Links for Keyword: Learning & Memory

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 958

By Amy Ellis Nutt Before iPhones and thumb drives, before Google docs and gigabytes of RAM, memory was more art than artifact. It wasn’t a tool or a byproduct of being human. It was essential to our character and therefore a powerful theme in both myth and literature. At the end of Book 2 of the “Divine Comedy,” with Paradise nearly in reach, Dante is dipped into the River Lethe, where the sins of the self are washed away in the waters of forgetfulness. To be truly cleansed of his memories, however, Dante must also drink from the river of oblivion. Only then will he be truly purified and the memories of his good deeds restored to him. Before we can truly remember, according to Dante, we must forget. In “Patient H.M.: A Story of Memory, Madness, and Family Secrets,” author Luke Dittrich seems to be saying that before we can forgive, we must remember. The terrible irony is that H.M., the real-life character around whom Dittrich’s book revolves, had no memory at all. In prose both elegant and intimate, and often thrilling, “Patient H.M.” is an important book about the wages not of sin but of science. It is deeply reported and surprisingly emotional, at times poignant, at others shocking. H.M., arguably the single most important research subject in the history of neuroscience, was once Henry Molaison, an ordinary New England boy. When Henry was 9 years old, he was hit by a bicyclist as he walked across the street in his home town, Hartford, Conn. © 1996-2016 The Washington Post

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 22604 - Posted: 08.27.2016

By Anna Azvolinsky Sets of neurons in the brain that behave together—firing synchronously in response to sensory or motor stimuli—are thought to be functionally and physiologically connected. These naturally occurring ensembles of neurons are one of the ways memories may be programmed in the brain. Now, in a paper published today (August 11) in Science, researchers at Columbia University and their colleagues show that it is possible to stimulate visual cortex neurons in living, awake mice and induce a new ensemble of neurons that behave as a group and maintain their concerted firing for several days. “This work takes the concept of correlated [neuronal] firing patterns in a new and important causal direction,” David Kleinfeld, a neurophysicist at the University of California, San Diego, who was not involved in the work told The Scientist. “In a sense, [the researchers] created a memory for a visual feature that does not exist in the physical world as a proof of principal of how real visual memories are formed.” “Researchers have previously related optogenetic stimulation to behavior [in animals], but this study breaks new ground by investigating the dynamics of neural activity in relation to the ensemble to which these neurons belong,” said Sebastian Seung, a computational neuroscientist at the Princeton Neuroscience Institute in New Jersey who also was not involved in the study. Columbia’s Rafael Yuste and colleagues stimulated randomly selected sets of individual neurons in the visual cortices of living mice using two-photon stimulation while the animals ran on a treadmill. © 1986-2016 The Scientist

Related chapters from BP7e: Chapter 10: Vision: From Eye to Brain; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 7: Vision: From Eye to Brain; Chapter 13: Memory, Learning, and Development
Link ID: 22558 - Posted: 08.13.2016

Ed Yong At the age of seven, Henry Gustav Molaison was involved in an accident that left him with severe epilepsy. Twenty years later, a surgeon named William Scoville tried to cure him by removing parts of his brain. It worked, but the procedure left Molaison unable to make new long-term memories. Everyone he met, every conversation he had, everything that happened to him would just evaporate from his mind. These problems revolutionized our understanding of how memory works, and transformed Molaison into “Patient H.M.”—arguably the most famous and studied patient in the history of neuroscience. That’s the familiar version of the story, but the one presented in Luke Dittrich’s new book Patient H.M.: A Story of Memory, Madness, and Family Secrets is deeper and darker. As revealed through Dittrich’s extensive reporting and poetic prose, Molaison’s tale is one of ethical dilemmas that not only influenced his famous surgery but persisted well beyond his death in 2008. It’s a story about more than just the life of one man or the root of memory; it’s also about how far people are willing to go for scientific advancement, and the human cost of that progress. And Dittrich is uniquely placed to consider these issues. Scoville was his grandfather. Suzanne Corkin, the scientist who worked with Molaison most extensively after his surgery, was an old friend of his mother’s. I spoke to him about the book and the challenges of reporting a story that he was so deeply entwined in. Most of this interview was conducted on July 19th. Following a New York Times excerpt published on August 7th, and the book’s release two weeks later, many neuroscientists have expressed “outrage” at Dittrich’s portrayal of Corkin. The controversy culminated in a statement from MIT, where Corkin was based, rebutting three allegations in the book. Dittrich has himself responded to the rebuttals, and at the end of this interview, I talk to him about the debate. © 2016 by The Atlantic Monthly Group.

