Most Recent Links

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 61 - 80 of 20241

by Andy Coghlan Who needs sight to get around when you've got a digital compass in your head? A neuroprosthesis that feeds geomagnetic signals into the brains of blind rats has enabled them to navigate around a maze. The results demonstrate that the rats could rapidly learn to deploy a completely unnatural "sense". It raises the possibility that humans could do the same, potentially opening up new ways to treat blindness, or even to provide healthy people with extra senses. "I'm dreaming that humans can expand their senses through artificial sensors for geomagnetism, ultraviolet, radio waves, ultrasonic waves and so on," says Yuji Ikegaya of the University of Tokyo in Japan, head of the team that installed and tested the 2.5-gram implant. "Ultrasonic and radio-wave sensors may enable the next generation of human-to-human communicationMovie Camera," he says. The neuroprosthesis consists of a geomagnetic compass – a version of the microchip found in smartphones – and two electrodes that fit into the animals' visual cortices, the areas of the brain that process visual information. Whenever the rat positioned its head within 20 degrees either side of north, the electrodes sent pulses of electricity into its right visual cortex. When the rat aligned its head in a southerly direction, the left visual cortex was stimulated. The stimulation allowed blind rats to build up a mental map of their surroundings without any visual cues. During training, blind rats equipped with digital compasses improved at finding food rewards in a five-pronged maze, despite being released from one of three different arms of the maze at random each time. © Copyright Reed Business Information Ltd

Keyword: Vision; Robotics
Link ID: 20757 - Posted: 04.04.2015

Cory Turner To survive, we humans need to be able to do a handful of things: breathe, of course. And drink and eat. Those are obvious. We're going to focus now on a less obvious — but no less vital — human function: learning. Because new research out today in the journal Science sheds light on the very building blocks of learning. Imagine an 11-month-old sitting in a high chair opposite a small stage where you might expect, say, a puppet show. Except this is a lab at Johns Hopkins University. Instead of a puppeteer, a researcher is rolling a red and blue striped ball down a ramp, toward a little wall at the bottom. Even babies seem to know the ball can't go through that wall, though not necessarily because they learned it. It's what some scientists call core knowledge — something, they say, we're born with. "Some pieces of knowledge are so fundamental in guiding regular, everyday interactions with the environment, navigating through space, reaching out and picking up an object, avoiding an oncoming object — those things are so fundamental to survival that they're really selected for by evolution," says Lisa Feigenson, a professor of psychological and brain sciences at Hopkins and one of the researchers behind this study. Which explains why the baby seems genuinely surprised when the ball rolls down the ramp and does go through the wall — thanks to some sleight of hand by the researchers: © 2015 NPR

Keyword: Development of the Brain
Link ID: 20756 - Posted: 04.04.2015

By Matt McFarland The individuals who have founded some of the most success tech companies are decidedly weird. Examine the founder of a truly innovative company and you’ll find a rebel without the usual regard for social customs. This begs the question, why? Why aren’t more “normal” people with refined social graces building tech companies that change the world? Why are only those on the periphery reaching great heights? If you ask tech investor Peter Thiel, the problem is a social environment that’s both powerful and destructive. Only individuals with traits reminiscent of Asperger’s Syndrome, which frees them from an attachment to social conventions, have the strength to create innovative businesses amid a culture that discourages daring entrepreneurship. “Many of the more successful entrepreneurs seem to be suffering from a mild form of Asperger’s where it’s like you’re missing the imitation, socialization gene,” Thiel said Tuesday at George Mason University. “We need to ask what is it about our society where those of us who do not suffer from Asperger’s are at some massive disadvantage because we will be talked out of our interesting, original, creative ideas before they’re even fully formed. Oh that’s a little bit too weird, that’s a little bit too strange and maybe I’ll just go ahead and open the restaurant that I’ve been talking about that everyone else can understand and agree with, or do something extremely safe and conventional.” An individual with Asperger’s Syndrome — a form of autism — has limited social skills, a willingness to obsess and an interest in systems. Those diagnosed with Asperger’s Syndrome tend to be unemployed or underemployed at rates that far exceed the general population. Fitting into the world is difficult.

