Links for Keyword: Emotions

Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.


Links 21 - 40 of 1056

Max G. Levy Agony is contagious. If you drop a thick textbook on your toes, circuits in your brain’s pain center come alive. If you pick it up and accidentally drop it on my toes, hurting me, an overlapping neural neighborhood will light up in your brain again. “There's a physiological mechanism for emotional contagion of negative responses like stress and pain and fear,” says Inbal Ben-Ami Bartal, a neuroscientist at Tel-Aviv University in Israel. That's empathy. Researchers debate to this day whether empathy is a uniquely human ability. But more scientists are finding evidence suggesting it exists widely, particularly in social mammals like rats. For the past decade, Bartal has studied whether—and why—lab rodents might act on that commiseration to help pals in need. Picture two rats in a cage. One roams freely, while the other is constrained in a vented plexiglass tunnel with a small door that only opens from the outside. Bartal, along with teams at UC Berkeley and the University of Chicago, has shown that the free rat may feel their trapped fellow’s distress and learn to open the door. This empathic pull is so strong that rats will rescue their roommates instead of feasting on piles of chocolate chips. (Disclosure: I have three pet rats. My sources confirm that chocolate chips are borderline irresistible.) But there's been a catch: Bartal’s experiments over the years have shown that rats only help others they perceive as members of their social group—specific pals or entire genetic strains they recognize. So does this mean they can't empathize with strangers? In new results appearing in the journal eLife in July, Bartal and her adviser from Berkeley, Daniela Kaufer, uncovered a surprise. Rats do show the neural signatures of empathy for trapped strangers, but that alone isn’t enough to make them help. While seeing a trapped stranger lights up parts of the brain associated with empathy, only seeing a familiar rat or breed elicits a rush of activity in the brain’s so-called reward center, the nucleus accumbens—so only those rats get rescued. © 2021 Condé Nast

Related chapters from BN: Chapter 15: Emotions, Aggression, and Stress; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 27943 - Posted: 08.11.2021

By Anushree Dave Screams of joy appear to be easier for our brains to comprehend than screams of fear, a new study suggests. The results add a surprising new layer to scientists’ long-held notion that our brains are wired to quickly recognize and respond to fearful screams as a survival mechanism (SN: 7/16/15). The study looked at different scream types and how listeners perceive them. For example, the team asked participants to imagine “you are being attacked by an armed stranger in a dark alley” and scream in fear and to imagine “your favorite team wins the World Cup” and scream in joy. Each of the 12 participants produced seven different types of screams: six emotional screams (pain, anger, fear, pleasure, sadness, and joy) and one neutral scream where the volunteer just loudly yelled the ‘a’ vowel. Separate sets of study participants were then tasked with classifying and distinguishing between the different scream types. In one task, 33 volunteers were asked to listen to screams and given three seconds to categorize them into one of the seven different screams. In another task, 35 different volunteers were presented with two screams, one at a time, and were asked to categorize the screams as quickly as possible while still trying to make an accurate decision about what type of scream it was, either alarming screams of pain, anger or fear or non-alarming screams of pleasure, sadness or joy. It took longer for participants to complete the task when it involved fear and other alarming screams, and those screams were not as easily recognizable as non-alarming screams like joy, the researchers report online April 13 in PLOS Biology. © Society for Science & the Public 2000–2021.

Related chapters from BN: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 27771 - Posted: 04.14.2021