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 22552 - Posted: 08.13.2016

Like many students of neuroscience, I first learned of patient HM in a college lecture. His case was so strange yet so illuminating, and I was immediately transfixed. HM was unable to form new memories, my professor explained, because a surgeon had removed a specific part of his brain. The surgery froze him in time. HM—or Henry Molaison, as his name was revealed to be after his death in 2008—might be the most famous patient in the history of brain research. He is now the subject of the new book, Patient HM: A Story of Memory, Madness, and Family Secrets. An excerpt from the book in the New York Times Magazine, which details MIT neuroscientist Sue Corkin’s custody fight over HM’s brain after his death, has since sparked a backlash. Should you wish to go down that particular rabbit hole, you can read MIT’s response, the book author’s response to the response, and summaries of the back and forth. Why HM’s brain was worth fighting over should be obvious; he was probably the most studied individual in neuroscience while alive. But in the seven years since scientists sectioned HM’s brain into 2,401 slices, it has yielded surprisingly little research. Only two papers examining his brain have come out, and so far, physical examinations have led to no major insights. HM’s scientific potential remains unfulfilled—thanks to delays from the custody fight and the limitations of current neuroscience itself. Corkin, who made her career studying HM, confronted her complicated emotions about his death in her own 2013 book. She describes being “ecstatic to see his brain removed expertly from his skull.” Corkin passed away earlier this year.

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 22551 - Posted: 08.13.2016

By Sharon Begley, The Massachusetts Institute of Technology brain sciences department and, separately, a group of some 200 neuroscientists from around the world have written letters to The New York Times claiming that a book excerpt in the newspaper’s Sunday magazine this week contains important errors, misinterpretations of scientific disputes, and unfair characterizations of an MIT neuroscientist who did groundbreaking research on human memory. In particular, the excerpt contains a 36-volley verbatim exchange between author Luke Dittrich and MIT’s Suzanne Corkin in which she says that key documents from historic experiments were “shredded.” “Most of it has gone, is in the trash, was shredded,” Corkin is quoted as telling Dittrich before she died in May, explaining, “there’s no place to preserve it.” Destroying files related to historic scientific research would raise eyebrows, but Corkin’s colleagues say it never happened. “We believe that no records were destroyed and, to the contrary, that professor Corkin worked in her final days to organize and preserve all records,” said the letter that Dr. James DiCarlo, head of the MIT Department of Brain and Cognitive Sciences, sent to the Times late Tuesday. Even as Corkin fought advanced liver cancer, he wrote, “she instructed her assistant to continue to organize, label, and maintain all records” related to the research, and “the records currently remain within our department.” © 2016 Scientific American

