Links for Keyword: Obesity

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 81 - 100 of 814

By GINA KOLATA The mice were eating their usual chow and exercising normally, but they were getting fat anyway. The reason: researchers had deleted a gene that acts in the brain and controls how quickly calories are burned. Even though they were consuming exactly the same number of calories as lean mice, they were gaining weight. So far, only one person — a severely obese child — has been found to have a disabling mutation in the same gene. But the discovery of the same effect in mice and in the child — a finding published Wednesday in the journal Science — may help explain why some people put on weight easily while others eat all they want and seem never to gain an ounce. It may also offer clues to a puzzle in the field of obesity: Why do studies find that people gain different amounts of weight while overeating by the same amount? Scientists have long thought explanations for why some people get fat might lie in their genes. They knew body weight was strongly inherited. Years ago, for example, they found that twins reared apart tended to have similar weights and adoptees tended to have weights like their biological parents, not the ones who reared them. As researchers developed tools to look for the actual genes, they found evidence that many — maybe even hundreds — of genes may be involved, stoking appetites, making people voraciously hungry. This rare gene-disabling mutation, though, is intriguing because it seems to explain something different, a propensity to pile on pounds even while eating what should be a normal amount of food. Investigators are now searching for other mutations of the same gene in fat people that may have a similar, but less extreme effect. The hope is that in the long term, understanding how this gene affects weight gain might lead to treatments for obesity that alter the rate at which calories are burned. © 2013 The New York Times Company

Related chapters from BP7e: Chapter 13: Homeostasis: Active Regulation of the Internal Environment; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment; Chapter 13: Memory, Learning, and Development
Link ID: 18394 - Posted: 07.20.2013

By GRETCHEN REYNOLDS Two newly published studies investigate the enticing possibility that we might one day be able to gain the benefits of exercise by downing a pill, rather than by actually sweating. But while some of the research holds out promise for an effective workout pill, there remains the question of whether such a move is wise. The more encouraging of the new studies, which appears this week in Nature Medicine, expands on a major study published last year in Nature. In that study, researchers at the Scripps Research Institute in Jupiter, Fla., reported that a compound they had created and injected into obese mice increased activation of a protein called REV-ERB, which is known to partially control animals’ circadian rhythms and internal biological clocks. The injected animals lost weight, even on a high-fat diet, and improved their cholesterol profiles. Unexpectedly, the treated mice also began using more oxygen throughout the day and expending about 5 percent more energy than untreated mice, even though they were not moving about more than the other animals. In fact, in most cases, they were more physically lazy and inactive than they had been before the injections. The drug, it seemed, was providing them with a workout, minus the effort. Intrigued, the Scripps scientists, in conjunction with researchers from the Pasteur Institute in France and other institutions, set out to see what their compound might be doing inside muscles to provide this ersatz exercise. They knew that their drug increased the potency of the REV-ERB protein, but no one yet knew what REV-ERB actually does in muscles. So they began by developing a strain of mice that could not express very much of the protein in their muscle cells. Copyright 2013 The New York Times Company

Related chapters from BP7e: Chapter 13: Homeostasis: Active Regulation of the Internal Environment; Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment; Chapter 5: The Sensorimotor System
Link ID: 18384 - Posted: 07.18.2013

by Sarah C. P. Williams Researchers think they've hit on why a common obesity gene causes weight gain: Those who carry a version of it don't feel full after eating and take in extra calories. That's because the variant of the FTO gene in question, which one in six individuals carry, leads to higher levels of ghrelin, a hormone involved in mediating appetite and the body's response to food, researchers have discovered. While most studies on FTO have relied on mice, the new work analyzed blood samples and brain scans from humans. "This is a very exciting piece of research," says geneticist Andrew Hattersley of the Peninsula Medical School in Exeter, U.K., who was not involved in the new study. "There is a lot of work that's been done on the mechanism of FTO in animals, but you have to be careful about applying those lessons to people. So it's nice to finally see work done in humans." Hattersley was part of a team that in 2007 reported that people who had one version of the FTO gene, called AA, weighed an average of 3 kilograms more than those with the TT version of the gene. Since then, studies in mice have shown that in everyone, there are high levels of the FTO protein in brain areas that control energy balance. Researchers have also found that animals with the AA version tend to eat more and prefer high-fat food compared with those with the TT version. But why FTO had this effect wasn't known. © 2010 American Association for the Advancement of Science.