Neuroskeptic A new paper published in Nature Medicine reveals the wide variety of emotional experiences that can be triggered by electrical stimulation of the brain. Authors Katherine W. Scangos and colleagues tell how they implanted a single patient with 10 electrodes in different parts of the limbic system. The patient, a 36-year-old woman, had a history of severe depression, and was currently suffering a depressive episode which had not responded to any treatments. So, she agreed to undergo experimental deep brain stimulation (DBS). Over the course of 10 days, Scangos et al. tried many different stimulation parameters across the 10 electrodes, while the patient reported what she felt. Here's the full map of the emotional responses: Stimulation could evoke a gamut of emotions, from joy and relaxation to fear and darkness. For instance, stimulation of the left amygdala produced "a good feeling, more alert", but when it came to the right amygdala, stimulation instead caused feelings of "doom and gloom, very scary". The patient reported a feeling of "apathy" leading her to comment that "a lot of idiots must live like this", following right orbitofrontal cortex (OFC) stimulation. Interestingly, stimulation of certain sites could be either pleasant or unpleasant, depending on the patient's mood at the time. For example, OFC stimulation was "positive and calming if delivered during a high/neutral arousal state, but worsened mood if delivered during a low arousal state, causing the patient to feel excessively drowsy." © 2021 Kalmbach Media Co.

Related chapters from BN: Chapter 15: Emotions, Aggression, and Stress; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 14: Attention and Higher Cognition
Link ID: 27730 - Posted: 03.13.2021

By Sabrina Imbler Over the course of her 32 years, Cheyenne the red-bellied lemur has had many soul mates. Her first was a mate in the traditional sense, a male red-bellied lemur who lived monogamously with Cheyenne for many years at the Duke Lemur Center in Durham, N.C. When he died, the elderly Cheyenne moved on to Geb, a geriatric crowned lemur; his young mate, Aria, had recently left him for a an even younger lemur. Cheyenne and Geb shared several years of peaceful, platonic companionship until Geb died in 2018 at the venerable age of 26. Cheyenne now lives with Chloris, a 32-year-old ring-tailed lemur who has full cataracts in one eye and arthritis in her tail. The two spend their days as many couples do, elderly or not: sleeping, hanging out, grooming each other and cuddling. “Right now Chloris and Cheyenne are snuggled up like a yin-yang symbol,” Britt Keith, the head lemur keeper, said on a call from the D wing of the center, which houses many of the center’s geriatric lemurs. The goal of Cheyenne and Chloris’s pairing is not for them to breed; the lemurs are both post-reproductive females. Rather, it is companionship, the comfort of having someone to spend your twilight days with and a soft body to snuggle up to at night — and, in Cheyenne and Chloris’s case, also during the day. “They sleep a lot,” Ms. Keith said. In the wild, lemurs generally do not want for company. Red-bellied lemurs form extremely tight, long-term bonds with their mates, and pairs rarely stray more than than three dozen feet apart, according to Stacey Tecot, a lemur primatologist at the University of Arizona. Crowned lemurs like Geb and ring-tailed lemurs like Chloris are not monogamous but have rich social lives, said Nicholas Grebe, a postdoctoral researcher who studies lemur behavior at Duke University and who knows Cheyenne and Chloris. © 2021 The New York Times Company

Related chapters from BN: Chapter 15: Emotions, Aggression, and Stress; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 13: Memory and Learning
Link ID: 27692 - Posted: 02.15.2021

By Jason Castro Pursued by poets and artists alike, beauty is ever elusive. We seek it in nature, art and philosophy but also in our phones and furniture. We value it beyond reason, look to surround ourselves with it and will even lose ourselves in pursuit of it. Our world is defined by it, and yet we struggle to ever define it. As philosopher George Santayana observed in his 1896 book The Sense of Beauty, there is within us “a very radical and wide-spread tendency to observe beauty, and to value it.” Philosophers such as Santayana have tried for centuries to understand beauty, but perhaps scientists are now ready to try their hand as well. And while science cannot yet tell us what beauty is, perhaps it can tell us where it is—or where it isn’t. In a recent study, a team of researchers from Tsinghua University in Beijing and their colleagues examined the origin of beauty and argued that it is as enigmatic in our brain as it is in the real world. There is no shortage of theories about what makes an object aesthetically pleasing. Ideas about proportion, harmony, symmetry, order, complexity and balance have all been studied by psychologists in great depth. The theories go as far back as 1876—in the early days of experimental psychology—when German psychologist Gustav Fechner provided evidence that people prefer rectangles with sides in proportion to the golden ratio (if you’re curious, that ratio is about 1.6:1). © 2021 Scientific American

