Links for Keyword: Learning & Memory

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 81 - 100 of 790

Kelly Servick Our imperfect memory is inconvenient at the grocery store and downright dangerous on the witness stand. In extreme cases, we may be confident that we remember something that never happened at all. Now, a group of neuroscientists say that they’ve identified a potential mechanism of false memory creation and have planted such a memory in the brain of a mouse. Neuroscientists are only beginning to tackle the phenomenon of false memory, says Susumu Tonegawa of the Massachusetts Institute of Technology in Cambridge, whose team conducted the new research. “It’s there, and it’s well established,” he says, “but the brain mechanisms underlying this false memory are poorly known.” With optogenetics—the precise stimulation of neurons with light—scientists can seek out the physical basis of recall and even tweak it a bit, using mouse models. Like us, mice develop memories based on context. When a mouse returns to an environment where it felt pain in the past, it recalls that experience and freezes with fear. Tonegawa’s team knew that the hippocampus, a part of the brain responsible for establishing memory, plays a role in encoding context-based experiences, and that stimulating cells in a part of the hippocampus called the dentate gyrus can make a mouse recall and react to a mild electric shock that it received in the past. The new goal was to connect that same painful shock memory to a context where the mouse had not actually received a shock. © 2012 American Association for the Advancement of Science

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 18416 - Posted: 07.27.2013

by Virginia Morell The next time your dog digs a hole in the backyard after watching you garden, don't punish him. He's just imitating you. A new study reveals that our canine pals are capable of copying our behavior as long as 10 minutes after it's happened. The ability is considered mentally demanding and, until this discovery, something that only humans and apes were known to do. Scientists first discovered that dogs are excellent at imitating their owners in 2006. Or at least, one dog had the talent: Philip, a 4-year-old Belgian Tervuren working with József Topál, a behavioral ethologist at the Hungarian Academy of Sciences in Budapest. Topál adapted the method (called "Do as I do") that Keith and Catherine Hayes developed in the 1950s for teaching an infant chimpanzee to copy their actions. Philip was already a trained assistant dog for his disabled owner and readily followed Topál's commands. First, Topál told him to stay, and then commanded "Do as I do." The researcher then performed a simple action, such as jumping in place, barking, putting an object in a box, or carrying it to Philip's owner. Next, Topál ordered, "Do it!", and Philip responded by matching the scientist's actions. The experiment was designed to explore dog's imitative abilities, not to measure how long Philip's memory lasted; but his owner used Philip's skill to teach him how to do new, useful behaviors, such as fetching objects or putting things away. Despite Philip's abilities, "nobody really cared, or saw that it could be useful for investigating how dogs learn or see their world," says Ádám Miklósi, a behavioral ethologist at Eötvös Loránd University in Budapest who was part of Topál's team. And in 2009, another team concluded that dogs were only able to correctly imitate if there was no more than a 5-second delay between watching the action and repeating it. With such a short retention span, dogs' vaunted imitation skills seemed useless. © 2010 American Association for the Advancement of Science

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 18399 - Posted: 07.23.2013

by Virginia Morell A single cue—the taste of a madeleine, a small cake, dipped in lime tea—was all Marcel Proust needed to be transported down memory lane. He had what scientists term an autobiographical memory of the events, a type of memory that many researchers consider unique to humans. Now, a new study argues that at least two species of great apes, chimpanzees and orangutans, have a similar ability; in zoo experiments, the animals drew on 3-year-old memories to solve a problem. Their findings are the first report of such a long-lasting memory in nonhuman animals. The work supports the idea that autobiographical memory may have evolved as a problem-solving aid, but researchers caution that the type of memory system the apes used remains an open question. Elephants can remember, they say, but many scientists think that animals have a very different kind of memory than our own. Many can recall details about their environment and routes they've traveled. But having explicit autobiographical memories of things "I" did, or remembering events that occurred in the past, or imagining those in the future—so-called mental time travel—are considered by many psychologists to be uniquely human skills. Until recently, scientists argued that animals are stuck in time, meaning that they have no sense of the past or future and that they aren't able to recall specific events from their lives—that is, they don't have episodic memories, the what-where-when of an event that happened. © 2010 American Association for the Advancement of Science