Keyword: Autism
Link ID: 20755 - Posted: 04.04.2015

Emily Hodgkin As a nation we think we understand autism. Since the first discovery of the condition just over 70 years ago awareness of autism has continued to grow. Despite this, 87 per cent of people affected by autism think the general public has a bad understanding of the condition. Many of the common myths surrounding autism have been debunked - including the perception that people with autism can’t hold a job. But only 15 per cent of adults in the UK with autism are in full-time employment, while 61 per cent of people with autism currently not in employment say they want to work. Research suggests that employers are missing out on abilities that people on the autism spectrum have in greater abundance – such as heightened abilities in pattern recognition and logical reasoning, as well as a greater attention to detail. Mark Lever, chief executive of the National Autistic Society (NAS) said: "It's remarkable that awareness has increased so much since the NAS was set up over 50 years ago, a time when people with the condition were often written off and hidden from society. But, as our supporters frequently tell us and the poll confirms, there is still a long way to go before autism is fully understood and people with the condition are able to participate fully in their community. All too often we still hear stories of families experiencing judgemental attitudes or individuals facing isolation or unemployment due to misunderstandings or myths around autism.” There are around 700,000 autistic people in the UK – more than 1 in a 100. So as it's more common than perhaps expected, what other myths still exist? © independent.co.uk

Keyword: Autism
Link ID: 20754 - Posted: 04.04.2015

By Shereen Lehman (Reuters Health) - Children exposed to tobacco smoke at home are up to three times more likely to have attention deficit hyperactive disorder (ADHD) as unexposed kids, according to a new study from Spain. The association was stronger for kids with one or more hours of secondhand smoke exposure every day, the authors found. And the results held when researchers accounted for parents' mental health and other factors. "We showed a significant and substantial dose-response association between (secondhand smoke) exposure in the home and a higher frequency of global mental problems," the authors write in Tobacco Control, online March 25. According to the Centers for Disease Control and Prevention, two of every five children in the US are exposed to secondhand smoke regularly. Alicia Padron of the University of Miami Miller School of Medicine in Florida and colleagues in Spain analyzed data from the 2011 to 2012 Spanish National Health Interview Survey, in which parents of 2,357 children ages four to 12 reported the amount of time their children were exposed to secondhand smoke every day. The parents also filled out questionnaires designed to evaluate their children's mental health. According to the results, about eight percent of the kids had a probable mental disorder. About 7% of the kids were exposed to secondhand smoke for less than one hour per day, and 4.5% were exposed for an hour or more each day. © 2015 Scientific American,

Keyword: ADHD; Drug Abuse
Link ID: 20753 - Posted: 04.04.2015

By Amy Ellis Nutt and Brady Dennis For people with amyotrophic lateral sclerosis, which attacks the body’s motor neurons and renders a person unable to move, swallow or breathe, the search for an effective treatment has been a crushing disappointment. The only drug available for the disease, approved two decades ago, typically extends life just a few months. Then in the fall, a small California biotech company named Genervon began extolling the benefits of GM604, its new ALS drug. In an early-stage trial with 12 patients, the results were “statistically significant,” “very robust” and “dramatic,” the company said in news releases. Such enthusiastic pronouncements are unusual for such a small trial. In February, Genervon took an even bolder step: It applied to the Food and Drug Administration for “accelerated approval,” which allows promising treatments for serious or life-threatening diseases to bypass costly, large-scale efficacy trials and go directly to market. ALS patients responded by pleading with the FDA, in emotional videos and e-mails, to grant broad access to the experimental drug. Online forums lit up, and a Change.org petition calling for rapid approval attracted more than a half-million signatures. “Why would anyone oppose it?” asked ALS patient David Huntley in a letter read aloud in the past week at a rally on Capitol Hill. Huntley, a former triathlete, can no longer speak or travel, so his wife, Linda Clark, flew from San Diego to speak for him.