Related chapters from BP7e: Chapter 13: Homeostasis: Active Regulation of the Internal Environment; Chapter 5: Hormones and the Brain
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment; Chapter 8: Hormones and Sex
Link ID: 18381 - Posted: 07.16.2013

by Elizabeth Norton Transforming fat cells into calorie-burning machines may sound like the ultimate form of weight control, but the idea is not as far-fetched as it sounds. Unexpectedly, some fat cells directly sense dropping temperatures and release their energy as heat, according to a new study; that ability might be harnessed to treat obesity and diabetes, researchers suggest. Fat is known to help protect animals from the cold—and not only by acting as insulation. In the early 1990s, scientists studying mice discovered that cold temperatures trigger certain fat cells, called brown adipose tissue, to release stored energy in the form of heat—to burn calories, in other words. Researchers have always assumed this mechanism was an indirect response to the physiological stress of cold temperatures, explains cell biologist Bruce Spiegelman of Harvard Medical School, Boston. The activation of brown fat seems to start with sensory neurons throughout the body informing the brain of a drop in temperature. In response the brain sends out norepinephrine, the chief chemical messenger of the sympathetic nervous system, which mobilizes the body to cope with many situations. In experimental animals, stimulating norepinephrine receptors triggered brown adipose tissue to release its energy and generate heat, while animals bred to be missing these receptors were unable to mount the same fat cell response. People also have brown adipose tissue that generates heat when the body is cold. And unlike white fat, which builds up around the abdomen and contributes to many disorders including heart disease and diabetes, this brown fat is found in higher proportions in leaner people and seems to actively protect against diabetes. © 2010 American Association for the Advancement of Science

Related chapters from BP7e: Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 18334 - Posted: 07.02.2013

By JANE E. BRODY Most people know that obesity can result in serious health problems, yet many of us continue to focus on its cosmetic consequences rather than its risks to health. This distorted view may change now that the American Medical Association has finally labeled obesity a disease, not just a risk factor for other disorders. Last month, the organization recognized that obesity is a verifiable illness that warrants far more attention than physicians, patients and insurers currently give it. The designation may change how aggressively doctors treat obesity, foster the development of new therapies, and lead to better coverage byinsurers. After all, the price of not treating obesity is now in the stratosphere. Obesity-related health conditions cost the nation more than $150 billion and result in an estimated 300,000 premature deaths each year. If the population’s weight gain is not soon capped (or better yet, reversed), experts predict that half of adults in America will be obese by 2040. The A.M.A. has said in effect that it is medicine’s responsibility to provide the knowledge and tools needed to curb this runaway epidemic. On June 19, James Gandolfini, the hefty award-winning actor who portrayed Tony Soprano in “The Sopranos,” died at 51, apparently of a heart attack, while on vacation in Italy. Even if genetics played a role, Mr. Gandolfini’s weight contributed significantly to his risk of sudden cardiac death. Not a week earlier, a 46-year-old member of my family who weighed over 300 pounds died suddenly of what might have been a heart attack while dozing in front of the television. He had long suffered from sleep apnea (a risk factor for sudden death), high blood pressure and severe gout, all results of his extreme weight. Copyright 2013 The New York Times Company

Related chapters from BP7e: Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 18330 - Posted: 07.01.2013

By NICHOLAS BAKALAR Obesity in adolescents is associated with a range of cardiovascular and other health risks. Now a new study adds one more: hearing loss. Several studies have demonstrated the association of obesity with hearing loss in adults, but now researchers examining records of a nationwide sample of 1,488 boys and girls ages 12 to 19 have found the same association in teenagers. The study appeared online in The Laryngoscope. The researchers controlled for various factors, including poverty, sex, race and previous exposure to loud noises. They found that being at or above the 95th percentile for body mass index — the definition of obesity in teenagers — was independently associated with poorer hearing over all frequencies, and with almost double the risk of low-frequency hearing loss in one ear. They suggest that this may represent an early stage of injury that will later progress to both ears, as it does in adults. The reason for the connection is not known, but the scientists suggest that inflammation induced by obesity may be a factor in organ damage. “It’s quite possible that early intervention could arrest the progression,” said the lead author, Dr. Anil K. Lalwani, a professor of otolaryngology at Columbia University. “This is another reason to lose weight — but not to lose hope.” Copyright 2013 The New York Times Company

Related chapters from BP7e: Chapter 13: Homeostasis: Active Regulation of the Internal Environment; Chapter 9: Hearing, Vestibular Perception, Taste, and Smell
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment; Chapter 6: Hearing, Balance, Taste, and Smell
Link ID: 18287 - Posted: 06.20.2013

