protect them. Now, researchers have caught a break thanks to a pygmy whale named Isabela. Researchers first photographed the whale and collected her DNA in 1998 in the waters off the Galapagos Islands. Then, in 2006, another team photographed and collected samples from a similar looking whale off Chile (both photos above). Now, in a study published online before print in Marine Mammal Science, scientists compared those samples and photographs, and discovered that they both belonged to the same whale. That means Isabela (named after the lead author’s daughter to represent hope for future preservation efforts) migrated a minimum of 5200 km, the longest recorded latitudinal migration made by any Southern Hemisphere blue whale on record. The findings suggest Chile's and the Galapagos’ blue whale aggregations are connected, meaning those feeding in the Gulf of Corcovado off Chile may be breeding in the Tropical Eastern Pacific. Knowing where this species migrates—including its feeding and breeding grounds—can help conservationists and governments better establish marine protected areas, the team says. © 2015 American Association for the Advancement of Science

Keyword: Animal Migration
Link ID: 21213 - Posted: 07.25.2015

Sara Reardon After years of disappointment, clinical-trial results released on 22 July suggest that antibody treatments may produce small improvements in people with Alzheimer’s disease. The drugs — Eli Lilly’s solanezumab and Biogen’s aducanumab — target the amyloid-β protein that accumulates in the brains of people with Alzheimer’s. Many researchers question whether the findings will hold up, given that antibody drugs against amyloid have failed in every previous test against the disease. Details of the results were presented at the Alzheimer's Association International Conference in Washington DC. Lilly, of Indianapolis, Indiana, says that in a trial with 440 participants, solanezumab seemed to slow the cognitive decline of people with mild Alzheimer’s by about 30%. The loss of mental acuity in these patients over 18 months was equivalent to the deterioration that participants with a similar level of Alzheimer's disease in a placebo group experienced in just 12 months. Lilly snatched this small victory from the jaws of defeat. In 2012, the company reported no difference between patients who had taken solanezumab for 18 months and those who had received a placebo. But when the company reanalyzed that trial it found a slight improvement in participants whose symptoms were mild when the trial began. Lilly continued the test for six months and began giving solanezumab to the 440-member control group, whose disease was by then more advanced. © 2015 Nature Publishing Group,

Keyword: Alzheimers; Neuroimmunology
Link ID: 21212 - Posted: 07.23.2015

Jon Hamilton The face of Alzheimer's isn't always old. Sometimes it belongs to someone like Giedre Cohen, who is 37, yet struggles to remember her own name. Until about a year ago, Giedre was a "young, healthy, beautiful" woman just starting her life, says her husband, Tal Cohen, a real estate developer in Los Angeles. Now, he says, "her mind is slowly wasting away." People like Giedre have a rare gene mutation that causes symptoms of Alzheimer's to appear before they turn 60. Until recently, people who inherited this gene had no hope of avoiding dementia and an early death. Now there is a glimmer of hope, thanks to a project called DIAN TU that is allowing them to take part in a study of experimental Alzheimer's drugs. The project also could have a huge payoff for society, says Dr. Randall Bateman, a professor of neurology at Washington University in St. Louis. "It's highly likely," he says, that the first drug able to prevent or delay Alzheimer's will emerge from studies of people genetically destined to get the disease. Giedre Cohen enrolled in the DIAN TU study in 2013, when she still had no symptoms of Alzheimer's, her husband says. Their story began more than a decade earlier. In 2002, Tal Cohen was on a trip to Miami to attend a wedding. He met Giedre, who was born in Lithuania, and the two fell in love. © 2015 NPR

Keyword: Alzheimers
Link ID: 21211 - Posted: 07.23.2015

By Sarah Schwartz Researchers have developed a chemical that transforms into a powerful hormone once inside a rat — but only in the brain, not the body. A protein in rats’ brains turns a chemical nicknamed DHED into the hormone estrogen, scientists report July 22 in Science Translational Medicine. This targeted treatment could provide estrogen to the brain and avoid potentially dangerous side effects in the body, the researchers say. “This is an interesting breakthrough,” says neuroendocrinologist Bruce McEwen of the Rockefeller University in New York City. The idea of treatments that affect the brain but not the body, or the body but not the brain, could be useful in treating a number of conditions, including cancer, he says. But the implications of this study for hormone replacement therapy in women is up for debate, a number of researchers say. In menopausal women or those who have had their ovaries surgically removed, lack of estrogen in the brain can cause symptoms such as hot flashes and sleep disturbances. Taking estrogen can relieve those symptoms but can cause side effects in the rest of the body, including an increased risk of certain cancers. The chemical DHED is nearly identical to natural human estrogen, but it has an extra oxygen atom. A specialized protein found in rodents’ brains recognizes the chemical and chops off the oxygen, turning DHED into estrogen. The body’s other organs lack this protein, so they can’t turn DHED into estrogen, says study author Laszlo Prokai, a chemical biologist at the University of North Texas Health Science Center in Fort Worth. © Society for Science & the Public 2000 - 2015.