Keyword: ALS-Lou Gehrig's Disease
Link ID: 20752 - Posted: 04.04.2015

Hannah Devlin, science correspondent They may stop short of singing The Bells of Saint Mary’s, as demonstrated by the mouse organ in Monty Python, but scientists have discovered that male mice woo females with ultrasonic songs. The study shows for the first time that mouse song varies depending on the context and that male mice have a specific style of vocalisation reserved for when they smell a female in the vicinity. In turn, females appear to be more interested in this specific style of serenade than other types of squeak that male mice produce. “It was surprising to me how much change occurs to these songs in different social contexts, when the songs are thought to be innate,” said Erich Jarvis, who led the work at Duke University in North Carolina. “It is clear that the mouse’s ability to vocalise is a lot more limited than a songbird’s or human’s, and yet it’s remarkable that we can find these differences in song complexity.” The findings place mice in an elite group of animal vocalisers, that was once thought to be limited to birds, whales, and some primates. Mouse song is too high-pitched for the human ear to detect, but when listened to at a lower frequency, it sounds somewhere between birdsong and the noise of clean glass being scrubbed. The Duke University team recorded the male mice when they were roaming around their cages, when they were exposed to the smell of female urine and when they were placed in the presence of a female mouse. They found that males sing louder and more complex songs when they smell a female but don’t see her. By comparison, the songs were longer and simpler when they were directly addressing their potential mate, according to the findings published in Frontiers of Behavioural Neuroscience. © 2015 Guardian News and Media Limited

Keyword: Hearing; Sexual Behavior
Link ID: 20751 - Posted: 04.02.2015

Davide Castelvecchi Boots rigged with a simple spring-and-ratchet mechanism are the first devices that do not require power aids such as batteries to make walking more energy efficient. People walking in the boots expend 7% less energy than they do walking in normal shoes, the devices’ inventors report on 1 April in Nature1. That may not sound like much, but the mechanics of the human body have been shaped by millions of years of evolution, and some experts had doubted that there was room for further improvement in human locomotion, short of skating along on wheels. “It is the first paper of which I’m aware that demonstrates that a passive system can reduce energy expenditure during walking,” says Michael Goldfarb, a mechanical engineer at Vanderbilt University in Nashville, Tennessee, who develops exoskeletons for aiding people with disabilities. As early as the 1890s, inventors tried to boost the efficiency of walking by using devices such as rubber bands, says study co-author Gregory Sawicki, a biomedical engineer and locomotion physiologist at North Carolina State University in Raleigh. More recently, engineers have built unpowered exoskeletons that enable people to do tasks such as lifting heavier weights — but do not cut down the energy they expend. (Biomechanists still debate whether the running ‘blades’ made famous by South African sprinter Oscar Pistorius are more energetically efficient than human feet.2, 3) For their device, Sawicki and his colleagues built a mechanism that parallels human physiology. When a person swings a leg forward to walk, elastic energy is stored mostly in the Achilles tendon of their standing leg. That energy is released when the standing leg's foot pushes into the ground and the heel lifts off, propelling the body forwards. “There is basically a catapult in our ankle,” Sawicki says. © 2015 Nature Publishing Group

Keyword: Robotics
Link ID: 20750 - Posted: 04.02.2015

By Catherine Saint Louis Joni Mitchell, 71, was taken to a hospital in Los Angeles on Tuesday after she was found unconscious at her Los Angeles home. In recent years, the singer has complained of a number of health problems, including one particularly unusual ailment: Morgellons disease. People who believe they have the condition report lesions that don’t heal, “fibers” extruding from their skin and uncomfortable sensations like pins-and-needles tingling or stinging. Sufferers may also report fatigue and problems with short-term memory and concentration. But Morgellons is not a medically accepted diagnosis. Scientists have struggled for nearly a decade to find a cause and have come up mostly empty-handed. Researchers at the Centers for Disease Control and Prevention studied 115 people who said they had the condition. In a report published in 2012, they said they were unable to identify an infectious source for the patients’ “unexplained dermopathy.” There was no evidence of an environmental link, and the “fibers” from patients resembled those from clothing that had gotten trapped in a scab or crusty skin. The investigators cast doubt on Morgellons as a distinct condition and said that it might be something doctors were already familiar with: delusional infestation, a psychiatric condition characterized by an unshakable but erroneous belief that one’s skin is infested with bugs or parasites. Drug use can contribute to such delusions, and the investigators noted evidence of drug use — prescription or illicit — in half of the people they examined. Of the 36 participants who completed neuropsychological testing, 11 percent had high scores for depression, and 63 percent, unsurprisingly, were preoccupied with health issues. © 2015 The New York Times Company

