Links for Keyword: Emotions

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 21 - 40 of 820

By NATALIE ANGIER The “Iliad” may be a giant of Western literature, yet its plot hinges on a human impulse normally thought petty: spite. Achilles holds a festering grudge against Agamemnon (“He cheated me, wronged me ... He can go to hell...”) turning down gifts, homage, even the return of his stolen consort Briseis just to prolong the king’s suffering. Now, after decades of focusing on such staples of bad behavior as aggressiveness, selfishness, narcissism and greed, scientists have turned their attention to the subtler and often unsettling theme of spite — the urge to punish, hurt, humiliate or harass another, even when one gains no obvious benefit and may well pay a cost. Psychologists are exploring spitefulness in its customary role as a negative trait, a lapse that should be embarrassing but is often sublimated as righteousness, as when you take your own sour time pulling out of a parking space because you notice another car is waiting for it and you’ll show that vulture who’s boss here, even though you’re wasting your own time, too. Evolutionary theorists, by contrast, are studying what might be viewed as the brighter side of spite, and the role it may have played in the origin of admirable traits like a cooperative spirit and a sense of fair play. The new research on spite transcends older notions that we are savage, selfish brutes at heart, as well as more recent suggestions that humans are inherently affiliative creatures yearning to love and connect. Instead, it concludes that vice and virtue, like the two sides of a V, may be inextricably linked. “Spitefulness is such an intrinsically interesting subject, and it fits with so many people’s everyday experience, that I was surprised to see how little mention there was of it in the psychology literature,” said David K. Marcus, a psychologist at Washington State University. At the same time, he said, “I was thrilled to find something that people haven’t researched to exhaustion.” © 2014 The New York Times Company

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 19436 - Posted: 04.01.2014

by Meghan Rosen Human faces just got a lot more emotional. People can broadcast more than three times as many different feelings on their faces as scientists once suspected. For years, scientists have thought that people could convey only happiness, surprise, sadness, anger, fear and disgust. “I thought it was very odd to have only one positive emotion,” says cognitive scientist Aleix Martinez of Ohio State University in Columbus. So he and colleagues came up with 16 combined ones, such as “happily disgusted” and “happily surprised.” Then the researchers asked volunteers to imagine situations that would provoke these emotions, such as listening to a gross joke, or getting unexpected good news. When the team compared pictures of the volunteers making different faces and analyzed every eyebrow wrinkle, mouth stretch and tightened chin, “what we found was beyond belief,” Martinez says. For each compound emotion, almost everyone used the same facial muscles, the team reports March 31 in the Proceedings of the National Academy of Sciences. Martinez’s team’s findings could one day help computer engineers improve facial recognition software and help scientists better understand emotion-perception disorders such as schizophrenia. Citations S Du, Y. Tao and A. M. Martinez Compound facial expressions of emotion. Proceedings of the National Academy of Sciences. Published online March 30, 2014. Doi: 10.1073/pnas.1322355111. © Society for Science & the Public 2000 - 2013

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 19430 - Posted: 04.01.2014

By Helen Briggs BBC News When it comes to detecting lies, you should trust your instinct, research suggests. We are better at identifying liars when we rely on initial responses rather than thinking about it, say psychologists. Generally we are poor at spotting liars - managing only slightly better than flipping a coin. But our success rate rises when we harness the unconscious mind, according to a report in Psychological Science. "What interested us about the unconscious mind is that it just might really be the seat of where accurate lie detection lives," said Dr Leanne ten Brinke of the University of California, Berkeley. "So if our ability to detect lies is not conscious - we simply can't do this when we're thinking hard about it - then maybe it lives somewhere else, and so we thought one possible explanation was the unconscious mind." When trying to find out if someone is lying, most people rely on cues like someone averting their gaze or appearing nervous. However, research suggests this is not accurate - people perform at only about 50% accuracy in traditional lie detection tasks. Psychologists at the University of California were puzzled by this, as some primates, such as chimps, are able to detect deceit - and evolutionary theory supposes that it maximises survival and reproductive success. Dr Ten Brinke and colleagues devised experiments to test the ability of the unconscious mind to spot a liar, to see if they could do better than the conscious mind. BBC © 2014