Related chapters from BN: Chapter 10: Vision: From Eye to Brain; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 7: Vision: From Eye to Brain; Chapter 11: Emotions, Aggression, and Stress
Link ID: 27675 - Posted: 02.03.2021

Dana G Smith This is a modified excerpt from Inside Your Head 🧠, a weekly newsletter exploring why your brain makes you think, feel, and act the way you do, written by me, Elemental’s senior writer and a former brain scientist. Subscribe here so you won’t miss the next one. Last Wednesday was a dark day for the United States. I’m obviously not a political reporter, so I’m not going to talk about security breaches or the future of our democracy or just how terrifying and disgraceful what happened at the Capitol was (you should check out our sister publication GEN for those types of stories). But I am going to discuss what might have been going on in the brains of those who attempted the insurrection. Hatred and violence toward another group of people is an extension — and perversion — of our natural human tendency to classify “us” from “them.” Evolutionarily, group membership and the cooperation it facilitates was essential for human survival. Our species forms alliances easily, sometimes based on genetic or familial ties but sometimes more arbitrarily. Take affinity for a certain sports team; it says nothing about a person’s qualities and offers no real benefits, and yet people have literally killed opposing team’s fans. In-group/out-group categorizations are made almost instantaneously in the brain and, when paired with negative stereotypes, can result in feelings of fear, disgust, and dehumanization. Studies have shown that viewing pictures of people from a different race, for example, activates the amygdala — a brain region strongly implicated in fear.

Related chapters from BN: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 27645 - Posted: 01.15.2021

Janet M. Gibson Amusement and pleasant surprises – and the laughter they can trigger – add texture to the fabric of daily life. Those giggles and guffaws can seem like just silly throwaways. But laughter, in response to funny events, actually takes a lot of work, because it activates many areas of the brain: areas that control motor, emotional, cognitive and social processing. As I found when writing “An Introduction to the Psychology of Humor,” researchers now appreciate laughter’s power to enhance physical and mental well-being. People begin laughing in infancy, when it helps develop muscles and upper body strength. Laughter is not just breathing. It relies on complex combinations of facial muscles, often involving movement of the eyes, head and shoulders. Laughter – doing it or observing it – activates multiple regions of the brain: the motor cortex, which controls muscles; the frontal lobe, which helps you understand context; and the limbic system, which modulates positive emotions. Turning all these circuits on strengthens neural connections and helps a healthy brain coordinate its activity. By activating the neural pathways of emotions like joy and mirth, laughter can improve your mood and make your physical and emotional response to stress less intense. For example, laughing may help control brain levels of the neurotransmitter serotonin, similar to what antidepressants do. By minimizing your brain’s responses to threats, it limits the release of neurotransmitters and hormones like cortisol that can wear down your cardiovascular, metabolic and immune systems over time. Laughter’s kind of like an antidote to stress, which weakens these systems and increases vulnerability to diseases. © 2010–2020, The Conversation US, Inc.

Related chapters from BN: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 27597 - Posted: 11.30.2020

By Bill Hathaway Our brains respond differently when talking to a person from a different socioeconomic group than during a conversation with someone of a similar background, a novel new imaging study shows. While neuroscientists have used brain imaging scans to track in great detail neural responses of individuals to a host of factors such as stress, fear, addiction, and even love and lust, new research shows what happens in the brains of two individuals engaged in a simple social interaction. The study, published in the journal Social Cognitive and Affective Neuroscience, reveals the distinct neurobiology of a conversation between two people of different backgrounds. “When a Yale professor talks to a homeless person, his or her frontal lobe activates a different neural network than if they were chatting with another colleague,” said senior author Joy Hirsch, the Elizabeth Mears and House Jameson Professor of Psychiatry and professor of comparative medicine and of neuroscience. “Our brain has apparently designed a frontal lobe system that helps us deal with our diversity.” Hirsch has a joint appointment in neuroscience at the University College of London. The study is the brainchild of recent Yale graduate Olivia Descorbeth, who first proposed the research idea as a high school student. Hirsch and Descorbeth wanted to know if a person’s brain responds differently when speaking with individuals from different socioeconomic backgrounds. Copyright © 2020 Yale University