Keyword: Pain & Touch
Link ID: 20749 - Posted: 04.02.2015

​​The commonly-prescribed drug acetaminophen or paracetamol does nothing to help low back pain, and may affect the liver when used regularly, a large new international study has confirmed. Reporting in today's issue of the British Medical Journal researchers also say the benefits of the drug are unlikely to be worth the risks when it comes to treating osteoarthritis in the hip or knee. "Paracetamol has been widely recommended as being a safe medication, but what we are saying now is that paracetamol doesn't bring any benefit for patients with back pain, and it brings only trivial benefits to those with osteoarthritis," Gustavo Machado of The George Institute for Global Health and the University of Sydney, tells the Australian Broadcasting Corporation. "In addition to that it might bring harm to those patients." Most international clinical guidelines recommend acetaminophen as the "first choice" of treatment for low back pain and osteoarthritis of the hip and knee. However, despite a trial last year questioning the use of acetaminophen to treat low back pain, there has never been a systematic review of the evidence for this. Machado and colleagues analyzed three clinical trials and confirmed that acetaminophen is no better than placebo at treating low back pain. An analysis of 10 other clinical trials by the researchers quantified for the first time the effect acetaminophen has on reducing pain from osteoarthritis in the knee and hip. "We concluded that it is too small to be clinically worthwhile," says Machado. He says the effects of acetaminophen on the human body are not well understood and just because it can stop headaches, it doesn't mean the drug will work in all circumstances. ©2015 CBC/Radio-Canada.

Keyword: Pain & Touch
Link ID: 20748 - Posted: 04.02.2015

Alison Abbott Historian of psychology Douwe Draaisma knows well how to weave science, history and literature into irresistible tales. Forgetting, his latest collection of essays around the theme of memory, is — like his successful Nostalgia Factory (Yale University Press, 2013) — hard to put down. His vivid tour through the history of memory-repression theories brings home how dangerous and wrong, yet persistent, were the ideas of Sigmund Freud and his intellectual heirs. Freud thought that traumatic memories and shameful thoughts could be driven from the consciousness, but not forgotten. They would simmer in the unconscious, influencing behaviour. He maintained that forcing them out with psychoanalysis, and confronting patients with them, would be curative. Draaisma relates the case of an 18-year-old whom Freud dubbed Dora, diagnosed in 1900 with 'hysteria'. Dora's family refused to believe that the husband of her father's mistress had made sexual advances to her. Among other absurdities, Freud told Dora that her nervous cough reflected her repressed desire to fellate the man. Dora broke off the therapy, which Freud saw as proof of his theory. He thought that patients will naturally resist reawakening painful thoughts. What Dora did not buy, plenty of others did. Psychoanalysis boomed, becoming lucrative. Its principles were adopted in the 1990s by an unlikely alliance of lawyers and some feminists, who argued that repressed memories of childhood abuse could be recovered with techniques such as hypnosis, and used as evidence in court. Many judges went along with it; the rush of claims cast a shadow over genuine cases of abuse, Draaisma points out. We now know from studies of post-traumatic stress disorder that traumatic memories are impossible to repress. They flood into the conscious mind in horrifying flashbacks. © 2015 Macmillan Publishers Limited