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 19420 - Posted: 03.29.2014

by Erika Engelhaupt What gets us hot can be so revealing. For me, the slightest anxiety or excitement can trigger a warm spread across my face. I can feel the blood rushing up my neck and into the thousands of tiny capillaries across my cheeks. I’ve worn scarves or turtlenecks to job interviews, weather be damned, to keep my burning red neck from betraying my nerves. And the opposite can be true. Have you ever seen someone truly blanch? Given a real fright, the blood can literally drain from a person’s face, leaving a white mask. This all happens thanks to the autonomic nervous system, the fight-or-flight control system. Faced with danger, it tells blood vessels to pinch off the flow to the face and extremities, sending more blood to the muscles and body core so you’ll be pumped up for either the flight or the fight. Heat-sensing cameras can pick all this up, and in way more detail than my scarf could hide. Our nervous systems are constantly chugging away, largely out of our conscious control, tweaking our blood flow for every emotion. Just think of all the tiny wafts of heat flowing across your face as you negotiate with your boss, or talk to your lover. Feeling a bit anxious? Guilty? Stressed? Sexually aroused, perhaps? There’s a researcher out there with a thermal camera that can detect each of those. Even post-traumatic stress disorder may show up in your face’s heat map. In a pilot study of bank tellers who have been robbed, a team of researchers in Italy reports in the April 25 Neuroscience that tellers with mild PTSD have amped-up fear responses that show up in their facial heat signature. © Society for Science & the Public 2000 - 2013.

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 19415 - Posted: 03.27.2014

By RICHARD A. FRIEDMAN FEELING down? Smile. Cheer up. Put on a happy face. No doubt you’ve dismissed these bromides from friends and loved ones because everyone knows that you can’t feel better just by aping a happy look. Or perhaps you can. New research suggests that it is possible to treat depression by paralyzing key facial muscles with Botox, which prevents patients from frowning and having unhappy-looking faces. In a study forthcoming in the Journal of Psychiatric Research, Eric Finzi, a cosmetic dermatologist, and Norman Rosenthal, a professor of psychiatry at Georgetown Medical School, randomly assigned a group of 74 patients with major depression to receive either Botox or saline injections in the forehead muscles whose contraction makes it possible to frown. Six weeks after the injection, 52 percent of the subjects who got Botox showed relief from depression, compared with only 15 percent of those who received the saline placebo. (You might think that patients would easily be able to tell whether they got the placebo or Botox. Actually, it wasn’t so obvious: Only about half of the subjects getting Botox guessed correctly. More important, knowing which treatment was received had no significant effect on treatment response.) Other studies over the past several years have found similar effects of Botox on mood. Michael Lewis at Cardiff University reported that nondepressed patients at a cosmetic dermatology clinic receiving Botox injection above the eyes frowned less and felt better than those who did not receive this injection. And M. Axel Wollmer at the University of Basel found that Botox injection was superior to a placebo in a group of depressed patients. © 2014 The New York Times Company

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 19410 - Posted: 03.26.2014

By FLORENCE WILLIAMS So there’s this baby who has swallowed a .22-caliber bullet. The mother rushes into a drugstore, crying, “What shall I do?” “Give him a bottle of castor oil,” replies the druggist, “but don’t point him at anybody.” Whether you find this joke amusing depends on many more variables than you probably ever realized. It depends on a common cultural understanding of the technical properties of castor oil. It depends, as many funny jokes do and as any fourth grader can attest, on our own squeamishness about bodily functions. Getting less obvious, your sense of humor can also depend on your age, your gender, your I.Q., your political inclinations, how extroverted you are and the health of your dopamine reward circuit. If you think all this analysis sounds a bit, well, unfunny, E. B. White would back you up. He once wrote that picking apart jokes is like dissecting frogs: Few people are interested, and the subject always dies in the end. Fortunately, the cognitive neuroscientist Scott Weems isn’t afraid of being unfunny. Humor is worthy of serious academic study, he argues in his book, “Ha! The Science of When We Laugh and Why,” (Read an excerpt.) because it yields insights into how our brains process a complex world and how that, in turn, makes us who we are. Though animals laugh, humans spend more time laughing than exhibiting any other emotion. But what gives some people a better sense of humor than others? Not surprisingly, extroverts tend to laugh more and produce more jokes; yet in tests measuring the ability to write cartoon captions, people who were more neurotic, assertive, manipulative and dogmatic were actually funnier. As the old saw holds, many of the best comics really are miserable. © 2014 The New York Times Company