Related chapters from BN: Chapter 15: Emotions, Aggression, and Stress; Chapter 19: Language and Lateralization
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 15: Language and Lateralization
Link ID: 27511 - Posted: 10.07.2020

Dogs aren't biologically attuned to faces in the same way that humans are — but they work hard to read our expressions anyway, according to a new study. Researchers in Hungary found that dogs simply aren't wired to respond to faces. When shown pictures or videos of faces, their brains simply don't light up the way a human brain does. In fact, to a dog's brain, it makes no difference whether they're looking us dead in the eyes or at the back of our heads. "I wouldn't say that dogs [are] not interested in our face," the study's lead author Attila Andics told As It Happens host Carol Off. "What we say is just that they don't respond to faces stronger than to other kinds of stimuli." The study was published Monday in the Journal of Neuroscience. Dogs' brains respond most to other dogs Andics, who studies adapted animal behaviour at Eötvös Loránd University in Budapest, says this study is one of the first to make a direct comparison between human and dog brain imaging. The researchers put 30 humans and 20 dogs into MRI machines and showed them a series of images and videos depicting human faces, the backs of human heads, dog faces, and the backs of dog heads. The dogs in the study were all longtime family pets who were trained with positive reinforcement to sit still in the MRI machines, Andics assured. ©2020 CBC/Radio-Canada.

Related chapters from BN: Chapter 15: Emotions, Aggression, and Stress; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 27509 - Posted: 10.07.2020

By Lucy Hicks Even before they learn to talk, human infants and toddlers know how to joke: They play games such as peek-a-boo and take whatever unexpected actions get a rise from adults. Now, it appears that nonhuman apes—like gorillas and orangutans—engage in similar behaviors, according to a paper published last week in Biology Letters. Science chatted with co-author Erica Cartmill, an anthropologist at the University of California, Los Angeles, about what these “playful teasing” behaviors look like in our evolutionary cousins. Q: How did you get interested in this topic? A: I was studying how orangutans communicated with one another [in captivity], and I noticed several interactions where one orangutan would have an object, and they would extend it out toward the other one. As the other one went to reach for it, they would pull it back. But rather than get annoyed, the other one would just drop their hand, and then they both would do it again. It seemed to be something that was mutually enjoyable. In a couple of cases, they would even swap roles: The orangutan that was doing this teasing behavior would get bored and drop the object, and then the other one would pick it up and start doing it. The behavior seemed very gamelike, with specific rules and structure, and resembled the kind of thing that toddlers do. Q: Are there other types of teasing behaviors? A: One is called “provocative noncompliance,” where I’m doing something that goes against what you want me to do, and I’m doing it in a way that is meant to provoke you. In human infants, for example, the mom tells the child to put on shoes, and the child takes a shoe, looks at the mom, and then puts the shoe on the top of their head. This type of behavior was observed in apes raised with humans explicitly trained to communicate with sign language or a keyboard-based system. Q: Like Koko, the gorilla taught sign language? A: In one instance, when the caregivers were interacting with Koko, they asked her “What do [we] use to clean your teeth?” Koko signed “foot.” And then they asked her “What do [we] put on your toothbrush?” Koko then signed “nose.” A completely bizarre response, but then she lifted her foot up to her nose. It’s not just that she’s produced the wrong signs, but she produced the wrong signs and then acted out this weird interaction. This relies on an understanding of the communicative symbols and the ways in which they’re supposed to be used, and then using them in unexpected ways. © 2020 American Association for the Advancement of Science.