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 18395 - Posted: 07.20.2013

by Jennifer Viegas The memory of dogs is more human-like than previously thought, allowing our furry pals to copy our actions, even after delays. The discovery, outlined in the latest issue of Animal Cognition, means that dogs possess what’s known as “declarative memory,” which refers to memories which can be consciously recalled, such as facts or knowledge. Humans, of course, have this ability, as anyone playing a trivia game demonstrates. But it had never fully been scientifically proven in dogs before, although dog owners and canine aficionados have likely witnessed the skill first-hand for years. Claudia Fugazza and Adám Miklósi of Eötvös Loránd University in Hungary conducted the study. A LOT of dog studies happen in Hungary, where people really love their pooches and some of the world’s leading canine researchers live. The team investigated if dogs could defer imitation, which in this case meant copying what their owners were doing. Eight adult pet dogs were trained using the “Do As I Do” method. (Fugazza is a leading expert on this training method for dogs.) The tasks included copying their owners walking around a bucket and ringing a bell. Can dogs then successfully replicate what they learned after a 10 or so minute distracting break? The owner, Valentina, got her dog Adila to pay attention to her. She then demonstrated an activity, like ringing a bell with her hand. © 2013 Discovery Communications, LLC

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 18386 - Posted: 07.18.2013

By Susan Gaidos For nearly a decade, neuro­scientist Li-Huei Tsai and her colleagues have been studying senile mice. In a lab at MIT her team has genetically fast-forwarded the mice into a condition much like dementia: They have problems making new memories and retrieving old ones. The mice forget how to navigate water mazes they had mastered; they don’t recognize signs of imminent danger they had once responded to fearfully. Last year, Tsai’s group found a way to reverse the process. When given a drug known to strengthen nerve cell connections in the brain, the mice not only gained back the ability to learn new tasks, but also remembered many forgotten behaviors. On the opposite coast, researchers are using a similar drug to rewire long-held memories in mice facing another kind of mental challenge: drug addiction. Neurobiologist Marcelo Wood of the University of California, Irvine coaxes cocaine-seeking mice to view the sights and sounds they’ve learned to associate with getting cocaine. He then creates a new, harmless memory around those cues. After a single treatment, mice placed near their drug den forget their cravings. Though Tsai and Wood use different drugs in their studies, both draw on research showing that the ability to learn and remember can be influenced by subtle changes to DNA — changes that affect how genes turn on and off without altering the underlying genetic information. Such epigenetic modifications, it turns out, might have a profound impact on long-term memory. Exploring these methods has opened a growing field of research, called neuroepigenetics, aimed at finding ways to boost memory in humans. Results so far offer the prospect of new types of medication to improve memory and even restore long-forgotten information in disorders such as Alzheimer’s disease, Huntington’s disease or other types of dementia. © Society for Science & the Public 2000 - 2013

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 13: Memory, Learning, and Development
Link ID: 18373 - Posted: 07.13.2013

By Christie Aschwanden, It’s a thought that crosses many middle-aged minds when a word is forgotten or a set of keys misplaced: Is this a fluke, or the first sign of dementia? “Most of us will experience some cognitive changes with age,” says Molly Wagster, chief of the behavioral and systems neuroscience branch of the National Institute on Aging, who likens the mental change to the slowing of a marathon runner’s times with advancing years. The ability to call up words is one of the first things to slip. “You might find it more difficult to recall someone’s name or the name of a book you read or favorite movie. Eventually, you’ll remember it, but it takes a little longer,” Wagster says. Such problems are irritating and frustrating, but they’re usually not a sign that your mind is going, Wagster says. “There are a lot of things that have some evidence behind them, but it’s hard to find interventions that have convincing evidence behind them,” says Victor Henderson, a neurologist who studies cognitive aging at Stanford University Medical School. Physical activity seems like the most promising thing you can do to keep your brain at its best, Henderson says. The evidence comes mostly from observational studies rather than the randomized, controlled trials that are considered the gold standard, but it’s consistent: People who engage in aerobic activity — for instance, walking several times per week — show improvements in their cognitive function, particularly in their ability to switch quickly from task to task, Wagster says. © 1996-2013 The Washington Post

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 13: Memory, Learning, and Development
Link ID: 18338 - Posted: 07.03.2013