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 22546 - Posted: 08.11.2016

BENEDICT CAREY As a boy growing up in Massachusetts, Luke Dittrich revered his grandfather, a brain surgeon whose home was full of exotic instruments. Later, he learned that he was not only a prominent doctor but had played a significant role in modern medical history. In 1953, at Hartford Hospital, Dr. William Scoville had removed two slivers of tissue from the brain of a 27-year-old man with severe epilepsy. The operation relieved his seizures but left the patient — Henry Molaison, a motor repairman — unable to form new memories. Known as H. M. to protect his privacy, Mr. Molaison went on to become the most famous patient in the history of neuroscience, participating in hundreds of experiments that have helped researchers understand how the brain registers and stores new experiences. By the time Mr. Dittrich was out of college — and after a year and a half in Egypt, teaching English — he had become fascinated with H. M., brain science and his grandfather’s work. He set out to write a book about the famous case but discovered something unexpected along the way. His grandfather was one of a cadre of top surgeons who had performed lobotomies and other “psycho-surgeries” on thousands of people with mental problems. This was not a story about a single operation that went wrong; it was far larger. The resulting book — “Patient H. M.: A Story of Memory, Madness, and Family Secrets,” to be published Tuesday — describes a dark era of American medicine through a historical, and deeply personal, lens. Why should scientists and the public know this particular story in more detail? The textbook story of Patient H. M. — the story I grew up with — presents the operation my grandfather performed on Henry as a sort of one-off mistake. It was not. Instead, it was the culmination of a long period of human experimentation that my grandfather and other leading doctors and researchers had been conducting in hospitals and asylums around the country. © 2016 The New York Times Company

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 22531 - Posted: 08.09.2016

By Julia Shaw Every memory you have ever had is chock-full of errors. I would even go as far as saying that memory is largely an illusion. This is because our perception of the world is deeply imperfect, our brains only bother to remember a tiny piece of what we actually experience, and every time we remember something we have the potential to change the memory we are accessing. I often write about the ways in which our memory leads us astray, with a particular focus on ‘false memories.’ False memories are recollections that feel real but are not based on actual experience. For this particular article I invited a few top memory researchers to comment on what they wish everyone knew about their field. First up, we have Elizabeth Loftus from the University of California, Irvine, who is one of the founders of the area of false memory research, and is considered one of the most ‘eminent psychologists of the 20th century.’ Elizabeth Loftus says you need independent evidence to corroborate your memories. According to Loftus: “The one take home message that I have tried to convey in my writings, and classes, and in my TED talk is this: Just because someone tells you something with a lot of confidence and detail and emotion, it doesn't mean it actually happened. You need independent corroboration to know whether you're dealing with an authentic memory, or something that is a product of some other process.” Next up, we have memory scientist Annelies Vredeveldt from the Vrije Universiteit Amsterdam, who has done fascinating work on how well we remember when we recall things with other people. © 2016 Scientific American,

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 22530 - Posted: 08.09.2016

Pete Etchells Mind gamers: How good do you reckon your memory is? We might forget things from time to time, but the stuff we do remember is pretty accurate, right? The trouble is, our memory isn’t as infallible as we might want to believe, and you can test this for yourself using the simple experiment below. All done? Great. Now we’re going to do a simple recognition test – below is another list of words for you to look at. Without looking back, note down which of them appeared in the three lists you just scanned. No cheating! If you said that top, seat and yawn were in the lists, you’re spot on. Likewise, if you think that slow, sweet and strong didn’t appear anywhere, you’re also right. What about chair, mountain and sleep though? They sound like they should have been in the lists, but they never made an appearance. Some of you may have spotted this, but a lot of people tend to say, with a fair amount of certainty, that the words were present. This experiment comes from a classic 1995 study by Henry L. Roediger and Kathleen McDermott at Rice University in Texas. Based on earlier work by James Deese (hence the name Deese-Roediger-McDermott, or DRM, paradigm), participants heard a series of word lists, which they then had to recall from memory. After a brief conversation with the researcher, the participants were then given a new list of words. Critically, this new list contained some words that were associated with every single item on each of the initial lists – for example, while sleep doesn’t appear on list 3 above, it’s related to each word that does appear (bed, rest, tired, and so on). © 2016 Guardian News and Media Limited