Keyword: Learning & Memory
Link ID: 20747 - Posted: 04.02.2015

Helen Shen An ambitious plan is afoot to build the world’s largest public catalogue of neuronal structures. The BigNeuron project, announced on 31 March by the Allen Institute for Brain Science in Seattle, Washington, is designed to help researchers to simulate and understand the human brain. The project might also push neuroscientists to wrestle with fundamental — sometimes even emotional — questions about how to classify neurons. It is the era of the mega-scale brain initiative: Europe’s Human Brain Project aims to model the human brain in a supercomputer, and the US BRAIN Initiative hopes to unravel how networks of neurons work together to produce thoughts and actions. Standing in the way of these projects is a surprising limitation. “We still don’t know how many classes of neurons are in the brain,” says neuroscientist Rafael Yuste at Columbia University in New York City. BigNeuron aims to generate detailed descriptions of tens of thousands of individual neurons from various species, including fruit flies, zebrafish, mice and humans, and to suggest the best computer algorithms for extracting the finely branched shapes of these cells from microscopy data — a difficult and error-prone process. Getting the details of the shapes right is crucial to accurately modelling the behaviour of neurons: their geometry helps to determine how they process and transmit information through electrical and chemical signals. © 2015 Nature Publishing Group

Keyword: Brain imaging
Link ID: 20746 - Posted: 04.01.2015

By Virginia Morell Rats and mice in pain make facial expressions similar to those in humans—so similar, in fact, that a few years ago researchers developed rodent “grimace scales,” which help them assess an animal’s level of pain simply by looking at its face. But scientists have questioned whether these expressions convey anything to other rodents, or if they are simply physiological reactions devoid of meaning. Now, researchers report that other rats do pay attention to the emotional expressions of their fellows, leaving an area when they see a rat that’s suffering. “It’s a finding we thought might be true, and are glad that someone figured out how to do an experiment that shows it,” says Jeffrey Mogil, a neuroscientist at McGill University in Montreal, Canada. Mogil’s lab developed pain grimace scales for rats and mice in 2006, and it discovered that mice experience pain when they see a familiar mouse suffering—a psychological phenomenon known as emotional contagion. According to Mogil, a rodent in pain expresses its anguish through narrowed eyes, flattened ears, and a swollen nose and cheeks. Because people can read these visual cues and gauge the intensity of the animal’s pain, Mogil has long thought that other rats could do so as well. In Japan, Satoshi Nakashima, a social cognition psychologist at NTT Communication Science Laboratories in Kanagawa, thought the same thing. And, knowing that other scientists had recently shown that mice can tell the difference between paintings by Picasso and Renoir, he decided to see if rodents could also discriminate between photographs of their fellows’ expressions. He designed the current experiments as part of his doctoral research. © 2015 American Association for the Advancement of Science

Keyword: Pain & Touch; Emotions
Link ID: 20745 - Posted: 04.01.2015

Mo Costandi During the 1960s, neuroscientists Ronald Melzack and Patrick Wall proposed an influential new theory of pain. At the time, researchers were struggling to explain the phenomenon. Some believed that specific nerve fibres carry pain signals up into the brain, while others argued that the pain signals are transmitted by intense firing of non-specific fibres. Neither idea was entirely satisfactory, because they could not explain why spinal surgery often fails to abolish pain, why gentle touch and other innocuous stimuli can sometimes cause excruciating pain, or why intensely painful stimuli are not always experienced as such. Melzack and Wall’s Gate Control Theory stated that inhibitory neurons in the spinal cord control the relay of pain signals into the brain. Despite having some holes in it, the theory provided a revolutionary new framework for understanding the neural basis of pain, and ushered in the modern era of pain research. Now, almost exactly 50 years after the publication of Melzack and Wall’s theory, European researchers provide direct evidence of gatekeeper cells that control the flow of pain and itch signals from the spinal cord to the brain. The experience that we call “pain” is an extremely complex one that often involves emotional aspects. Researchers therefore distinguish it from nociception, the process by which the nervous system detects noxious stimuli. Nociception is mediated by primary sensory neurons, whose cell bodies are clumped together in the dorsal root ganglia that run alongside the spinal cord. Each has a single fibre that splits in two not far from the cell body, sending one branch out to the skin surface and the other into the spinal cord. © 2015 Guardian News and Media Limited