Buyer beware. For US$249 a company in the United States is promising to send curious and competitive players of computer games an unusual headset. The device, the company claims, will convert electronic gamers into electronic-gamers. At the touch of a button, the headset will send a surge of electricity through their prefrontal cortex. It promises to increase brain plasticity and make synapses fire faster, to help gamers repel more space invaders and raid more tombs. And, according to the publicity shots on the website, it comes in a choice of red or black. The company is accepting orders, but says that it will not ship its first headsets to customers until next month. Some are unwilling to wait. Videos on the Internet already show people who have cobbled together their own version with a 9-volt battery and some electrical wire. If you are not fussy about the colour scheme, other online firms already promise to supply the components and instructions you need to make your own. Or you could rummage around in the garage. That’s ‘could’ as in ‘you might be able to’, by the way; not ‘could’ as in ‘it’s a good idea’. In fact, to try to boost cognitive performance in this way might be a very bad idea indeed. Would it work? It might or it might not. Nobody knows. All we know for sure is that the technology, known as transcranial direct-current stimulation (tDCS), is likely to soon get into the hands, and onto the heads, of many more people. © 2013 Nature Publishing Group

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 18289 - Posted: 06.20.2013

Scientists have discovered more about the role of an important brain protein which is instrumental in translating learning into long-term memories. Writing in Nature Neuroscience, they said further research into the Arc protein's role could help in finding new ways to fight neurological diseases. The same protein may also be a factor in autism, the study said. Recent research found Arc lacking in the brains of Alzheimer's patients. Dr Steve Finkbeiner, professor of neurology and physiology at the University of California, who led the research at Gladstone Institutes, said lab work showed that the role of the Arc protein was crucial. "Scientists knew that Arc was involved in long-term memory, because mice lacking the Arc protein could learn new tasks, but failed to remember them the next day," he said. Further experiments revealed that Arc acted as a "master regulator" of the neurons during the process of long-term memory formation. The study explained that during memory formation, certain genes must be switched on and off at very specific times in order to generate proteins that help neurons lay down new memories. The authors found that it was Arc that directed this process, from inside the nucleus. Dr Finkbeiner said people who lack the protein could have memory problems. BBC © 2013

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 13: Memory, Learning, and Development
Link ID: 18253 - Posted: 06.10.2013

By Aiden Arnold “…henceforth, space by itself, and time by itself, are doomed to fade away into mere shadows, and only a kind of union between the two will preserve an independent reality.” This now iconic quote spoken by Hermann Minkowski in 1906 captured the spirit of Albert Einstein’s recently published special theory of relativity. Einstein, in a stroke of mathematical genius, had shown that both space and time as independent mathematical constructs were mere illusions in the equations of relativity, conceding instead to a 4-dimensional construct which Minkowski adroitly termed space-time. While most people are familiar with the ensuing influence Einstein’s ideas had on both the academic and public conception of the physical universe, few people are aware a similar revolution against space and time is underway in the fields of experimental psychology and neuroscience. Spatial cognition is the study of how the mind’s cognitive architecture perceives, organizes and interacts with physical space. It has long been of interest to philosophers and scientists, with perhaps the biggest historical step towards our modern ideas occurring within Immanuel Kant’s Critique of Pure Reason (1781/1787). Kant argued that space as we know it is a preconscious organizing feature of the human mind, a scaffold upon which we’re able to understand the physical world of objects, extension and motion. In a sense, space to Kant was a window into the world, rather than a thing to be perceived in it. © 2013 Scientific American

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 13: Memory, Learning, and Development
Link ID: 18223 - Posted: 06.04.2013

By Ian Chant Kids are wildly better than adults at most types of learning—most famously, new languages. One reason may be that adults' brains are “full,” in a way. Creating memories relies in part on the destruction of old memories, and recent research finds that adults have high levels of a protein that prevents such forgetting. Whenever we learn something, brain cells become wired together with new synapses, the connections between neurons that enable communication. When a memory fades, those synapses weaken. Researchers led by Joe Tsien, a neuroscientist at the Medical College of Georgia, genetically engineered mice to have high levels of NR2A, part of a receptor on the surface of some neurons that regulates the flow of chemicals such as magnesium and calcium in and out of a cell. NR2A is known to be more prevalent in the brains of mammals as they age. The engineered mice, though young, had adult levels of NR2A, and they showed some difficulty forming long-term memories. More dramatically, their brains could barely weaken their synapses, a process that allows the loss of useless information in favor of more recent data. A similar process may govern short-term memories as well. When you hear a friend ask for coffee, the details of her order don't just slip away in your mind—your brain must produce a protein that actively destroys the synapses encoding that short-term memory, according to a 2010 paper in Cell. Much psychological research supports the idea that forgetting is essential to memory and emotional health. Tsien's new work, published January 8 in Scientific Reports, suggests that older brains hold on to their connections more dearly—which helps to explain why learning is more laborious as we age and why memory trouble later in life so often involves the accidental recall of outdated information. © 2013 Scientific American