Keyword: Hormones & Behavior; Sexual Behavior
Link ID: 21210 - Posted: 07.23.2015

THERE’S more to semen than sperm. In many animals, seminal fluid alters both the bodies and sometimes even the behaviour of females. Human semen, too, triggers changes in the uterus, and might have wider effects on women, aimed at just one goal. “It’s all about maximising the chances of the male reproducing,” says Sarah Robertson of the University of Adelaide in Australia. The effects are most striking in fruit flies: seminal fluid can make the females eat more, lay more eggs and be less receptive to other males. Now a team led by Tracey Chapman at the University of East Anglia in Norwich, UK, has found that male fruit flies selectively alter the chemical make-up of their seminal fluid. In the presence of rivals, the males produce more seminal proteins. “It came as a real surprise,” says Chapman. “It’s a sophisticated response to the social and sexual situation.” Some of their findings were presented at the Society for Molecular Biology and Evolution conference in Vienna, Austria, last week, including their discovery that one of these proteins is a “master regulator” of genes. Females exposed to it show a wide range of changes in gene expression. Chapman thinks this kind of seminal signalling is widespread in the animal world. The semen of people, pigs and mice affects the female reproductive tract, and the question is whether it can also produce behavioural responses in female mammals similar to those seen in fruit flies. © Copyright Reed Business Information Ltd.

Keyword: Sexual Behavior; Evolution
Link ID: 21209 - Posted: 07.23.2015

Jessie Rack If you've ever had hiccups in a quiet room, you know how embarrassing and completely uncontrollable they can feel. What if, instead of the hiccups, your body jerked involuntarily or you blurted out words without meaning to? That's a rough idea of what living with Tourette syndrome can be like. Designers of a new computer program called TicHelper hope that they will be able to help children recognize and control these impulses themselves. People with Tourette's perform repetitive movements or vocalizations called tics. A simple tic might be something like head jerking, eye blinking, or throat clearing, and a complex tic might involve patterns of movement or saying multiple words or phrases. We don't know exactly what causes Tourette's, says Douglas Woods, a psychologist at Texas A&M University. Woods, who is also co-chair of the Tourette Association of America Medical Advisory Board, is one of the minds behind TicHelper. "Sometimes kids will grow out of [Tourette's]," Woods says. But if the wait-and-see approach isn't working, and the tics are interfering with daily life, there are a few treatment options. One option is medication. Woods says there are a few different antipsychotic drugs that are used to manage Tourette syndrome, but they have side effects and don't always work. An alternative to pharmaceutical treatment is behavioral therapy. A form of behavioral therapy called comprehensive behavioral intervention for tics, or CBIT for short, is commonly used. CBIT training teaches people with Tourette's to recognize the onset of a tic and to perform a different behavior when they feel one coming on. © 2015 NPR

Keyword: Tourettes
Link ID: 21208 - Posted: 07.23.2015

By Warren Cornwall The number of U.S. school children placed in special education programs due to autism more than tripled from 2000 to 2010, to nearly 420,000. But a new study argues much of that increase likely came as educators swapped one diagnosis for another. The overall percentage of kids diagnosed with a collection of brain development problems that includes autism remained unchanged, suggesting that children who used to be labeled with conditions such as “intellectual disability” were in fact autistic. “If you asked me, ‘Is there a real increase in the prevalence of autism?’ maybe there is, but probably much lower than the reported magnitude,” says Santhosh Girirajan, a geneticist at Pennsylvania State University (Penn State), University Park. In the new study, Girirajan and colleagues combed through data collected in each state for approximately 6.2 million U.S. school children with disabilities who are enrolled in special education programs. The information is collected each year under the federal Individuals with Disabilities Education Act. Based on his or her diagnosis, each child was assigned to one of 13 broader categories, ranging from autism to physical challenges such as blindness. Between 2000 and 2010, the number of children in the autism category more than tripled from 93,624 in 2000 to 419,647 a decade later. Yet nearly two-thirds of that increase was matched by a decline in the rate at which children were labeled as having an “intellectual disability.” The number of kids in that category fell from 637,270 to 457,478. © 2015 American Association for the Advancement of Science.