Keyword: Pain & Touch; Emotions
Link ID: 20744 - Posted: 04.01.2015

By LAWRENCE K. ALTMAN, M.D WASHINGTON — Even before Ronald Reagan became the oldest elected president, his mental state was a political issue. His adversaries often suggested his penchant for contradictory statements, forgetting names and seeming absent-mindedness could be linked to dementia. In 1980, Mr. Reagan told me that he would resign the presidency if White House doctors found him mentally unfit. Years later, those doctors and key aides told me they had not detected any changes in his mental abilities while in office. Now a clever new analysis has found that during his two terms in office, subtle changes in Mr. Reagan’s speaking patterns linked to the onset of dementia were apparent years before doctors diagnosed his Alzheimer’s disease in 1994. The findings, published in The Journal of Alzheimer’s Disease by researchers at Arizona State University, do not prove that Mr. Reagan exhibited signs of dementia that would have adversely affected his judgment and ability to make decisions in office. But the research does suggest that alterations in speech one day might be used to predict development of Alzheimer’s and other neurological conditions years before symptoms are clinically perceptible. Detection of dementia at the earliest stages has become a high priority. Many experts now believe that yet-to-be-developed treatments are likely to be effective at preventing or slowing progression of dementia only if it is found before it significantly damages the brain. The “highly innovative” methods used by the researchers may eventually help “to further clarify the extent to which spoken-word changes are associated with normal aging or predictive of subsequent progression to the clinical stages of Alzheimer’s disease,” said Dr. Eric Reiman, the director of the Banner Alzheimer’s Institute in Phoenix, who was not involved in the new study. © 2015 The New York Times Company

Keyword: Alzheimers; Language
Link ID: 20743 - Posted: 04.01.2015

Scientists have found that a compound originally developed as a cancer therapy potentially could be used to treat Alzheimer’s disease. The team demonstrated that the drug, saracatinib, restores memory loss and reverses brain problems in mouse models of Alzheimer’s, and now the researchers are testing saracatinib’s effectiveness in humans. The study was funded by the National Institutes of Health as part of an innovative crowdsourcing initiative to repurpose experimental drugs. Researchers from the Yale University School of Medicine, New Haven, Connecticut, conducted the animal study, published for early view on March 21 in the Annals of Neurology External Web Site Policy, with support from the National Center for Advancing Translational Sciences (NCATS) through its Discovering New Therapeutic Uses for Existing Molecules (New Therapeutic Uses) program. Launched in May 2012, this program matches scientists with a selection of pharmaceutical industry assets that have undergone significant research and development by industry, including safety testing in humans, to test potential ideas for new therapeutic uses. Alzheimer’s disease is the most common form of dementia, a group of disorders that cause progressive loss of memory and other mental processes. An estimated 5 million Americans have Alzheimer’s disease, which causes clumps of amyloid beta protein to build up in the brain, and these protein clusters damage and ultimately kill brain cells (neurons). Alzheimer’s disease also leads to loss of synapses, which are the spaces between neurons through which the cells talk to each other and form memories. Current Alzheimer’s drug therapies can only ease symptoms without stopping disease progression. New treatments are needed that can halt the condition by targeting its underlying mechanisms.

Keyword: Alzheimers
Link ID: 20742 - Posted: 04.01.2015

Sara Reardon A new study finds that children's cognitive skills are linked to family income. The stress of growing up poor can hurt a child’s brain development starting before birth, research suggests — and even very small differences in income can have major effects on the brain. Researchers have long suspected that children’s behaviour and cognitive abilities are linked to their socioeconomic status, particularly for those who are very poor. The reasons have never been clear, although stressful home environments, poor nutrition, exposure to industrial chemicals such as lead and lack of access to good education are often cited as possible factors. In the largest study of its kind, published on 30 March in Nature Neuroscience1, a team led by neuroscientists Kimberly Noble from Columbia University in New York City and Elizabeth Sowell from Children's Hospital Los Angeles, California, looked into the biological underpinnings of these effects. They imaged the brains of 1,099 children, adolescents and young adults in several US cities. Because people with lower incomes in the United States are more likely to be from minority ethnic groups, the team mapped each child’s genetic ancestry and then adjusted the calculations so that the effects of poverty would not be skewed by the small differences in brain structure between ethnic groups. The brains of children from the lowest income bracket — less than US$25,000 — had up to 6% less surface area than did those of children from families making more than US$150,000, the researchers found. In children from the poorest families, income disparities of a few thousand dollars were associated with major differences in brain structure, particularly in areas associated with language and decision-making skills. Children's scores on tests measuring cognitive skills, such as reading and memory ability, also declined with parental income. © 2015 Nature Publishing Group,