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 19373 - Posted: 03.18.2014

By Pippa Stephens Health reporter, BBC News People are less likely to yawn when others do as they get older, a study has found. Contagious yawning is linked more closely to a person's age than their ability to empathise, as previously thought, US-based scientists said. It also showed a stronger link to age than tiredness or energy levels. Researchers are now looking at whether the ability to catch yawns from other people is inherited, with the hope of helping treat mental health disorders. Autism and schizophrenia sufferers are reportedly less able to catch yawns, researchers said, so understanding the genes that might code for contagious yawning could illuminate new pathways for treatment. In the study, published in the journal Plos One, 328 participants were shown a three-minute video showing other people yawning. Each subject had to click a button every time they yawned. Levels of tiredness Overall, 68% of the participants yawned. Of those, 82% of people aged under 25 yawned, compared with 60% of people aged between 25 and 49, and 41% of people aged over 50. Dr Elizabeth Cirulli, assistant professor of medicine at Duke University in Durham, North Carolina, led the study. She said: "This is the first study to look at a whole bunch of factors. It is the largest study, in terms of the number of people involved, to date." Dr Cirulli said she did not know why contagious yawning decreased with age. BBC © 2014

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 14: Biological Rhythms, Sleep, and Dreaming
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 10: Biological Rhythms and Sleep
Link ID: 19364 - Posted: 03.15.2014

By NICHOLAS BAKALAR Angry enough to have a heart attack? It might actually happen. A new analysis has found that outbursts of anger can significantly increase the risk for irregular heart rhythms, angina, strokes and heart attacks. Researchers combined data from nine studies of anger outbursts among patients who had had heart attacks, strokes and related problems. Most of the studies used a widely accepted anger assessment scale; one depended on a questionnaire administered to patients. They found that in the two hours after an outburst of anger, the relative risk of angina and heart attack increased by nearly five times, while the risk of ischemic stroke and cardiac arrhythmia increased by more than three times. The findings appeared in The European Heart Journal. The researchers stressed that the actual likelihood of having an anger-induced heart attack remains small. Still, for people with other risks for heart disease, any increase in risk is potentially dangerous. The senior author, Dr. Murray A. Mittleman, an associate professor of medicine at Harvard, said that little is known about ways to prevent anger from causing heart problems. “Are there specific behavioral interventions that would be effective? Medicines?” he asked. “There have been proposals for both,” he added, “but we need more and better research.” © 2014 The New York Times Company

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 19363 - Posted: 03.15.2014

by Bruce Bower Chimpanzees possess a flexible, humanlike sensitivity to the mental states of others, even strangers from another species, researchers suggest March 11 in the Proceedings of the Royal Society B. Empathy’s roots go back at least to the common ancestor of humans and chimps, they say. Psychologist Matthew Campbell and biologist Frans de Waal, both of Emory University in Atlanta, treated chimps’ tendency to yawn when viewing videotapes of others yawning as a sign of spontaneous empathy. Their research follows other scientists’ observations that young chimps mimic scientists’ yawns (SN Online: 10/16/13). Nineteen chimps living in an outdoor research facility yawned when they saw the same action from chimps that they lived with, researchers and staff they had seen before and people who were new to them. Unfamiliar chimps and baboons failed to elicit contagious yawning. As in the wild, unfamiliar chimps were probably viewed as threats. Chimps in the study hadn’t seen baboons before. Having socially connected with facility workers, chimps reacted empathically to human strangers who yawned, the researchers propose. Imitating others’ facial expressions represents a rapid way to forge empathic ties, Campbell says. His research didn’t test whether chimps spend a lot of time trying to read others’ thoughts and feelings, a more complex type of empathy. © Society for Science & the Public 2000 - 2013.

