Links for Keyword: Learning & Memory

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 1008

Dean Burnett Every now and then, you see news reports of people with incredible memories, able to recall every single thing from their life at a moment’s notice. Initially, it may sound like an incredibly useful ability. No more searching for your car keys that you had in your hand minutes ago, no more desperately stalling for time as you flounder to remember the name of the casual acquaintance who’s just said hello to you, no more taking notes at all. Why would you need to? It’s no wonder it pops up often in pop culture. Indeed, there are many people who can demonstrate incredible memory prowess, having trained their memories to be as efficient and thorough as possible via useful and approved techniques, in order to compete in memory sports, which are an actual thing. Clearly, for some people at least, there is potential to greatly boost the brain’s ability to store and recall information to well above average levels. Ben Carson even claimed to be able to induce this with a simple bit of surgery (which is utterly wrong) What’s far more rare are reports of people who do this without even trying, without having to learn and train with an endless series of mnemonics and so on. Like one of Marvel’s mutants discovering a hitherto unexpected super power, some people seem to be born with seemingly-infallible memories. There are a number of terms that are used to describe such abilities. Photographic memory, eidetic memory, Hyperthymesia, Highly Superior Autobiographical Memory, perfect recall, there are a number of labels to choose from when discussing formidable memory prowess.

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 23549 - Posted: 04.28.2017

By NICHOLAS BAKALAR Diabetes may be bad for the brain, especially if you are overweight. Researchers studied 50 overweight and 50 normal weight people in the early stages of Type 2 diabetes. All had been given a diagnosis within the previous five years. They compared both groups with 50 healthy control subjects. The scientists performed M.R.I. examinations of their brains and psychological tests of memory, reaction time and planning. Those with diabetes scored worse than the healthy controls on tests of memory and reaction times. M.R.I. scans revealed significant differences in brain areas related to memory, planning and the visual processing of information. Compared with the controls, those with Type 2 diabetes had more severe thinning of the cortex and more white matter abnormalities. Overweight people with diabetes had more brain deterioration than diabetic people of normal weight. Are these changes reversible? Probably not, according to a co-author, Dr. Donald C. Simonson of Brigham and Women’s Hospital in Boston. “When structural changes are seen on an M.R.I. scan, the processes leading up to them have probably been going on for years,” he said. “On the positive side, patients who maintain good control of their diabetes do seem to have a slower rate of deterioration.” The findings were published in Diabetologia. © 2017 The New York Times Company

Related chapters from BP7e: Chapter 13: Homeostasis: Active Regulation of the Internal Environment; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment; Chapter 13: Memory, Learning, and Development
Link ID: 23546 - Posted: 04.28.2017

By Sam Wong Six years ago, a chimpanzee had the bright idea to use moss to soak up water, then drink from it, and seven others soon learned the trick. Three years later, researchers returned to the site to see if the practice had persisted to become part of the local chimp culture. They now report that the technique has continued to spread, and it’s mostly been learned by relatives of the original moss-spongers. This adds to earlier evidence that family ties are the most important routes for culture to spread in animals. After the first report of chimps using moss as a sponge in Budongo Forest, Uganda, researchers rarely saw the behaviour again, and wondered whether chimps still knew how to do it. So they set up an experiment, providing moss and leaves at the clay pit where the chimps had demonstrated the technique before. Then they watched to see whether chimpanzees would use leaves – a more common behaviour – or moss to soak up the mineral-rich water from the pit. The eight original moss-spongers all used moss again during the experiment, and so did another 15 chimps, showing the practice had become more widespread. The researchers wondered what factors influenced which individuals adopted it: were they connected socially, or through families, for instance? © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 23543 - Posted: 04.27.2017

By BENEDICT CAREY Well-timed pulses from electrodes implanted in the brain can enhance memory in some people, scientists reported on Thursday, in the most rigorous demonstration to date of how a pacemaker-like approach might help reduce symptoms of dementia, head injuries and other conditions. The report is the result of decades of work decoding brain signals, helped along in recent years by large Department of Defense grants intended to develop novel treatments for people with traumatic brain injuries, a signature wound of the Iraq and Afghanistan wars. The research, led by a team at the University of Pennsylvania, is published in the journal Current Biology. Previous attempts to stimulate human memory with implanted electrodes had produced mixed results: Some experiments seemed to sharpen memory, but others muddled it. The new paper resolves this confusion by demonstrating that the timing of the stimulation is crucial. Zapping memory areas when they are functioning poorly improves the brain’s encoding of new information. But doing so when those areas are operating well — as they do for stretches of the day in most everyone, including those with deficits — impairs the process. “We all have good days and bad days, times when we’re foggy, or when we’re sharp,” said Michael Kahana, who with Youssef Ezzyat led the research team. “We found that jostling the system when it’s in a low-functioning state can jump it to a high-functioning one.” Researchers cautioned that implantation is a delicate procedure and that the reported improvements may not apply broadly. The study was of epilepsy patients; scientists still have much work to do to determine whether this approach has the same potential in people with other conditions, and if so how best to apply it. But in establishing the importance of timing, the field seems to have turned a corner, experts said. © 2017 The New York Times Company