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 22526 - Posted: 08.08.2016

By LUKE DITTRICH ‘Can you tell me who the president of the United States is at the moment?” A man and a woman sat in an office in the Clinical Research Center at the Massachusetts Institute of Technology. It was 1986, and the man, Henry Molaison, was about to turn 60. He was wearing sweatpants and a checkered shirt and had thick glasses and thick hair. He pondered the question for a moment. “No,” he said. “I can’t.” The woman, Jenni Ogden, was a visiting postdoctoral research fellow from the University of Auckland, in New Zealand. One of the greatest thrills of her time at M.I.T. was the chance to have sit-down sessions with Henry. In her field — neuropsychology — he was a legendary figure, something between a rock star and a saint. “Who’s the last president you remember?” “I don’t. ... ” He paused for a second, mulling over the question. He had a soft, tentative voice, a warm New England accent. “Ike,” he said finally. Dwight D. Eisenhower’s inauguration took place in 1953. Our world had spun around the sun more than 30 times since, though Henry’s world had stayed still, frozen in orbit. This is because 1953 was the year he received an experimental operation, one that destroyed most of several deep-­seated structures in his brain, including his hippocampus, his amygdala and his entorhinal cortex. The operation, performed on both sides of his brain and intended to treat Henry’s epilepsy, rendered him profoundly amnesiac, unable to hold on to the present moment for more than 30 seconds or so. That outcome, devastating to Henry, was a boon to science: By 1986, Patient H.M. — as he was called in countless journal articles and textbooks — had become arguably the most important human research subject of all time, revolutionizing our understanding of how memory works. © 2016 The New York Times Company

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 22519 - Posted: 08.04.2016

Meghan Rosen Exercise may not erase old memories, as some studies in animals have previously suggested. Running on an exercise wheel doesn’t make rats forgetprevious trips through an underwater maze, Ashok Shetty and colleagues report August 2 in the Journal of Neuroscience. Exercise or not, four weeks after learning how to find a hidden platform, rats seem to remember the location just fine, the team found. The results conflict with two earlier papers that show that running triggers memory loss in some rodents by boosting the birth of new brain cells. Making new brain cells rejiggers memory circuits, and that can make it hard for animals to remember what they’ve learned, says Paul Frankland, a neuroscientist at the Hospital for Sick Children in Toronto. He has reported this phenomenon in mice, guinea pigs and degus (SN: 6/14/14, p. 7). Maybe rats are the exception, he says, “but I’m not convinced.” In 2014, Frankland and colleagues reported that brain cell genesis clears out fearful memories in three different kinds of rodents. Two years later, Frankland’s team found similar results with spatial memories. After exercising, mice had trouble remembering the location of a hidden platform in a water maze, the team reported in February in Nature Communications. Again, Frankland and colleagues pinned the memory wipeout on brain cell creation — like a chalkboard eraser that brushes away old information. The wipe seemed to clear the way for new memories to form. Shetty, a neuroscientist at Texas A&M Health Science Center in Temple, wondered if the results held true in rats, too. “Rats are quite different from mice,” he says. “Their biology is similar to humans.” |© Society for Science & the Public 2000 - 2016. All rights reserved.

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 5: The Sensorimotor System
Link ID: 22510 - Posted: 08.03.2016

By Bahar Gholipour After reflexively reaching out to grab a hot pan falling from the stove, you may be able to withdraw your hand at the very last moment to avoid getting burned. That is because the brain's executive control can step in to break a chain of automatic commands. Several new lines of evidence suggest that the same may be true when it comes to the reflex of recollection—and that the brain can halt the spontaneous retrieval of potentially painful memories. Within the brain, memories sit in a web of interconnected information. As a result, one memory can trigger another, making it bubble up to the surface without any conscious effort. “When you get a reminder, the mind's automatic response is to do you a favor by trying to deliver the thing that's associated with it,” says Michael Anderson, a neuroscientist at the University of Cambridge. “But sometimes we are reminded of things we would rather not think about.” Humans are not helpless against this process, however. Previous imaging studies suggest that the brain's frontal areas can dampen the activity of the hippocampus, a crucial structure for memory, and therefore suppress retrieval. In an effort to learn more, Anderson and his colleagues recently investigated what happens after the hippocampus is suppressed. They asked 381 college students to learn pairs of loosely related words. Later, the students were shown one word and asked to recall the other—or to do the opposite and to actively not think about the other word. Sometimes between these tasks they were shown unusual images, such as a peacock standing in a parking lot. © 2016 Scientific American