Published by scicurious What do the overconsumption of food and Obsessive-Compulsive Disorder (OCD) have in common? At first, this sounds like a trick question. But deep in the brain, the molecules underlying our behavior may come together for these two conditions. The first is MC4R, a receptor for melanocortin. It binds hormones and affects feeding behavior, mutations in MC4R are associated with severe overcomsumption of high fat, high calorie foods and with obesity. A mouse without an MC4R gene will become severely obese compared to its wildtype counterparts. SAPAP3 is a protein that is associated with synapses, the spaces between neurons. It can regulate things like receptor levels that determine how well a neuron responds to excitatory input. But a knockout of SAPAP3 in mice produces something very different: severe overgrooming, a model of OCD. All rodents groom themselves, it's necessary to keep clean. But SAPAP3 knockouts groom themselves far, far too much, to the point of creating terrible lesions on their skin. This has been proposed as a model of OCD, as many people with OCD become obsessed with cleanliness, and will do things like, say, washing their hands, to the point of severely damaging their skin. So a knockout of MC4R creates obese mice. A knockout of SAPAP3 creates overgrooming mice. You might think that if you combined the two knockouts, you would get severely obese mice that also overgroomed. But you don't. Instead, you get mice that, to all appearances, seem completely normal. No obesity. No overgrooming. Neurotic Physiology Copyright © 2013

Related chapters from BP7e: Chapter 13: Homeostasis: Active Regulation of the Internal Environment; Chapter 16: Psychopathology: Biological Basis of Behavior Disorders
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment; Chapter 12: Psychopathology: Biological Basis of Behavioral Disorders
Link ID: 18274 - Posted: 06.15.2013

Obese mothers tend to have kids who become obese. Now provocative research suggests weight-loss surgery may help break that unhealthy cycle in an unexpected way — by affecting how their children's genes behave. In a first-of-a-kind study, Canadian researchers tested children born to obese women, plus their brothers and sisters who were conceived after the mother had obesity surgery. Youngsters born after mom lost lots of weight were slimmer than their siblings. They also had fewer risk factors for diabetes or heart disease later in life. More intriguing, the researchers discovered that numerous genes linked to obesity-related health problems worked differently in the younger siblings than in their older brothers and sisters. Clearly diet and exercise play a huge role in how fit the younger siblings will continue to be, and it's a small study. But the findings suggest the children born after mom's surgery might have an advantage. "The impact on the genes, you will see the impact for the rest of your life," predicted Marie-Claude Vohl of Laval University in Quebec City. She helped lead the work reported Monday in the journal Proceedings of the National Academy of Sciences. Why would there be a difference? It's not that mom passed on different genes, but how those genes operate in her child's body. The idea: Factors inside the womb seem to affect the dimmer switches that develop on a fetus' genes — chemical changes that make genes speed up or slow down or switch on and off. That in turn can greatly influence health. © CBC 2013

Related chapters from BP7e: Chapter 13: Homeostasis: Active Regulation of the Internal Environment; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment; Chapter 13: Memory, Learning, and Development
Link ID: 18195 - Posted: 05.28.2013

Virginia Hughes Late in the morning on 20 February, more than 200 people packed an auditorium at the Harvard School of Public Health in Boston, Massachusetts. The purpose of the event, according to its organizers, was to explain why a new study about weight and death was absolutely wrong. The report, a meta-analysis of 97 studies including 2.88 million people, had been released on 2 January in the Journal of the American Medical Association (JAMA)1. A team led by Katherine Flegal, an epidemiologist at the National Center for Health Statistics in Hyattsville, Maryland, reported that people deemed 'overweight' by international standards were 6% less likely to die than were those of 'normal' weight over the same time period. The result seemed to counter decades of advice to avoid even modest weight gain, provoking coverage in most major news outlets — and a hostile backlash from some public-health experts. “This study is really a pile of rubbish, and no one should waste their time reading it,” said Walter Willett, a leading nutrition and epidemiology researcher at the Harvard school, in a radio interview. Willett later organized the Harvard symposium — where speakers lined up to critique Flegal's study — to counteract that coverage and highlight what he and his colleagues saw as problems with the paper. “The Flegal paper was so flawed, so misleading and so confusing to so many people, we thought it really would be important to dig down more deeply,” Willett says. © 2013 Nature Publishing Group,

Related chapters from BP7e: Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 18185 - Posted: 05.23.2013