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 23520 - Posted: 04.21.2017

By Dina Fine Maron A bizarre medical mystery can be added to the list of growing concerns about opioid use in the U.S. Since 2012 more than a dozen illicit drug users have shown up in hospitals across eastern Massachusetts with inexplicable amnesia. In some cases the patients’ memory difficulties had persisted for more than a year. Yet this bewildering condition does not appear to be the result of a simple case of tainted goods: The drug users do not appear to have used the same batch of drugs—or even the same type of substance. To get some answers, the state’s public health officials are rolling out a new requirement that clinicians who come across any patients (not just opioid users) with these types of memory deficits—along with damage to the hippocampus—must report the cases to the state. On April 3 state public health officials received the legal green light from the Massachusetts public health commissioner to make this a required, reportable condition. This technical change, which will last for one year, authorizes public health workers to collect this information and reassures clinicians that they can—and must—share case reports. In the next couple of days workers will notify emergency room personnel as well as addiction counselors and neurology specialists about the new designation via e-mail. The new reporting requirement, state officials hope, will help epidemiologists learn how widespread the issue of potential opioid-linked amnesia may be and whether patients have specific factors in common. The change was first reported by BuzzFeed News. © 2017 Scientific American,

Related chapters from BP7e: Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology; Chapter 13: Memory, Learning, and Development
Link ID: 23513 - Posted: 04.20.2017

By LISA SANDERS, M.D. “I feel very pain,” the 62-year-old mumbled incoherently as he sat in a wheelchair. He had said almost nothing since arriving at the office of Dr. Joel Geerling, a neurologist at Beth Israel Deaconess Medical Center in Boston. A year ago, he was fine, explained the patient’s sister. He was married, working as an auto mechanic, happy, normal. Then, six or seven months ago, he became forgetful. Little things at first — he couldn’t think of the right word, remember people’s names. But then big things — like forgetting who he was talking to on the phone or how to drive to places he had known for decades. That was fall 2014. By that Christmas, walking became difficult. He fell frequently. He had trouble feeding himself. He slept most of the day and night. Over the course of this illness, he lost almost everything. He was fired from his job; his wife left him. He didn’t even have his car anymore: His daughter took the keys after an accident. He had always been friendly and talkative, but now he was withdrawn and nearly wordless. In a few months, the man went from being completely independent to requiring round-the-clock care. This daughter tried to take care of him, but recently she had to hire someone; she couldn’t miss any more college classes. The patient first saw his regular doctor, but she couldn’t figure out what was wrong and sent him to a neurologist. When the specialist was stumped, she sent the patient to Geerling, a neurologist who focused on dementia and other cognitive diseases. In the exam room, the patient slumped in the wheelchair and held his head tipped back so that he was looking straight at the doctor above him, giving him a childlike appearance. When Geerling examined him, he found out why. The patient could not make his eyes move up. When he tried to walk, his feet remained on the ground — as if there were a magnet holding them down — giving him an odd, shuffling, gliding gait. He was unable to count down from 10 and didn’t know where he lived. © 2017 The New York Times Company

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 23509 - Posted: 04.19.2017

By Simon Makin When the now-famous neurological patient Henry Molaison had his brain’s hippocampus surgically sectioned to treat seizures in 1953, science’s understanding of memory inadvertently received perhaps its biggest boost ever. Molaison lost the ability to form new memories of events, and his recollection of anything that had happened during the preceding year was severely impaired. Other types of memory such as learning physical skills were unaffected, suggesting the hippocampus specifically handles the recall of events—known as “episodic” memories. Further research on other patients with hippocampal damage confirmed recent memories are more impaired than distant ones. It appears the hippocampus provides temporary storage for new information whereas other areas may handle long-term memory. Events that we are later able to remember appear to be channeled for more permanent storage in the cortex (the outer layers of the brain responsible for higher functions such as planning and problem-solving). In the cortex these memories form gradually, becoming integrated with related information to build lasting knowledge about ourselves and the world. Episodic memories that are intended for long-term storage accumulate to form the “autobiographical” memory that is so essential for our sense of identity. Neuroscientists know a lot about how short-term memories are formed in the brain but the processes underlying long-term storage are still not well understood. © 2017 Scientific American,