Related chapters from BN: Chapter 15: Emotions, Aggression, and Stress; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 27508 - Posted: 10.07.2020

Adam Piore archive page Long before the world had ever heard of covid-19, Kay Tye set out to answer a question that has taken on new resonance in the age of social distancing: When people feel lonely, do they crave social interactions in the same way a hungry person craves food? And could she and her colleagues detect and measure this “hunger” in the neural circuits of the brain? “Loneliness is a universal thing. If I were to ask people on the street, ‘Do you know what it means to be lonely?’ probably 99 or 100% of people would say yes,” explains Tye, a neuroscientist at the Salk Institute of Biological Sciences. “It seems reasonable to argue that it should be a concept in neuroscience. It’s just that nobody ever found a way to test it and localize it to specific cells. That’s what we are trying to do.” In recent years, a vast scientific literature has emerged linking loneliness to depression, anxiety, alcoholism, and drug abuse. There is even a growing body of epidemiological work showing that loneliness makes you more likely to fall ill: it seems to prompt the chronic release of hormones that suppress healthy immune function. Biochemical changes from loneliness can accelerate the spread of cancer, hasten heart disease and Alzheimer’s, or simply drain the most vital among us of the will to go on. The ability to measure and detect it could help identify those at risk and pave the way for new kinds of interventions. In the months ahead, many are warning, we’re likely to see the mental-health impacts of covid-19 play out on a global scale. Psychiatrists are already worried about rising rates of suicide and drug overdoses in the US, and social isolation, along with anxiety and chronic stress, is one likely cause. “The recognition of the impact of social isolation on the rest of mental health is going to hit everyone really soon,” Tye says. “I think the impact on mental health will be pretty intense and pretty immediate.”

Related chapters from BN: Chapter 15: Emotions, Aggression, and Stress; Chapter 16: Psychopathology: Biological Basis of Behavior Disorders
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 12: Psychopathology: The Biology of Behavioral Disorders
Link ID: 27454 - Posted: 09.05.2020

Jordana Cepelewicz We consider the brain the very center of who we are and what we do: ruler of our senses, master of our movements; generator of thought, keeper of memory. But the brain is also rooted in a body, and the connection between the two goes both ways. If certain internal receptors indicate hunger, for instance, we’re driven to eat; if they indicate cold, we dress more warmly. However, decades of research have also shown that those sensations do much more than alert the brain to the body’s immediate concerns and needs. As the heart, lungs, gut and other organs transmit information to the brain, they affect how we perceive and interact with our environment in surprisingly profound ways. Recent studies of the heart in particular have given scientists new insights into the role that the body’s most basic processes play in defining our experience of the world. In the late 19th century, the psychologist William James and the physician Carl Lange proposed that emotional states are the brain’s perception of certain bodily changes in response to a stimulus — that a pounding heart or shallow breathing gives rise to emotions like fear or anger rather than vice versa. Researchers have since found many examples of physiological arousal leading to emotional arousal, but they wanted to delve deeper into that link. Beginning in the 1930s, scientists found that systole dampens pain and curbs startle reflexes. Further work traced this effect to the fact that during systole, pressure sensors send signals about the heart’s activity to inhibitory regions of the brain. This may be useful because, while the brain must constantly balance and integrate internal and external signals, “you cannot pay attention to everything at once,” said Ofer Perl, a postdoctoral research fellow at the Icahn School of Medicine at Mount Sinai in New York. Experiments even showed that people were more likely to forget words that were presented exactly at systole than words that they saw and encoded during the rest of the cardiac cycle. All Rights Reserved © 2020

Related chapters from BN: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 27349 - Posted: 07.08.2020

Sirin Kale Alice,* a 31-year-old director from London, has been breaking the coronavirus lockdown rules. “I almost don’t want to tell you this,” she says, lowering her voice. Her violation? Once a week, Alice, who lives alone, walks to the end of her garden to meet her best friend Lucy.* There, with the furtiveness of a street drug deal, Lucy hugs her tightly. Alice struggles to let her go. “You just get that rush of feeling better,” Alice says. “Like it’s all OK.” Aside from Lucy’s hugs, Alice hasn’t been touched by another person since March 15, which is when she went into a self-imposed lockdown, a week before the official government advice to self-isolate. “I’ve found it really hard,” she says. “I am a huggy person. You start to notice it after a while. I miss it.” She feels guilty about her surreptitious hugs. “I feel like I can’t tell my other friends about it,” Alice says. “There’s a lot of shaming going on. I know we aren’t meant to. But I am so grateful to her for checking in on me. It gives me such a lift.” Alice is experiencing the neurological phenomenon of "skin hunger," supercharged by the coronavirus pandemic. Skin hunger is the biological need for human touch. It’s why babies in neonatal intensive care units are placed on their parent’s naked chests. It’s the reason prisoners in solitary confinement often report craving human contact as ferociously as they desire their liberty. © 2020 Condé Nast.