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 22500 - Posted: 08.01.2016

By Gretchen Reynolds Learning requires more than the acquisition of unfamiliar knowledge; that new information or know-how, if it’s to be more than ephemeral, must be consolidated and securely stored in long-term memory. Mental repetition is one way to do that, of course. But mounting scientific evidence suggests that what we do physically also plays an important role in this process. Sleep, for instance, reinforces memory. And recent experiments show that when mice and rats jog on running wheels after acquiring a new skill, they learn much better than sedentary rodents do. Exercise seems to increase the production of biochemicals in the body and brain related to mental function. Researchers at the Donders Institute for Brain, Cognition and Behavior at Radboud University in the Netherlands and the University of Edinburgh have begun to explore this connection. For a study published this month in Current Biology, 72 healthy adult men and women spent about 40 minutes undergoing a standard test of visual and spatial learning. They observed pictures on a computer screen and then were asked to remember their locations. Afterward, the subjects all watched nature documentaries. Two-thirds of them also exercised: Half were first put through interval training on exercise bicycles for 35 minutes immediately after completing the test; the others did the same workout four hours after the test. Two days later, everyone returned to the lab and repeated the original computerized test while an M.R.I. machine scanned their brain activity. Those who exercised four hours after the test recognized and recreated the picture locations most accurately. Their brain activity was subtly different, too, showing a more consistent pattern of neural activity. The study’s authors suggest that their brains might have been functioning more efficiently because they had learned the patterns so fully. But why delaying exercise for four hours was more effective than an immediate workout remains mysterious. By contrast, rodents do better in many experiments if they work out right after learning. © 2016 The New York Times Company

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 5: The Sensorimotor System
Link ID: 22486 - Posted: 07.28.2016

By Tanya Lewis Scientists have made significant progress toward understanding how individual memories are formed, but less is known about how multiple memories interact. Researchers from the Hospital for Sick Children in Toronto and colleagues studied how memories are encoded in the amygdalas of mice. Memories formed within six hours of each other activate the same population of neurons, whereas distinct sets of brain cells encode memories formed farther apart, in a process whereby neurons compete with their neighbors, according to the team’s study, published today (July 21) in Science. “Some memories naturally go together,” study coauthor Sheena Josselyn of the Hospital for Sick Children told The Scientist. For example, you may remember walking down the aisle at your wedding ceremony and, later, your friend having a bit too much to drink at the reception. “We’re wondering about how these memories become linked in your mind,” Josselyn said. When the brain forms a memory, a group of neurons called an “engram” stores that information. Neurons in the lateral amygdala—a brain region involved in memory of fearful events—are thought to compete with one another to form an engram. Cells that are more excitable or have higher expression of the transcription factor CREB—which is critical for the formation of long-term memories—at the time the memory is being formed will “win” this competition and become part of a memory. © 1986-2016 The Scientist

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 22467 - Posted: 07.23.2016

By TRIP GABRIEL DO you remember June 27, 2015? If you knew you had been on a sailboat, and that the weather was miserable, and that afterward you had a beer with the other sailors, would you expect to recall — even one year later — at least a few details? I was on that boat, on a blustery Saturday on Long Island Sound. But every detail is missing from my memory, as if snipped out by an overzealous movie editor. The earliest moment I recall from the day is lying in an industrial tube with a kind of upturned colander over my face, fighting waves of claustrophobia. My mind was densely fogged, but I understood that I was in an M.R.I. machine. Someone was scanning my brain. Other hazy scenes followed: being wheeled into a hospital room. My wife, Alice, hovering in the background. A wall clock that read minutes to midnight, an astonishing piece of information. What had happened to the day? Late that night, alone in the room, I noticed two yellow Post-its on the bedside table in Alice’s writing: “You have a condition called transient global amnesia. It will last Hours not DAYS. You’re going to be fine. Your CT scan was clear. You sailed today and drove yourself home,” the note read in part. I had never heard of transient global amnesia, a rare condition in which you are suddenly unable to recall recent events. Its causes are unknown. Unlike other triggers of memory loss, like a stroke or epileptic seizures, the condition is considered harmless, and an episode does not last long. “We don’t understand why it happens,” a neurologist would later tell me. “There are a million theories.” © 2016 The New York Times Company