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 13: Memory, Learning, and Development
Link ID: 18220 - Posted: 06.03.2013

By Suzanne Corkin My friend’s father was a neurosurgeon. As a child, I had no idea what a neurosurgeon did. Years later, when I was a graduate student in the Department of Psychology at McGill University, this man reentered my life. While reading articles on memory in medical journals, I came across a report by a doctor who had performed a brain operation to cure a young man’s intractable epilepsy. The operation caused the patient to lose his capacity to establish new memories. The doctor who coauthored the article was my friend’s father, William Beecher Scoville. The patient was Henry. This childhood connection to Henry’s neurosurgeon made reading about the “amnesic patient, H.M.” more compelling. Later, when I joined Brenda Milner’s laboratory at the Montreal Neurological Institute, Henry’s case fell into my lap. For my PhD thesis, I was able to test him in 1962 when he came to Milner’s lab for scientific study. She had been the first psychologist to test Henry after his operation, and her 1957 paper with Scoville, describing Henry’s operation and its awful consequences, revolutionized the science of memory. I was trying to expand the scientific understanding of Henry’s amnesia by examining his memory through his sense of touch, his somatosensory system. My initial investigation with him was focused and brief, lasting one week. After I moved to MIT, however, Henry’s extraordinary value as a research participant became clear to me, and I went on to study him for the rest of his life, forty-six years. Since his death, I have dedicated my work to linking fifty-five years of rich behavioral data to what we will learn from his autopsied brain. © 2012 Popular Science

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 18201 - Posted: 05.30.2013

The reason we struggle to recall memories from our early childhood is down to high levels of neuron production during the first years of life, say Canadian researchers. The formation of new brain cells increases the capacity for learning but also clears the mind of old memories. The findings were presented to the Canadian Association of Neuroscience. An expert at City University in London said the mouse study called into question some psychological theories. Neurogenesis, or the formation of new neurons in the hippocampus - a region of the brain known to be important for learning and remembering, reaches its peak before and after birth. It then declines steadily during childhood and adulthood. Dr Paul Frankland and Dr Sheena Josselyn, from the Hospital for Sick Children in Toronto and the University of Toronto, wanted to find out how the process of new neuron generation impacted on memory storage. They carried out their research on younger and older mice in the lab. Early amnesia In adult mice, they found that increasing neurogenesis after memory formation was enough to bring about forgetting. In infant mice, they discovered that decreasing neurogenesis after memory formation meant that the normal forgetting observed at this age did not occur. Their research suggests a direct link between a reduction in neuron growth and increased memory recall. They found the opposite to be true also - a decreased ability to remember when neurogenesis is increased (as happens during infancy). BBC © 2013

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 13: Memory, Learning, and Development
Link ID: 18192 - Posted: 05.25.2013

By Maia Szalavitz There are many roads to greatness, but logging 10,000 hours of practice to help you perfect a skill may not be sufficient. Based on research suggesting that practice is the essence of genius, best-selling author Malcolm Gladwell popularized the idea that 10,000 hours of appropriately guided practice was “the magic number of greatness,” regardless of a person’s natural aptitude. With enough practice, he claimed in his book Outliers, anyone could achieve a level of proficiency that would rival that of a professional. It was just a matter of putting in the time. But in the years since Gladwell first pushed the “10,000-hours rule,” researchers have engaged in a spirited debate over what that rule entails. It’s clear that not just any practice, but only dedicated and intensive honing of skills that counts. And is there magic in that 10,000th hour? In an attempt to answer some of these questions, and to delve further into how practice leads to mastery, Zach Hambrick, associate professor of psychology at Michigan State University, and his colleagues decided to study musicians and chess players. It helps that both skills are amenable to such analysis because players can be ranked almost objectively. So in their research, which was published in the journal Intelligence, they reanalyzed data from 14 studies of top chess players and musicians. They found that for musicians, only 30% of the variance in their rankings as performers could be accounted for by how much time they spent practicing. For chess players, practice only accounted for 34% of what determined the rank of a master player. © 2013 Time Inc. All rights reserved

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 1: Biological Psychology: Scope and Outlook
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 1: An Introduction to Brain and Behavior
Link ID: 18182 - Posted: 05.22.2013