Related chapters from BN: Chapter 15: Emotions, Aggression, and Stress; Chapter 8: General Principles of Sensory Processing, Touch, and Pain
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 5: The Sensorimotor System
Link ID: 27240 - Posted: 05.08.2020

By Jennifer Couzin-Frankel Science's COVID-19 reporting is supported by the Pulitzer Center. Among the many surprises of the new coronavirus is one that seems to defy basic biology: infected patients with extraordinarily low blood-oxygen levels, or hypoxia, scrolling on their phones, chatting with doctors, and generally describing themselves as comfortable. Clinicians call them happy hypoxics. “There is a mismatch [between] what we see on the monitor and what the patient looks like in front of us,” says Reuben Strayer, an emergency physician at Maimonides Medical Center in New York City. Speaking from home while recovering from COVID-19 himself, Strayer says he was first struck by the phenomenon in March as patients streamed into his emergency room. He and other doctors are keen to understand this hypoxia, and when and how to treat it. A normal blood-oxygen saturation is at least 95%. In most lung diseases, such as pneumonia, falling saturations accompany other changes, including stiff or fluid-filled lungs, or rising levels of carbon dioxide because the lungs can’t expel it efficiently. It’s these features that leave us feeling short of breath—not, counterintuitively, low oxygen saturation itself, says Paul Davenport, a respiratory physiologist at the University of Florida. “The brain is tuned to monitoring the carbon dioxide with various sensors,” Davenport explains. “We don’t sense our oxygen levels.” In serious cases of COVID-19, patients struggle to breathe with damaged lungs, but early in the disease, low saturation isn’t always coupled with obvious respiratory difficulties. Carbon dioxide levels can be normal and breathing deeply is comfortable—“the lung is inflating so they feel OK,” says Elnara Marcia Negri, a pulmonologist at Hospital Sírio-Libanês in São Paulo. But oxygen saturation, measured by a device clipped to a finger and in many cases confirmed with blood tests, can be in the 70s, 60s, or 50s. Or even lower. Although mountain climbers can have similar readings, here the slide downward, some doctors believe, is potentially “ominous,” says Nicholas Caputo, an emergency physician at New York City Health + Hospitals/Lincoln. © 2020 American Association for the Advancement of Science.

Related chapters from BN: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 27221 - Posted: 04.29.2020

Ruth Williams If a mouse is in a lot of pain, an experienced handler may see it in the animal’s facial expression—its narrowed eyes and bulging cheeks. But, subtler facial expressions may be more difficult to match to their moods. So researchers developed an unbiased machine learning approach to study hundreds of videos of mice and, as a result, have now catalogued a range of emotion-specific facial expressions. These expressions, the researchers show, can serve as handy readouts for studying the neural basis of emotions. “It’s a tour de force in terms of techniques,” says neuroscientist Sheena Josselyn of the University of Toronto who was not involved in the research. “Using the techniques . . . they are really beginning to give [emotion] a scientific definition, which I think is really important.” “The results provide an important advance by adding quantitative analysis of facial motor patterns to the repertoire of ‘emotional’ behaviors that can be measured in mice,” David Anderson, a neuroscientist at Caltech, writes in an email to The Scientist. That’s important, he adds, because “facial expressions have been considered as key indicators of emotion state in mammals, but have previously been measured in rodents only in a more qualitative, subjective manner.” Anderson, who studies the neurobiology of emotional behaviors, was also not involved in the project. Previous investigations of facial expressions in mice and other animals not only lacked objectivity, they tended to focus on just one or two emotions, says Nadine Gogolla of the Max Planck Institute of Neurobiology. “None of those studies looked at a whole spectrum [of emotions] and whether they can be distinguished from each other.” © 1986–2020 The Scientist.