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 23485 - Posted: 04.13.2017

Ed Yong 12:00 PM ET Science Octopuses have three hearts, parrot-like beaks, venomous bites, and eight semi-autonomous arms that can taste the world. They squirt ink, contort through the tiniest of spaces, and melt into the world by changing both color and texture. They are incredibly intelligent, capable of wielding tools, solving problems, and sabotaging equipment. As Sy Montgomery once wrote, “no sci-fi alien is so startlingly strange” as an octopus. But their disarming otherness doesn’t end with their bodies. Their genes are also really weird. A team of scientists led by Joshua Rosenthal at the Marine Biological Laboratory and Eli Eisenberg at Tel Aviv University have shown that octopuses and their relatives—the cephalopods—practice a type of genetic alteration called RNA editing that’s very rare in the rest of the animal kingdom. They use it to fine-tune the information encoded by their genes without altering the genes themselves. And they do so extensively, to a far greater degree than any other animal group. “They presented this work at a recent conference, and it was a big surprise to everyone,” says Kazuka Nishikura from the Wistar Institute. “I study RNA editing in mice and humans, where it’s very restricted. The situation is very different here. I wonder if it has to do with their extremely developed brains.” It certainly seems that way. Rosenthal and Eisenberg found that RNA editing is especially rife in the neurons of cephalopods. They use it to re-code genes that are important for their nervous systems—the genes that, as Rosenthal says, “make a nerve cell a nerve cell.” And only the intelligent coleoid cephalopods—octopuses, squid, and cuttlefish—do so. The relatively dumber nautiluses do not. “Humans don’t have this. Monkeys don’t. Nothing has this except the coleoids,” says Rosenthal.

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 13: Memory, Learning, and Development
Link ID: 23463 - Posted: 04.07.2017

By James Gallagher Health and science reporter, What really happens when we make and store memories has been unravelled in a discovery that surprised even the scientists who made it. The US and Japanese team found that the brain "doubles up" by simultaneously making two memories of events. One is for the here-and-now and the other for a lifetime, they found. It had been thought that all memories start as a short-term memory and are then slowly converted into a long-term one. Experts said the findings were surprising, but also beautiful and convincing. 'Significant advance' Two parts of the brain are heavily involved in remembering our personal experiences. The hippocampus is the place for short-term memories while the cortex is home to long-term memories. This idea became famous after the case of Henry Molaison in the 1950s. His hippocampus was damaged during epilepsy surgery and he was no longer able to make new memories, but his ones from before the operation were still there. So the prevailing idea was that memories are formed in the hippocampus and then moved to the cortex where they are "banked". The team at the Riken-MIT Center for Neural Circuit Genetics have done something mind-bogglingly advanced to show this is not the case. The experiments had to be performed on mice, but are thought to apply to human brains too. They involved watching specific memories form as a cluster of connected brain cells in reaction to a shock. Researchers then used light beamed into the brain to control the activity of individual neurons - they could literally switch memories on or off. The results, published in the journal Science, showed that memories were formed simultaneously in the hippocampus and the cortex. Prof Susumu Tonegawa, the director of the research centre, said: "This was surprising." He told the BBC News website: "This is contrary to the popular hypothesis that has been held for decades. Copyright © 2017

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 23460 - Posted: 04.07.2017

By CHRISTOPHER MELE You were sure you left the keys right there on the counter, and now they are nowhere to be found. Where could they be? Misplacing objects is an everyday occurrence, but finding them can be like going on a treasure hunt without a map. Here are some recommendations from experts to help you recover what is lost. (Consider printing this out and putting it someplace you can easily find it.) Stay calm and search on One of the biggest mistakes people make is becoming panicked or angry, which leads to frantic, unfocused searching, said Michael Solomon, who wrote the book “How to Find Lost Objects.” One of the axioms of his book is: “There are no missing objects. Only unsystematic searchers.” Look for the item where it’s supposed to be. Sometimes objects undergo “domestic drift” in which they were left wherever they were last used, Mr. Solomon said. “Objects are apt to wander,” he wrote in his book. “I have found, though, that they tend to travel no more than 18 inches from their original location.” Be disciplined in your search A common trap is forgetting where you have already searched, Corbin A. Cunningham, a Ph.D. student at the Department of Psychological and Brain Sciences at Johns Hopkins University, said in an email. “Go from one room to another, and only move on if you think you have searched everywhere in that room,” he wrote. Once you have thoroughly searched an area and ruled it out, don’t waste time returning to it. © 2017 The New York Times Company