By CLAUDIA DREIFUS MONTREAL — In many ways, the Obama administration’s new plan to map the human brain has its origins in the work of Brenda Milner, the neuropsychologist whose detailed observations of an amnesia patient in the 1950s showed how memory is rooted in specific regions of the brain. “Prior to Brenda Milner’s discoveries, many behaviorists and some cognitive psychologists followed the lead of Freud and Skinner in abandoning biology as a useful guide to the study of memory,” the Nobel laureate Dr. Eric Kandel wrote in his memoir, “In Search of Memory.” “Milner’s work changed all that.” The amnesia patient, Henry Molaison (known during his lifetime only as H.M., to protect his privacy), died at 82 in 2008; his brain is now being dissected and digitally mapped in exquisite detail. But Dr. Milner is still very much alive. Two months short of her 95th birthday, she puts in full days at the Montreal Neurological Institute and Hospital, where she is studying left/right brain differences. We spoke in her offices here at “the Neuro” and at the annual meeting of the American Association for the Advancement of Science in Boston. Here is a condensed and edited version of the conversations. How did you come to work with H.M., perhaps the most famous patient in the history of neuroscience? In 1950, while working on a doctorate at McGill, I went to work here at the Montreal Neurological Institute to study the patients of Dr. Wilder Penfield. He’d created the Neuro as a place to pioneer the neurosurgical treatment of epilepsy. He’d developed a procedure for patients who were having epileptic seizures because of brain injuries where he’d excise the injured part of the brain. © 2013 The New York Times Company

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 18181 - Posted: 05.21.2013

by Emily Underwood If you are one of the 20% of healthy adults who struggle with basic arithmetic, simple tasks like splitting the dinner bill can be excruciating. Now, a new study suggests that a gentle, painless electrical current applied to the brain can boost math performance for up to 6 months. Researchers don't fully understand how it works, however, and there could be side effects. The idea of using electrical current to alter brain activity is nothing new—electroshock therapy, which induces seizures for therapeutic effect, is probably the best known and most dramatic example. In recent years, however, a slew of studies has shown that much milder electrical stimulation applied to targeted regions of the brain can dramatically accelerate learning in a wide range of tasks, from marksmanship to speech rehabilitation after stroke. In 2010, cognitive neuroscientist Roi Cohen Kadosh of the University of Oxford in the United Kingdom showed that, when combined with training, electrical brain stimulation can make people better at very basic numerical tasks, such as judging which of two quantities is larger. However, it wasn't clear how those basic numerical skills would translate to real-world math ability. © 2010 American Association for the Advancement of Science

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 14: Attention and Consciousness
Link ID: 18168 - Posted: 05.18.2013

by Douglas Heaven Got a memory like a fish? The first study to visualise live memory retrieval in the whole brain has not only debunked the "three-second memory" myth, but also sheds light on the brain processes involved in forming long-term memories. Even the haziest recollections have a physical basis in the brain, but the mechanisms behind the formation and retrieval of memories are not well understood. By working with zebrafish, which are small and partially transparent, Hitoshi Okamoto at the RIKEN Brain Science Institute in Wako, Japan, and colleagues were able to study the whole brain at once. This allowed them to observe the roles played by different brain regions as a memory was retrieved. The team used fish with a genetically engineered fluorescent protein in the brain that glows less brightly when calcium levels increase – which occurs when neurons fire. They were able to study the activity of these proteins under a microscope. First, the team trained a group of fish to respond to a visual cue to avoid a small electric shock. Each fish was placed in a tank containing two compartments. When a red light shone in one compartment the fish had to swim to the other to avoid the shock. The researchers then selected the fish that had learned to perform the avoidance task successfully at least 80 per cent of the time and looked at the activity in their brains while a red light was switched on and off. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 18167 - Posted: 05.18.2013

By Jason G. Goldman There is a rich tradition in psychology and neuroscience of using animals as models for understanding humans. Humans, after all, are enormously complicated creatures to begin even from a strictly biological perspective. Tacking on the messiness that comes with culture makes the study of the human mind tricky, at best. So, just as biomedical scientists have relied upon the humble mouse, psychological and cognitive scientists have too turned to our evolutionary cousins in the animal kingdom as a means of better understanding ourselves. In her new book Animal Wise, journalist Virginia Morrell recounts a conversation with one researcher who pointed out that decades of research were built upon “rats, pigeons, and college sophomores, preferably male.” The college undergrads stood in for all of humanity, the rats served as representatives of all other mammals, and pigeons served as a model for the rest of the animal kingdom. The silly part isn’t that non-human animals can be used effectively as a means of understanding more about our own species. The idea is simple: understand how a simple system works, and you can make careful inferences about the way that complex systems work. That is (or should be) obvious. In his interview with CNN today, memory research pioneer and Nobel Prize winner Eric Kandel said as much: “Rather than studying the most complex form of memory in a very complicated animal, we had to take the most simple form — an implicit form of memory — in a very simple animal.” © 2013 Scientific American