Related chapters from BN: Chapter 15: Emotions, Aggression, and Stress; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 27170 - Posted: 04.04.2020

By Laura Sanders Although it’s tricky for us humans to see, mouse feelings are written all over their furry little faces. With machine learning tools, researchers reliably spotted mice’s expressions of joy, fear, pain and other basic emotions. The results, published in the April 3 Science, provide a field guide for scientists seeking to understand how emotions such as joy, regret and empathy work in animals other than humans (SN: 11/10/16; SN: 6/9/14; SN: 12/8/11). Using machine learning to reveal mice’s expressions is “an extraordinarily exciting direction,” says Kay Tye, a neuroscientist at the Salk Institute for Biological Studies in La Jolla, Calif. The findings “lay the foundation for what I expect will be a game changer for neuroscience research on emotional states.” Neuroscientist Nadine Gogolla of the Max Planck Institute of Neurobiology in Martinsried, Germany, and colleagues gave mice experiences designed to elicit distinct emotions. Sugar water evoked pleasure, a shock to the tail triggered pain, bitter quinine water created disgust, an injection of lithium chloride evoked a nauseated malaise, and a place where shocks previously had been delivered sparked fear. For each setup, high-speed video cameras captured subtle movements in the mice’s ears, noses, whiskers and other parts of the face. Observers can generally see that something is happening on the mouse’s face, Gogolla says. But translating those subtle clues into emotions is really hard, “especially for an untrained human being,” she says. © Society for Science & the Public 2000–2020

Related chapters from BN: Chapter 15: Emotions, Aggression, and Stress; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 27168 - Posted: 04.03.2020

By Monica Schoch-Spana The novel coronavirus has touched off another stealthy and growing public health crisis that calls for an equally matched emergency response. Like other pandemics and emerging disease outbreaks, COVID-19 is creating immense psychosocial disturbances. The disease involves an unfamiliar threat that is difficult to detect and challenging to distinguish from more benign illnesses. Protracted and dynamic pandemic conditions will draw out the anxiety. Things will get worse before they get better. Absent a vaccine, nonpharmaceutical interventions are the only way to prevent infections, and they dramatically upset everyday bodily habits, social interactions and economic exchanges. Recent grocery store runs are a sign of concern in the community. Personal actions to avoid infection such as stockpiling hand sanitizer also confer a sense of control over an uncertain danger. Improvements to current risk communication can alleviate widespread distress. Top elected officials and health authorities should empathize with people’s fear, normalize stress reactions, provide clear guidance on recommended health behaviors, instruct in concrete protections including those for mental health and share solidarity and resilience messages. Advertisement However, more interventions are essential because specific groups are at a higher risk of both acute and lingering emotional distress. Health care workers on the epidemic front lines face compounding stressors: the prospect of more and longer shifts, the need to improvise childcare coverage, finite supplies of personal protective equipment, fear of bringing infection home, witnessing co-workers becoming ill, and making tough allocation decisions about scarce, lifesaving resources like mechanical ventilators. © 2020 Scientific American

Related chapters from BN: Chapter 15: Emotions, Aggression, and Stress; Chapter 19: Language and Lateralization
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 15: Language and Lateralization
Link ID: 27131 - Posted: 03.21.2020