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 19354 - Posted: 03.12.2014

by Hal Hodson WHETHER striding ahead with pride or slouching sullenly, we all broadcast our emotions through body language. Now a computer has learned to interpret those unspoken cues as well as you or I. Antonio Camurri of the University of Genoa in Italy and colleagues have built a system which uses the depth-sensing, motion-capture camera in Microsoft's Kinect to determine the emotion conveyed by a person's body movements. Using computers to capture emotions has been done before, but typically focuses on facial analysis or voice recording. Reading someone's emotional state from the way they walk across a room or their posture as they sit at a desk means they don't have to speak or look into a camera. "It's a nice achievement," says Frank Pollick, professor of psychology at the University of Glasgow, UK. "Being able to use the Kinect for this is really useful." The system uses the Kinect camera to build a stick figure representation of a person that includes information on how their head, torso, hands and shoulders are moving. Software looks for body positions and movements widely recognised in psychology as indicative of certain emotional states. For example, if a person's head is bowed and their shoulders are drooping, that might indicate sadness or fear. Adding in the speed of movement – slow indicates sadness, while fast indicates fear – allows the software to determine how someone is feeling. In tests, the system correctly identified emotions in the stick figures 61.3 per cent of the time, compared with a 61.9 per cent success rate for 60 human volunteers (arXiv.org/1402.5047). Camurri is using the system to build games that teach children with autism to recognise and express emotions through full-body movements. Understanding how another person feels can be difficult for people with autism, and recognising fear is more difficult than happiness. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 19334 - Posted: 03.08.2014

Clara Moskowitz When mathematicians describe equations as beautiful, they are not lying. Brain scans show that their minds respond to beautiful equations in the same way other people respond to great paintings or masterful music. The finding could bring neuroscientists closer to understanding the neural basis of beauty, a concept that is surprisingly hard to define. In the study, researchers led by Semir Zeki of University College London asked 16 mathematicians to rate 60 equations on a scale ranging from "ugly" to "beautiful." Two weeks later, the mathematicians viewed the same equations and rated them again while lying inside a functional magnetic resonance imaging (fMRI) scanner. The scientists found that the more beautiful an equation was to the mathematician, the more activity his or her brain showed in an area called the A1 field of the medial orbitofrontal cortex. The orbitofrontal cortex is associated with emotion, and this particular region of it has shown in previous tests to be correlated with emotional responses to visual and musical beauty. The researchers wondered whether the trend would extend to mathematical beauty, which "has a much deeper intellectual source than visual or musical beauty, which are more 'sensible' and perceptually based," they wrote in a paper reporting their results published on 13 February in Frontiers of Human Neuroscience. Investigating mathematical beauty allowed the researchers to test the role of culture and learning in aesthetic appreciation. The scientists hypothesized that while people with no musical or artistic training can still appreciate Beethoven’s and Michelangelo's works, only those who understand the meaning behind certain mathematical formulas would find them beautiful. © 2014 Nature Publishing Group,

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 19327 - Posted: 03.06.2014

By LISA FELDMAN BARRETT CAN you detect someone’s emotional state just by looking at his face? It sure seems like it. In everyday life, you can often “read” what someone is feeling with the quickest of glances. Hundreds of scientific studies support the idea that the face is a kind of emotional beacon, clearly and universally signaling the full array of human sentiments, from fear and anger to joy and surprise. Increasingly, companies like Apple and government agencies like the Transportation Security Administration are banking on this transparency, developing software to identify consumers’ moods or training programs to gauge the intent of airline passengers. The same assumption is at work in the field of mental health, where illnesses like autism and schizophrenia are often treated in part by training patients to distinguish emotions by facial expression. But this assumption is wrong. Several recent and forthcoming research papers from the Interdisciplinary Affective Science Laboratory, which I direct, suggest that human facial expressions, viewed on their own, are not universally understood. The pioneering work in the field of “emotion recognition” was conducted in the 1960s by a team of scientists led by the psychologist Paul Ekman. Research subjects were asked to look at photographs of facial expressions (smiling, scowling and so on) and match them to a limited set of emotion words (happiness, anger and so on) or to stories with phrases like “Her husband recently died.” Most subjects, even those from faraway cultures with little contact with Western civilization, were extremely good at this task, successfully matching the photos most of the time. Over the following decades, this method of studying emotion recognition has been replicated by other scientists hundreds of times. In recent years, however, at my laboratory we began to worry that this research method was flawed. In particular, we suspected that by providing subjects with a preselected set of emotion words, these experiments had inadvertently “primed” the subjects — in effect, hinting at the answers — and thus skewed the results. © 2014 The New York Times Company