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 22456 - Posted: 07.19.2016

By Andy Coghlan There once was a brainy duckling. It could remember whether shapes or colours it saw just after hatching were the same as or different to each other. The feat surprised the researchers, who were initially sceptical about whether the ducklings could grasp such complex concepts as “same” and “different”. The fact that they could suggests the ability to think in an abstract way may be far more common in nature than expected, and not just restricted to humans and a handful of animals with big brains. “We were completely surprised,” says Alex Kacelnik at the University of Oxford, who conducted the experiment along with his colleague Antone Martinho III. Kacelnik and Martinho reasoned that ducklings might be able to grasp patterns relating to shape or colour as part of the array of sensory information they absorb soon after hatching. Doing so would allow them to recognise their mothers and siblings and distinguish them from all others – abilities vital for survival. In ducklings, goslings and other species that depend for survival on following their mothers, newborns learn quickly – a process called filial imprinting. Kacelnik wondered whether this would enable them to be tricked soon after hatching into “following” objects or colours instead of their natural mother, and recognising those same patterns in future. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 13: Memory, Learning, and Development
Link ID: 22443 - Posted: 07.15.2016

By Tanya Lewis In recent years, research on mammalian navigation has focused on the role of the hippocampus, a banana-shaped structure known to be integral to episodic memory and spatial information processing. The hippocampus’s primary output, a region called CA1, is known to be divided into superficial and deep layers. Now, using two-photon imaging in mice, researchers at Columbia University in New York have found these layers have distinct functions: superficial-layer neurons encode more-stable maps, whereas deep-layer brain cells better represent goal-oriented navigation, according to a study published last week (July 7) in Neuron. “There are lots of catalogued differences in sublayers of pyramidal cells” within the hippocampus, study coauthor Nathan Danielson of Columbia told The Scientist. “The question is, are the principle cells in each subregion doing the same thing? Or is there a finer level of granularity?” For that past few decades, scientists have been chipping away at an explanation of the brain’s “inner GPS.” The 2014 Nobel Prize in Physiology or Medicine honored the discovery of so-called place cells and grid cells in the hippocampus, which keep track of an individual’s location and coordinates in space, respectively. Since then, studies have revealed that neurons in different hippocampal regions have distinct genetic, anatomical, and physiological properties, said Attila Losonczy of Columbia, Danielson’s graduate advisor and a coauthor on the study. © 1986-2016 The Scientist

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 22437 - Posted: 07.14.2016

By Gretchen Reynolds To strengthen your mind, you may first want to exert your leg muscles, according to a sophisticated new experiment involving people, mice and monkeys. The study’s results suggest that long-term endurance exercise such as running can alter muscles in ways that then jump-start changes in the brain, helping to fortify learning and memory. I often have written about the benefits of exercise for the brain and, in particular, how, when lab rodents or other animals exercise, they create extra neurons in their brains, a process known as neurogenesis. These new cells then cluster in portions of the brain critical for thinking and recollection. Even more telling, other experiments have found that animals living in cages enlivened with colored toys, flavored varieties of water and other enrichments wind up showing greater neurogenesis than animals in drab, standard cages. But animals given access to running wheels, even if they don’t also have all of the toys and other party-cage extras, develop the most new brain cells of all. These experiments strongly suggest that while mental stimulation is important for brain health, physical stimulation is even more potent. But so far scientists have not teased out precisely how physical movement remakes the brain, although all agree that the process is bogglingly complex. Fascinated by that complexity, researchers at the National Institutes of Health recently began to wonder whether some of the necessary steps might be taking place far from the brain itself, and specifically, in the muscles, which are the body part most affected by exercise. Working muscles contract, burn fuel and pump out a wide variety of proteins and other substances. The N.I.H. researchers suspected that some of those substances migrated from the muscles into the bloodstream and then to the brain, where they most likely contributed to brain health. © 2016 The New York Times Company