Keyword: Autism
Link ID: 21207 - Posted: 07.23.2015

By Sandhya Somashekhar NEW WESTMINSTER, B.C. — Alanna Whitney was a weird kid. She had a strange knack for pronouncing long words. Anchovies on pizza could send her cowering under a table. Her ability to geek out on subjects such as Greek mythology and world religions could be unsettling. She drank liquids obsessively, and in her teens, her extreme water intake landed her in the hospital. Years later, she found a word that explained it all: Autistic. Instead of grieving, she felt a rush of relief. “It was the answer to every question I’d ever had,” she recalled. “It was kind of like a go-ahead to shed all of those things I could or couldn’t do and embrace myself for who I am.” So it came to be that Whitney, 24, was arranging strawberries and store-bought cookies on platters at the Queensborough Community Center for a celebration of “Autistic Pride Day,” her shoulder-length hair dyed mermaid green to match her purse and sandals. A bowl of orange earplugs sat nearby in case any of the guests found the ambient sounds overwhelming. Whitney is part of a growing movement of autistic adults who are finding a sense of community, identity and purpose in a diagnosis that most people greet with dread. These “neurodiversity” activists contend that autism — and other brain afflictions such as dyslexia and attention deficit hyperactivity disorder — ought to be treated not as a scourge to be eradicated but rather as a difference to be understood and accepted.

Keyword: Autism
Link ID: 21206 - Posted: 07.23.2015

By Hanae Armitage Cataracts cloud the eyes of tens of millions of people around the world and nearly 17.2% of Americans over the age of 40. Currently, the only treatment is surgery—lasers or scalpels cut away the molecular grout that builds in the eye as cataracts develop, and surgeons sometimes replace the lens. But now, a team of scientists and ophthalmologists has tested a solution in dogs that may be able to dissolve the cataract right out of the eye’s lens. And the solution is itself a solution: a steroid-based eye drop. Though scientists don’t fully understand how cataracts form, they do know that the “fog” often seen by patients is a glob of broken proteins, stuck together in a malfunctioning clump. When healthy, these proteins, called crystallins, help the eye’s lens keep its structure and transparency. But as humans and animals alike get older, these crystallin proteins start to come unglued and lose their ability to function. Then they clump together and form a sheathlike obstruction in the lens, causing the signature “steamy glass” vision that accompanies cataracts. Coming up with a solution other than surgery has been tough. Scientists have been hunting for years for mutations in crystallin proteins that might offer new insights and pave the way to an alternate therapy. Now, it looks like a team led by University of California (UC), San Diego, molecular biologist Ling Zhao may have done just that. Her team came up with the eye drop idea after finding that children with a genetically inherited form of cataracts shared a mutation that stopped the production of lanosterol, an important steroid in the body. When their parents did not have the same mutation, the adults produced lanosterol and had no cataracts. © 2015 American Association for the Advancement of Science.

Keyword: Vision
Link ID: 21205 - Posted: 07.23.2015

By Andrea Alfano Unexpectedly losing a loved one launched 18-year-old Debra* into an episode of major depression, triggering dangerous delusions that landed her in a hospital. Her doctor immediately started her on an antidepressant and on risperidone (Risperdal), an antipsychotic. In little more than a month, her weight shot up by 15 pounds. “Gaining weight made it even more difficult for me to want to leave my house because I felt self-conscious,” Debra says. In the medical community, antipsychotics are well known to cause significant weight gain. Gains of 20 to 35 pounds or more over the course of a year or two are not unusual. Debra's doctor never warned her, though, leaving her feeling like she was losing herself both mentally and physically. The situation is not uncommon, according to psychiatrist Matthew Rudorfer, chief of the somatic treatments program at the National Institute of Mental Health, who points out that although the U.S. Food and Drug Administration carefully tracks acute side effects such as seizures, it pays less attention to longer-term complications such as weight change. Perhaps taking their cue from the FDA, doctors tend to downplay weight-related risks that accompany many psychiatric drugs, Rudorfer says. But for Debra and many others, these side effects are not trivial. The three types of psychiatric drugs that can seriously affect body weight are reviewed below. According to a 2014 review of eight studies, as many as 55 percent of patients who take modern antipsychotics experience weight gain—a side effect that appears to be caused by a disruption of the chemical signals controlling appetite. Olanzapine (Zyprexa) and clozapine (Clozaril) are the top two offenders; studies have shown that on average these drugs cause patients to gain more than eight pounds in just 10 weeks. These two drugs also bear the highest risk of metabolic syndrome, which encompasses weight gain and other related disorders, including type 2 diabetes, according to a 2011 study of 90 people with schizophrenia. Although most antipsychotics are associated with weight gain, aripiprazole (Abilify) and ziprasidone (Geodon) stand out for their lower risk. © 2015 Scientific American

Keyword: Schizophrenia; Obesity
Link ID: 21204 - Posted: 07.23.2015