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 23440 - Posted: 04.03.2017

By C. CLAIBORNE RAY Q. When four of us shared memories of our very young lives, not one of us could recall events before the age of 4 or possibly 3. Is this common? A. Yes. For adults, remembering events only after age 3½ or 4 is typical, studies have found. The phenomenon was named childhood amnesia by Freud and identified late in the 19th century by the pioneering French researcher Victor Henri and his wife, Catherine. The Henris published a questionnaire on early memories in 1895, and the results from 123 people were published in 1897. Most of the participants’ earliest memories came from when they were 2 to 4 years old; the average was age 3. Very few participants recalled events from the first year of life. Many subsequent studies found similar results. Several theories have been offered to explain the timing of laying down permanent memories. One widely studied idea relates the formation of children’s earliest memories to when they start talking about past events with their mothers, suggesting a link between memories and the age of language acquisition. More recent studies, in 2010 and 2014, found discrepancies in the accuracy of young children’s estimates of when things had occurred in their lives. Another 2014 study found a progressive loss of recall as a child ages, with 5-, 6- and 7-year-olds remembering 60 percent or more of some early-life events that were discussed at age 3, while 8- and 9-year-olds remembered only 40 percent of these events. © 2017 The New York Times Company

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 13: Memory, Learning, and Development
Link ID: 23412 - Posted: 03.28.2017

By Jason G. Goldman In the summer of 2015 University of Oxford zoologists Antone Martinho III and Alex Kacelnik began quite the cute experiment—one involving ducklings and blindfolds. They wanted to see how the baby birds imprinted on their mothers depending on which eye was available. Why? Because birds lack a part of the brain humans take for granted. Suspended between the left and right hemispheres of our brains sits the corpus callosum, a thick bundle of nerves. It acts as an information bridge, allowing the left and right sides to rapidly communicate and act as a coherent whole. Although the hemispheres of a bird's brain are not entirely separated, the animals do not enjoy the benefits of this pathway. This quirk of avian neuroanatomy sets up a natural experiment. “I was in St. James's Park in London, and I saw some ducklings with their parents in the lake,” Martinho says. “It occurred to me that we could look at the instantaneous transfer of information through imprinting.” The researchers covered one eye of each of 64 ducklings and then presented a fake red or blue adult duck. This colored duck became “Mom,” and the ducklings followed it around. But when some of the ducklings' blindfolds were swapped so they could see out of only the other eye, they did not seem to recognize their “parent” anymore. Instead the ducklings in this situation showed equal affinity for both the red and blue ducks. It took three hours before any preferences began to emerge. Meanwhile ducklings with eyes that were each imprinted to a different duck did not show any parental preferences when allowed to use both eyes at once. The study was recently published in the journal Animal Behaviour. © 2017 Scientific American

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 10: Vision: From Eye to Brain
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 7: Vision: From Eye to Brain
Link ID: 23401 - Posted: 03.24.2017

By David Wiegand I just did something great for my brain and you can do the same, when the documentary “My Love Affair With the Brain: The Life and Science of Dr. Marian Diamond” airs on KQED on Wednesday, March 22. According to the UC Berkeley professor emerita, the five things that contribute to the continued development of the brain at any age are: diet, exercise, newness, challenge and love. You can check off three of those elements for the day by watching the film by Catherine Ryan and Gary Weimberg. No matter how smart you are, even about anatomy and neuroscience, you will find newness in the information about the miraculous human brain, how it works, and how it keeps on working no matter how old you are. That’s one of the fundamentals of modern neuroscience, of which Diamond is one of the founders. You will also be challenged to consider your own brain, to consider how Diamond’s favorite expression — “use it or lose it” — applies to your brain and your life. You will be challenged to consider what Diamond means when she says brain plasticity (its ability to keep developing by forming new connections between its cells) makes us “the masters of our own minds. We literally create our own masterpiece.” Before Diamond and her colleagues proved otherwise, the prevailing thought was that brains developed according to a genetically determined pattern, hit a high point and then essentially began to deteriorate. Bushwa: A brain can grow — i.e., learn — at any age, and you can teach an old dog new tricks. © 2017 Hearst Corporation