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 19316 - Posted: 03.03.2014

|By Lila Stanners Beauty seems mysterious and subjective. Scientists have long attempted to explain why the same object can strike some individuals as breathtaking and others as repulsive. Now a study finds that applying stimulation to a certain brain area enhances people's aesthetic appreciation of visual images. First, participants viewed 70 abstract paintings and sketches and 80 representational (realistic) paintings and photographs and rated how much they liked each one. Then they rated a similar set of images after receiving transcranial direct-current stimulation or sham stimulation. Transcranial direct-current stimulation sends small electrical impulses to the brain through electrodes attached to the head. The technique is noninvasive and cannot be felt, so subjects in the trials were not aware when they received real stimulation. The researchers aimed the impulses at the left dorsolateral prefrontal cortex, an area just behind the brow that is known to be a region critical for emotional processing. They found that the stimulation increased participants' appreciation of representational images, according to the study published online in October 2013 inSocial Cognitive and Affective Neuroscience. The scientists believe the stimulation facilitated a shift from object recognition to aesthetic appraisal for the figurative images; the abstract art was probably being processed by a different area of the brain. This study is one of many recent successful attempts at subtly altering cognition with noninvasive brain stimulation. Some experiments have found that stimulating certain areas allows people to solve math problems or puzzles that formerly had them stumped. Other work suggests these techniques can enhance motor learning, helping athletes or musicians improve at a new sport or a new instrument more rapidly. Experts are quick to point out, however, that these effects are modest enhancements at best—thought induction remains firmly in the realm of science fiction. © 2014 Scientific American

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 14: Attention and Consciousness
Link ID: 19295 - Posted: 02.26.2014

If you ever feel like your emotions are getting the best of you, you may want to try dimming the lights. According to researchers at the University of Toronto Scarborough, bright light can make us more emotional — for better or for worse — making us experience both positive and negative feelings more intensely. The findings seem to contradict commonly held notions that people feel happier and more optimistic on bright, sunny days and gloomier on dark, cloudy days. In fact, the idea for the study was spurred by findings that suicide rates peak in the late spring and summer, when sunshine is most abundant. “I was very surprised by this,” study author Alison Jing Xu told CBC News. Xu is an assistant professor of management at UTSC and the Rotman School of Management. “Normally I would say if brighter days generally increase people’s affect, then suicide rates should peak in winter — but actually it does not,” she said. Xu, along with the study’s co-author Aparna Labroo of Northwestern University in the U.S., conducted six experiments to explore the relationship between light and emotion. Their paper is published in the Journal of Consumer Psychology. Participants in each case were divided into two groups: Some were placed in a brightly lit room where fluorescent ceiling lights were turned on, while others were placed in a dimly lit room where the only light came from computer monitors. © CBC 2014

Related chapters from BP7e: Chapter 1: Biological Psychology: Scope and Outlook; Chapter 14: Biological Rhythms, Sleep, and Dreaming
Related chapters from MM:Chapter 1: An Introduction to Brain and Behavior; Chapter 10: Biological Rhythms and Sleep
Link ID: 19279 - Posted: 02.22.2014

When you hear a friend’s voice, you immediately picture her, even if you can’t see her. And from the tone of her speech, you quickly gauge if she’s happy or sad. You can do all of this because your human brain has a “voice area.” Now, scientists using brain scanners and a crew of eager dogs have discovered that dog brains, too, have dedicated voice areas. The finding helps explain how canines can be so attuned to their owners’ feelings. “It’s absolutely brilliant, groundbreaking research,” says Pascal Belin, a neuroscientist at the University of Glasgow in the United Kingdom, who was part of the team that identified the voice areas in the human brain in 2000. “They’ve made the first comparative study using nonhuman primates of the cerebral processing of voices, and they’ve done it with a noninvasive technique by training dogs to lie in a scanner.” The scientists behind the discovery had previously shown that humans can readily distinguish between dogs’ happy and sad barks. “Dogs and humans share a similar social environment,” says Attila Andics, a neuroscientist in a research group at the Hungarian Academy of Sciences at Eötvös Loránd University in Budapest and the lead author of the new study. “So we wondered if dogs also get some social information from human voices.” To find out, Andics and his colleagues decided to scan the canine brain to see how it processes different types of sounds, including voices, barks, and natural noises. In humans, the voice area is activated when we hear others speak, helping us recognize a speaker’s identity and pick up on the emotional content in her voice. If dogs had voice areas, it could mean that these abilities aren’t limited to humans and other primates. © 2014 American Association for the Advancement of Science