Keyword: Development of the Brain; Stress
Link ID: 20741 - Posted: 03.31.2015

By Anna Azvolinsky Differences in male and female rodent sexual behaviors are programmed during brain development, but how exactly this occurs is not clear. In the preoptic area (POA) of the brain—a region necessary for male sex behavior—the female phenotype results from repression of male-linked genes by DNA methylation, according to a study published today (March 30) in Nature Neuroscience. There is very little known about how the brain is masculinized—and even less about how it is feminized—even though the question has been studied for more than 50 years, said Bridget Nugent, study author and now a postdoctoral fellow at the University of Pennsylvania. These sex differences in the brain are programmed toward the end of fetal development, through to one week after birth in rodents. In males, testicular hormones drive masculinization of the brain; this was thought to occur by direct induction of gene expression by hormone-associated transcription factors. Because a feminized brain occurred in the absence of ovarian hormone signals, most researchers assumed that the female brain and behavior was a sort of default state, programmed during development when no male hormones are present. But the downstream mechanisms of how hormones can modify gene expression were not previously known. “This study reveals that DNA methylation plays an important role in regulating sexual differentiation,” said Nirao Shah, who also studies the neural basis for sex-specific behaviors at the University of California, San Francisco, but was not involved with the work. © 1986-2015 The Scientist

Keyword: Sexual Behavior; Epigenetics
Link ID: 20740 - Posted: 03.31.2015

By Maggie Fox and Jane Derenowski A new strain of the polio-like EV-D68 may be causing the rare and mystifying cases of muscle weakness that's affected more than 100 kids across the United States, researchers reported Monday. They say they've found the strongest evidence yet that the virus caused the polio-like syndrome, but they also say it appears to be rare and might have to do with the genetic makeup of the patients. No other germ appears to be responsible, the team reports in the journal Lancet Infectious Diseases. But because most kids were tested many days after they first got sick, it may be impossible to ever know for sure. The body will have cleared the virus itself by then, said Dr. Charles Chiu of the University of California San Francisco, who helped conduct the study. "This is a virus that causes the common cold," Chiu told NBC News. "Parents don't bring their kids in until they are really sick. By that time, typically, the viral levels may be very, very low or undetectable." "Every single virus that we found in the children corresponded to new strain of the virus, called B-1." Enterovirus D68 (EV-D68) is one of about 100 different enteroviruses that infect people. They include polio but also a range of viruses that cause cold-like symptoms. Polio's the only one that is vaccinated against; before widespread vaccination it crippled 35,000 people a year in the United States.

Keyword: Movement Disorders
Link ID: 20739 - Posted: 03.31.2015

By Lawrence Berger A cognitive scientist and a German philosopher walk into the woods and come upon a tree in bloom: What does each one see? And why does it matter? While that may sound like the set-up to a joke making the rounds at a philosophy conference, I pose it here sincerely, as a way to explore the implications of two distinct strains of thought — that of cognitive science and that of phenomenology, in particular, the thought of Martin Heidegger, who offers a most compelling vision of the ultimate significance of our being here, and what it means to be fully human. When we feel that someone is really listening to us, we feel more alive, we feel our true selves coming to the surface — this is the sense in which worldly presence matters. It can be argued that cognitive scientists tend to ignore the importance of what many consider to be essential features of human existence, preferring to see us as information processors rather than full-blooded human beings immersed in worlds of significance. In general, their intent is to explain human activity and life as we experience it on the basis of physical and physiological processes, the implicit assumption being that this is the domain of what is ultimately real. Since virtually everything that matters to us as human beings can be traced back to life as it is experienced, such thinking is bound to be unsettling. For instance, an article in The Times last year by Michael S. A. Graziano, a professor of psychology and neuroscience at Princeton, about whether we humans are “really conscious,” argued, among other things, that “we don’t actually have inner feelings in the way most of us think we do.” © 2015 The New York Times Company

Keyword: Attention; Consciousness
Link ID: 20738 - Posted: 03.31.2015