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 5: The Sensorimotor System
Link ID: 22429 - Posted: 07.13.2016

By Andy Coghlan It could be that romantic restaurant, or your favourite park bench. A specific part of the brain seems to be responsible for learning and remembering the precise locations of places that are special to us, research in mice has shown for the first time. Place cells are neurons that help us map our surroundings, and both mice and humans have such cells in the hippocampus – a brain region vital for learning, memory and navigation. Nathan Danielson at Columbia University in New York and his colleagues focused on a part of the hippocampus that feeds signals to the rest of the brain, called CA1. They found that in mice, the CA1 layer where general environment maps are learned and stored is different to the one for locations that have an important meaning. Treadmill test They discovered this by recording brain activity in the two distinct layers of CA1, using mice placed on a treadmill. The treadmill rotated between six distinctive surface materials – including silky ribbons, green pom-pom fabric and silver glitter masking tape. At all times, the mice were able to lick a sensor to try to trigger the release of drinking water. During the first phase of the experiment, however, the sensor only worked at random times. The mice formed generalised maps of their experience on the multi-surfaced treadmill, and the team found that these were stored in the superficial layer of CA1. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 22414 - Posted: 07.09.2016

Laura Sanders If you want to lock new information into your brain, try working up a sweat four hours after first encountering it. This precisely timed trick, described June 16 in Current Biology, comes courtesy of 72 people who learned the location of 90 objects on a computer screen. Some of these people then watched relaxing nature videos, while others worked up a sweat on stationary bikes, alternating between hard and easy pedaling for 35 minutes. This workout came either soon after the cram session or four hours later. Compared with both the couch potatoes and the immediate exercisers, the people who worked out four hours after their learning session better remembered the objects’ locations two days later. The delayed exercisers also had more consistent activity in the brain’s hippocampus, an area important for memory, when they remembered correctly. That consistency indicates that the memories were stronger, Eelco van Dongen of the Donders Institute in the Netherlands and colleagues propose. The researchers don’t yet know how exercise works its memory magic, but they have a guess. Molecules sparked by aerobic exercise, including the neural messenger dopamine and the protein BDNF, may help solidify memories by reorganizing brain cell connections. Citations E. van Dongen et al. Physical exercise performed four hours after learning improves memory retention and increases hippocampal pattern similarity during retrieval. Current Biology. Published online June 16, 2016. doi: 10.1016/j.cub.2016.04.071. © Society for Science & the Public 2000 - 2016

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 22330 - Posted: 06.18.2016

By Julia Shaw Can you trust your memory? Picture this. You are in a room full of strangers and you are going around introducing yourself. You say your name to about a dozen people, and they say their names to you. How many of these names are you going to remember? More importantly, how many of these names are you going to misremember? Perhaps you call a person you just met John instead of Jack. This kind of thing happens all the time. Now magnify the situation. You are talking to a close friend, and you disclose something important to them, perhaps even something traumatic. You might, for example, say you witnessed the Paris attacks in 2015. But, how can you know for sure that your memory is accurate? Like most people, you probably feel that misremembering someone’s name is totally different from misremembering an important and emotional life event. That you could never forget #JeSuisParis, and will always have stable and reliable memories of such atrocities. I’m sure that is what those who witnessed 9/11, the 7/7 bombings in London or the assassination of JFK also thought. However, when experimenters conduct research on the accuracy of these so-called “flashbulb memories,” they find that many people make grave errors in their recollections of important historical and personal events. And these errors are more than just omissions. © 2016 Scientific American

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 22320 - Posted: 06.14.2016