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 9: Hearing, Vestibular Perception, Taste, and Smell
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 6: Hearing, Balance, Taste, and Smell
Link ID: 19278 - Posted: 02.22.2014

By GRETCHEN REYNOLDS Watching participants in slopestyle and half-pipe skiing and snowboarding flip, curl, cartwheel and otherwise contort themselves in the air during the Winter Olympics competition, many of us have probably wondered not only how the athletes managed to perform such feats but also why. Helpfully, a recent study of the genetics of risk-taking intimates that their behavior may be motivated, at least in part, by their DNA. For some time, scientists and many parents have suspected that certain children are born needing greater physical stimulation than others, suggesting that sensation seeking, as this urge is known in psychological terms, has a genetic component. A thought-provoking 2006 study of twins, for instance, concluded that risk-taking behavior was shared by the pairs to a much greater extent than could be accounted for solely by environmental factors. If one twin sought out risks, the other was likely to do so as well. But finding which genes or, more specifically, which tiny snippets of DNA within genes, might be influencing the desire to huck oneself off of a snow-covered slope has proven to be troublesome. In recent years, scientists zeroed in on various sections of genes that affect the brain’s levels of or response to the neurotransmitter dopamine, a substance that is known to influence our feelings of pleasure, reward and gratification. People who engage in and enjoy extreme, daredevil conduct, researchers presumed, would likely process dopamine differently than those of us content to watch. But the results of some early genetic studies comparing dopamine-related portions of genes with sensation seeking were inconsistent. Some found that people with certain variations within genes, including a gene called DRD4 that is believed to be closely involved in the development and function of dopamine receptors in our brain, gravitated toward risky behavior. Others, though, found no such links. But most of these studies focused on so-called deviant risk-taking, such as gambling and drug addiction. © 2014 The New York Times Company

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 13: Memory, Learning, and Development
Link ID: 19268 - Posted: 02.19.2014

Elephants, both African and Asian, have long been considered empathetic animals. They help baby elephants stuck in mud holes, use their trunks to lift other elephants that are injured or dying, and even reportedly reassure distressed individual elephants with a gentle touch of their trunk. But it’s one thing to witness something that looks like consolation, and another to prove that this is what elephants are doing. Now, scientists have shown that African elephants do indeed get distressed when they see others in trouble, and they reach out to console them—just as we do when we see someone suffering. Elephants, thus, join a short list of other animals, including great apes, canines, and some birds, that scientists have shown to reassure others. The study “is the first to investigate responses to distress by Asian elephants,” which “is inherently difficult to assess because one has to wait for opportunities to arise spontaneously,” says Shermin de Silva, an behavioral ecologist at the Uda Walawe Elephant Research Project in Sri Lanka. It would not be ethical to intentionally create stressful situations for the animals as a test, she notes—which is why, until now, researchers have had to rely on well-documented, but anecdotal observations of wild and captive elephants to back up claims that they reassure each other. Joshua Plotnik, a behavioral ecologist at Mahidol University in Kanchanaburi, Thailand, and Frans de Waal, a primatologist at Emory University, got around this problem by comparing Asian elephants’ behaviors during times of stress to periods when little upset them. For one to two weeks every month for nearly a year, Plotnik spent 30 to 180 minutes daily watching and recording 26 captive Asian elephants. The animals ranged in age from 3 to 60 years old and lived at the 30-acre Elephant Nature Park in northern Thailand. Most of the elephants, aside from mother-juvenile pairs, were unrelated, and did not live in family groups as wild elephants do. Instead, the park’s Mahouts, or keepers, organized them into six groups which they then guided through a daily routine—bathing and feeding them in the morning, and tethering them at night. But during the day, the elephants were left alone to roam and graze at will. © 2014 American Association for the Advancement of Science