Related chapters from BP7e: Chapter 1: Biological Psychology: Scope and Outlook; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 1: An Introduction to Brain and Behavior; Chapter 13: Memory, Learning, and Development
Link ID: 23392 - Posted: 03.23.2017

By Mo Costandi This map of London shows how many other streets are connected to each street, with blue representing simple streets with few connecting streets and red representing complex streets with many connecting streets. Credit: Joao Pinelo Silva The brain contains a built-in GPS that relies on memories of past navigation experiences to simulate future ones. But how does it represent new environments in order to determine how to navigate them successfully? And what happens in the brain when we enter a new space, or use satellite navigation (SatNav) technology to help us find our way around? Research published Tuesday in Nature Communications reveals two distinct brain regions that cooperate to simulate the topology of one’s environment and plan future paths through it when one is actively navigating. In addition, the research suggests both regions become inactive when people follow SatNav instructions instead of using their spatial memories. In a previous study researchers at University College London took participants on a guided tour through the streets of London’s Soho district and then used functional magnetic resonance imaging (fMRI) to scan their brains as they watched 10 different simulations of navigating those streets. Some of the movies required them to decide at intersections which way would be the shortest path to a predetermined destination; others came with instructions about which way to go at each junction. © 2017 Scientific American,

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 23391 - Posted: 03.22.2017

Ian Sample Science editor Researchers have overcome one of the major stumbling blocks in artificial intelligence with a program that can learn one task after another using skills it acquires on the way. Developed by Google’s AI company, DeepMind, the program has taken on a range of different tasks and performed almost as well as a human. Crucially, and uniquely, the AI does not forget how it solved past problems, and uses the knowledge to tackle new ones. The AI is not capable of the general intelligence that humans draw on when they are faced with new challenges; its use of past lessons is more limited. But the work shows a way around a problem that had to be solved if researchers are ever to build so-called artificial general intelligence (AGI) machines that match human intelligence. “If we’re going to have computer programs that are more intelligent and more useful, then they will have to have this ability to learn sequentially,” said James Kirkpatrick at DeepMind. The ability to remember old skills and apply them to new tasks comes naturally to humans. A regular rollerblader might find ice skating a breeze because one skill helps the other. But recreating this ability in computers has proved a huge challenge for AI researchers. AI programs are typically one trick ponies that excel at one task, and one task only.

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 23360 - Posted: 03.15.2017

There is widespread interest among teachers in the use of neuroscientific research findings in educational practice. However, there are also misconceptions and myths that are supposedly based on sound neuroscience that are prevalent in our schools. We wish to draw attention to this problem by focusing on an educational practice supposedly based on neuroscience that lacks sufficient evidence and so we believe should not be promoted or supported. Generally known as “learning styles”, it is the belief that individuals can benefit from receiving information in their preferred format, based on a self-report questionnaire. This belief has much intuitive appeal because individuals are better at some things than others and ultimately there may be a brain basis for these differences. Learning styles promises to optimise education by tailoring materials to match the individual’s preferred mode of sensory information processing. There are, however, a number of problems with the learning styles approach. First, there is no coherent framework of preferred learning styles. Usually, individuals are categorised into one of three preferred styles of auditory, visual or kinesthetic learners based on self-reports. One study found that there were more than 70 different models of learning styles including among others, “left v right brain,” “holistic v serialists,” “verbalisers v visualisers” and so on. The second problem is that categorising individuals can lead to the assumption of fixed or rigid learning style, which can impair motivation to apply oneself or adapt. Finally, and most damning, is that there have been systematic studies of the effectiveness of learning styles that have consistently found either no evidence or very weak evidence to support the hypothesis that matching or “meshing” material in the appropriate format to an individual’s learning style is selectively more effective for educational attainment. Students will improve if they think about how they learn but not because material is matched to their supposed learning style.