By Judson A. Brewer, M.D. Anxiety is a strange beast. As a psychiatrist, I have learned that anxiety and its close cousin, panic, are both born from fear. As a behavioral neuroscientist, I know that fear’s main evolutionary function is helping us survive. In fact, fear is the oldest survival mechanism we have. Fear helps us learn to avoid dangerous situations in the future through a process called negative reinforcement. For example, if we step out into a busy street, turn our head and see a car coming right at us, we instinctively jump back onto the safety of the sidewalk. Evolution made this really simple for us. So simple that we only need three elements in situations like this to learn: an environmental cue, a behavior and a result. In this case, walking up to a busy street cues us to look both ways before crossing. The result of not getting killed helps us remember to repeat the action again in the future. Sometime in the last million years, humans evolved a new layer on top of our more primitive survival brain, called the prefrontal cortex. Involved in creativity and planning, the prefrontal cortex helps us think and plan for the future. It predicts what will happen in the future based on past experience. If information is lacking, our prefrontal cortex lays out different scenarios about what might happen, and guesses which will be most likely. It does this by running simulations based on previous events that are most similar. Defined as “a feeling of worry, nervousness or unease, typically about an imminent event or something with an uncertain outcome,” anxiety comes up when our prefrontal cortexes don’t have enough information to accurately predict the future. We see this right now with coronavirus. Without accurate information, it is easy for our brains to spin stories of fear and dread. © 2020 The New York Times Company

Related chapters from BN: Chapter 15: Emotions, Aggression, and Stress; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 13: Memory and Learning
Link ID: 27117 - Posted: 03.14.2020

By Michael Price Every Fourth of July, the thunderous crack of my neighbors’ fireworks is quickly followed by the wailing chorus of frightened dogs, including my own two mixed-breed pups. New research suggests Pico’s and Winnie’s sensitivity to noise, especially fireworks, is the most common form of anxiety in pet dogs. The study—the largest ever on canine temperaments—also finds that some breeds are prone to certain anxious behaviors, including aggression, separation anxiety, and fear. The results could help uncover new ways to tackle these traits. Anecdotes on dog behavior abound, but reliable scientific data are lacking, says Hannes Lohi, a canine geneticist at the University of Helsinki. That’s particularly an issue when looking at problem behaviors that can put dogs at higher risk of being euthanized or winding up in shelters. So Lohi and colleagues contacted Finnish dog breed clubs and reached out to dog owners around the world through social media, asking owners to rate their dogs’ behavior on seven different anxiety-related traits: noise sensitivity, general fear, fear of heights and surfaces (like reflective tiles), inattention, compulsive behaviors (like relentless chewing or tail chasing), aggression, and separation anxiety. They received more than 13,700 responses representing 264 breeds. To make reliable comparisons, the researchers limited themselves to the 14 breeds with 200 or more surveyed dogs. © 2020 American Association for the Advancement of Science.

Related chapters from BN: Chapter 15: Emotions, Aggression, and Stress; Chapter 16: Psychopathology: Biological Basis of Behavior Disorders
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 12: Psychopathology: The Biology of Behavioral Disorders
Link ID: 27099 - Posted: 03.06.2020

Douglas Heaven Human faces pop up on a screen, hundreds of them, one after another. Some have their eyes stretched wide, others show lips clenched. Some have eyes squeezed shut, cheeks lifted and mouths agape. For each one, you must answer this simple question: is this the face of someone having an orgasm or experiencing sudden pain? Psychologist Rachael Jack and her colleagues recruited 80 people to take this test as part of a study1 in 2018. The team, at the University of Glasgow, UK, enlisted participants from Western and East Asian cultures to explore a long-standing and highly charged question: do facial expressions reliably communicate emotions? Researchers have been asking people what emotions they perceive in faces for decades. They have questioned adults and children in different countries and Indigenous populations in remote parts of the world. Influential observations in the 1960s and 1970s by US psychologist Paul Ekman suggested that, around the world, humans could reliably infer emotional states from expressions on faces — implying that emotional expressions are universal2,3. These ideas stood largely unchallenged for a generation. But a new cohort of psychologists and cognitive scientists has been revisiting those data and questioning the conclusions. Many researchers now think that the picture is a lot more complicated, and that facial expressions vary widely between contexts and cultures. Jack’s study, for instance, found that although Westerners and East Asians had similar concepts of how faces display pain, they had different ideas about expressions of pleasure. © 2020 Springer Nature Limited

Related chapters from BN: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 27079 - Posted: 02.27.2020