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 19263 - Posted: 02.18.2014

By James Gallagher Health and science reporter, BBC News Brain scans show a complex string of numbers and letters in mathematical formulae can evoke the same sense of beauty as artistic masterpieces and music from the greatest composers. Mathematicians were shown "ugly" and "beautiful" equations while in a brain scanner at University College London. The same emotional brain centres used to appreciate art were being activated by "beautiful" maths. The researchers suggest there may be a neurobiological basis to beauty. The likes of Euler's identity or the Pythagorean identity are rarely mentioned in the same breath as the best of Mozart, Shakespeare and Van Gogh. The study in the journal Frontiers in Human Neuroscience gave 15 mathematicians 60 formula to rate. One of the researchers, Prof Semir Zeki, told the BBC: "A large number of areas of the brain are involved when viewing equations, but when one looks at a formula rated as beautiful it activates the emotional brain - the medial orbito-frontal cortex - like looking at a great painting or listening to a piece of music." The more beautiful they rated the formula, the greater the surge in activity detected during the fMRI (functional magnetic resonance imaging) scans. "Neuroscience can't tell you what beauty is, but if you find it beautiful the medial orbito-frontal cortex is likely to be involved, you can find beauty in anything," he said. To the the untrained eye there may not be much beauty in Euler's identify, but in the study it was the formula of choice for mathematicians. BBC © 2014

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 14: Attention and Consciousness
Link ID: 19246 - Posted: 02.13.2014

It seems simple: People are more likely to cooperate if everyone plays fair. But a new study suggests that fairness itself arises from an unlikely source: spite. Researchers made a mathematical model based on the so-called ultimatum game. In it, two players are offered a reward, and the first player makes an offer for how it should be split up. If the second player agrees, then they divide it accordingly. But if the second player refuses, then neither gets the reward. As shown in the image above, depending on the interaction of the players, the outcome can be classified as altruism, cooperation, selfishness, or spite. Previous experiments have shown that, over multiple rounds of the game, a culture of cooperation evolves where everyone makes fair offers. But the new study, published online today in the Proceedings of the Royal Society B, finds that when players start out using multiple different strategies, by making fair or unfair offers, and rejecting or accepting unfair offers, some will act out of spite. These spiteful players deny the first player the reward at a cost to himself. The calculations further show that the antisocial behavior will eventually cause fairness to become the most successful option, because there is no reason to reject a fair offer. In essence, fairness evolves in spite of spite, when players start out using different strategies. Though they warn against generalizing to humans, the researchers point out that if fairness is the basis for a moral society, then paradoxically, spite may have played a role in the evolution of morality. © 2014 American Association for the Advancement of Science.

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 19239 - Posted: 02.12.2014

Alice Roberts Just how special do you think you are? How different do you think you are from other animals? Do you think of yourself as an animal or do you see yourself, and your fellow humans, as somehow set apart from the rest of the animal kingdom? Most of us – and I would unashamedly label us as the sensible majority of the population – accept that evolution is the best explanation for the pattern of life that we observe on the planet, both living and fossilised. However much creationists bang on about evolution being "just a theory", it beautifully explains all the evidence we have to hand (and there's masses of that: anatomical, genetic, palaeontological, embryological), without a single piece of evidence having turned up that threatens to bring the whole edifice tumbling down around our ears. So, I'm hoping you're a sensible sort of person and that you consider evolution to be as true as the spherical nature of the Earth, or the fact that the Earth orbits the sun and not vice versa. But just how comfortable are you with the idea of being a product of evolution? I think it's still, even among the most enlightened of us, really hard to come to terms with the idea that we are just another animal. A naked ape. The third chimpanzee, even. You have to admit, science has done a very good job at bringing us down a peg or two, at knocking us off the pedestal of our own construction. We can no longer view ourselves as a special creation, something created in the image of a deity and close to angels (whatever they are or look like). We can no longer see ourselves as the ultimate destination, as the pinnacle of evolution, either. Our species is just a tiny twig on the massive, dense tree of life. But that's so difficult to stomach! © 2014 Guardian News and Media Limited

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 19198 - Posted: 02.04.2014