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 23352 - Posted: 03.14.2017

Mo Costandi To many of us, having to memorize a long list of items feels like a chore. But for others, it is more like a sport. Every year, hundreds of these ‘memory athletes’ compete with one another in the World Memory Championships, memorising hundreds of words, numbers, or other pieces of information within minutes. The current world champion is Alex Mullen, who beat his competitors by memorizing a string of more than 550 digits in under 5 minutes. You may think that such prodigious mental feats are linked to having an unusual brain, or to being extraordinarily clever. But they are not. New research published in the journal Neuron shows that you, too, can be a super memorizer with just six weeks of intensive mnemonic training, and also reveals the long-lasting changes to brain structure and function that occur as a result of such training. The Homer Simpson effect: forgetting to remember Read more Martin Dresler of Radboud University in the Netherlands and his colleagues recruited 23 memory athletes, all of whom are currently in the top 50 of the memory sports world rankings, and a group of control participants, who had no previous experience of memory training, and who were carefully selected to match the group of champions in age, sex, and IQ. © 2017 Guardian News and Media Limited

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 23333 - Posted: 03.09.2017

Laura Spinney The misinformation was swiftly corrected, but some historical myths have proved difficult to erase. Since at least 2010, for example, an online community has shared the apparently unshakeable recollection of Nelson Mandela dying in prison in the 1980s, despite the fact that he lived until 2013, leaving prison in 1990 and going on to serve as South Africa's first black president. Memory is notoriously fallible, but some experts worry that a new phenomenon is emerging. “Memories are shared among groups in novel ways through sites such as Facebook and Instagram, blurring the line between individual and collective memories,” says psychologist Daniel Schacter, who studies memory at Harvard University in Cambridge, Massachusetts. “The development of Internet-based misinformation, such as recently well-publicized fake news sites, has the potential to distort individual and collective memories in disturbing ways.” Collective memories form the basis of history, and people's understanding of history shapes how they think about the future. The fictitious terrorist attacks, for example, were cited to justify a travel ban on the citizens of seven “countries of concern”. Although history has frequently been interpreted for political ends, psychologists are now investigating the fundamental processes by which collective memories form, to understand what makes them vulnerable to distortion. They show that social networks powerfully shape memory, and that people need little prompting to conform to a majority recollection — even if it is wrong. Not all the findings are gloomy, however. Research is pointing to ways of dislodging false memories or preventing them from forming in the first place. © 2017 Macmillan Publishers Limited,

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 23324 - Posted: 03.07.2017

By Victoria Sayo Turner When you want to learn something new, you practice. Once you get the hang of it, you can hopefully do what you learned—whether it’s parallel parking or standing backflips—on the next day, and the next. If not, you fall back to stage one and practice some more. But your brain may have a shortcut that helps you lock in learning. Instead of practicing until you’re decent at something and then taking a siesta, practicing just a little longer could be the fast track to solidifying a skill. “Overlearning” is the process of rehearsing a skill even after you no longer improve. Even though you seem to have already learned the skill, you continue to practice at that same level of difficulty. A recent study suggests that this extra practice could be a handy way to lock in your hard-earned skills. In the experiment, participants were asked to look at a screen and say when they saw a stripe pattern. Then two images were flashed one after the other. The images were noisy, like static on an old TV, and only one contained a hard-to-see stripe pattern. It took about twenty minutes of practice for people to usually recognize the image with stripes in it. The participants then continued to practice for another twenty minutes for the overlearning portion. Next, the participants took a break before spending another twenty minutes learning a similar “competitor” task where the stripes were oriented at a new angle. Under normal circumstances, this second task would compete with the first and actually overwrite that skill, meaning people should now be able to detect the second pattern but no longer see the first. The researchers wanted to see if overlearning could prevent the first skill from disappearing. © 2017 Scientific American

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 23293 - Posted: 03.01.2017

Rae Ellen Bichell Initially, Clint Perry wanted to make a vending machine for bumblebees. He wanted to understand how they solve problems. Perry, a cognitive biologist at Queen Mary University of London, is interested in testing the limits of animal intelligence. "I want to know: How does the brain do stuff? How does it make decisions? How does it keep memory?" says Perry. And how big does a brain need to be in order to do all of those things? He decided to test this on bumblebees by presenting the insects with a puzzle that they'd likely never encounter in the wild. He didn't end up building that vending machine, but he did put bees through a similar scenario. Perry and his colleagues wrote Thursday in the journal Science that, despite bees' miniature brains, they can solve new problems quickly just by observing a demonstration. This suggests that bees, which are important crop pollinators, could in time adapt to new food sources if their environment changed. As we have reported on The Salt before, bee populations around the world have declined in recent years. Scientists think a changing environment is at least partly responsible. Perry and colleagues built a platform with a porous ball sitting at the center of it. If a bee went up to the ball, it would find that it could access a reward, sugar water. One by one, bumblebees walked onto the platform, explored a bit, and then slurped up the sugar water in the middle. "Essentially, the first experiment was: Can bees learn to roll a ball?" says Perry. © 2017 npr

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 23278 - Posted: 02.24.2017