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 18161 - Posted: 05.16.2013

By Bruce Bower Provocative evidence that certain memory exercises make people smarter has sparked the rise of online brain-training programs such as Lumosity. But at least one type of brain training may not work as advertised, a new study finds. As expected, practicing improved volunteers’ performance on tests of memory and the ability to locate items quickly in busy scenes, say psychologist Thomas Redick of Indiana University Purdue University Columbus and his colleagues. That improvement did not, however, translate into higher scores on tests of intelligence and multitasking, the researchers report in the May Journal of Experimental Psychology: General. Redick’s investigation is part of a growing scientific debate about brain training, which is promoted by some companies as having a variety of mental benefits. Some researchers say that extensive instruction and training on memory tasks can indeed fortify reasoning and problem solving. Others are skeptical that vigorous memory sessions produce such wide-ranging effects. The dispute feeds into a longstanding scientific controversy about whether enriched environments can increase intelligence, as measured on IQ tests. What’s not up for debate is that many people feel smarter after brain training. In the new study, 10 of 23 individuals who completed memory sessions said that the program helped them to think, multitask and focus better in daily life. But the scientists say that even if some participants performed daily tasks better after memory training, they may simply have tried harder or felt better about their efforts due to a belief that training had strengthened their minds. © Society for Science & the Public 2000 - 2013

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 18140 - Posted: 05.11.2013

Alla Katsnelson People who use a ‘brain-workout’ program for just 10 hours have a mental edge over their peers even a year later, researchers report today in PLoS ONE1. The search for a regimen of mental callisthenics to stave off age-related cognitive decline is a booming area of research — and a multimillion-dollar business. But critics argue that even though such computer programs can improve performance on specific mental tasks, there is scant proof that they have broader cognitive benefits. For the study, adults aged 50 and older played a computer game designed to boost the speed at which players process visual stimuli. Processing speed is thought to be “the first domino that falls in cognitive decline”, says Fredric Wolinsky, a public-health researcher at the University of Iowa in Iowa City, who led the research. The game was developed by academic researchers but is now sold under the name Double Decision by Posit Science, based in San Francisco, California. (Posit did not fund the study.) Players are timed on how fast they click on an image in the centre of the screen and on others that appear around the periphery. The program ratchets up the difficulty as a player’s performance improves. Participants played the training game for 10 hours on site, some with an extra 4-hour ‘booster’ session later, or for 10 hours at home. A control group worked on computerized crossword puzzles for 10 hours on site. Researchers measured the mental agility of all 621 subjects before the brain training began, and again one year later, using eight well-established tests of cognitive performance. © 2013 Nature Publishing Group

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 13: Memory, Learning, and Development
Link ID: 18109 - Posted: 05.02.2013

By Meghan Rosen A child who is good at learning math may literally have a head for numbers. Kids’ brain structures and wiring are associated with how much their math skills improve after tutoring, researchers report April 29 in the Proceedings of the National Academy of Sciences. Certain measures of brain anatomy were even better at judging learning potential than traditional measures of ability such as IQ and standardized test results, says study author Kaustubh Supekar of Stanford University. These signatures include the size of the hippocampus — a string bean–shaped structure involved in making memories — and how connected the area was with other parts of the brain. The findings suggest that kids struggling with their math homework aren’t necessarily slacking off, says cognitive scientist David Geary of the University of Missouri in Columbia. “They just may not have as much brain region devoted to memory formation as other kids.” The study could give scientists clues about where to look for sources of learning disabilities, he says. Scientists have spent years studying brain regions related to math performance in adults, but how kids learn is still “a huge question,” says Supekar. He and colleagues tested IQ and math and reading performance in 24 8- and 9-year-olds, then scanned their brains in an MRI machine. The scans measured the sizes of different brain structures and the connections among them. “It’s like creating a circuit diagram,” says study leader Vinod Menon, also of Stanford. © Society for Science & the Public 2000 - 2013

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 14: Attention and Consciousness
Link ID: 18094 - Posted: 04.30.2013