By JANE E. BRODY Sugar, and especially the high-fructose corn syrup that sweetens many processed foods and nearly all soft drinks, has been justly demonized for adding nutritionally empty calories to our diet and causing metabolic disruptions linked to a variety of diseases. But a closer look at what and how Americans eat suggests that simply focusing on sugar will do little to quell the rising epidemic of obesity. This is a multifaceted problem with deep historical roots, and we are doing too little about many of its causes. More than a third of American adults and nearly one child in five are now obese, according to the Centers for Disease Control and Prevention. Our failure to curtail this epidemic is certain to exact unprecedented tolls on health and increase the cost of medical care. Effective measures to achieve a turnaround require a clearer understanding of the forces that created the problem and continue to perpetuate it. The increase in obesity began nearly half a century ago with a rise in calories consumed daily and a decline in meals prepared and eaten at home. According to the Department of Agriculture, in 1970 the food supply provided 2,086 calories per person per day, on average. By 2010, this amount had risen to 2,534 calories, an increase of more than 20 percent. Consuming an extra 448 calories each day could add nearly 50 pounds to the average adult in a year. Sugar, it turns out, is a minor player in the rise. More than half of the added calories — 242 a day — have come from fats and oils, and another 167 calories from flour and cereal. Sugar accounts for only 35 of the added daily calories. Copyright 2013 The New York Times Company

Related chapters from BP7e: Chapter 13: Homeostasis: Active Regulation of the Internal Environment; Chapter 9: Hearing, Vestibular Perception, Taste, and Smell
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment; Chapter 6: Hearing, Balance, Taste, and Smell
Link ID: 18173 - Posted: 05.20.2013

By Laura Beil When chemists Richard Marshall and Earl Kooi started fiddling with cornstarch, the powder made from the dense insides of corn kernels, their intention was to turn glucose, which is easily produced from the starch, into fructose, which is sweeter. The idea wasn’t that far-fetched. The two sugar molecules are cousins, both made from the same atomic parts slightly rearranged. The duo’s experiment, which took place at the Corn Projects Refining Company in Argo, Ill., was a success. Marshall and Kooi discovered that the bacterium Aeromonas hydrophila produced an enzyme that could reconfigure the components of glucose from corn like so many Lego blocks. It was the first leap forward for a food industry dream: a mass-produced glucose-fructose-blend sweetener that would free commercial food manufacturers from the historical volatility of cane sugar crops. The scientists announced their triumph in a short report in Science in 1957. There the discovery sat in quiet obscurity for almost two decades, until a worldwide spike in sugar prices sent manufacturers scrambling. By the end of the 1980s, high fructose corn syrup had replaced cane sugar in soft drinks, and it soon became popular among makers of baked goods, dairy products, sauces and other foods. Few consumers seemed to care until 2004, when Barry Popkin, a nutrition scientist at the University of North Carolina at Chapel Hill, along with George Bray, at the Pennington Biomedical Research Center in Baton Rouge, La., published a commentary in the American Journal of Clinical Nutrition pointing out that the country’s obesity crisis appeared to rise in tandem with the embrace of high fructose corn syrup by food producers. That shift began in the early 1970s — just about the time Japanese researchers, who had noted Marshall and Kooi’s experiment with keen interest, overcame the technical hurdles of industrial production. © Society for Science & the Public 2000 - 2013

Related chapters from BP7e: Chapter 13: Homeostasis: Active Regulation of the Internal Environment; Chapter 9: Hearing, Vestibular Perception, Taste, and Smell
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment; Chapter 6: Hearing, Balance, Taste, and Smell
Link ID: 18172 - Posted: 05.20.2013

Brian Owens The gut is home to innumerable different bacteria — a complex ecosystem that has an active role in a variety of bodily functions. In a study published this week in Proceedings of the National Academy of Sciences1, a team of researchers finds that in mice, just one of those bacterial species plays a major part in controlling obesity and metabolic disorders such as type 2 diabetes. The bacterium, Akkermansia muciniphila, digests mucus and makes up 3–5% of the microbes in a healthy mammalian gut. But the intestines of obese humans and mice, and those with type 2 diabetes, have much lower levels. A team led by Patrice Cani, who studies the interaction between gut bacteria and metabolism at the Catholic University of Louvain in Belgium, decided to investigate the link. Mice that were fed a high-fat diet, the researchers found, had 100 times less A. muciniphila in their guts than mice fed normal diets. The researchers were able to restore normal levels of the bacterium by feeding the mice live A. muciniphila, as well as 'prebiotic' foods that encourage the growth of gut microbes. The effects of this treatment were dramatic. Compared with untreated animals, the mice lost weight and had a better ratio of fat to body mass, as well as reduced insulin resistance and a thicker layer of intestinal mucus. They also showed improvements in a host of other indicators related to obesity and metabolic disorders. “We found one specific common factor between all the different parameters that we have been investigating over the past ten years,” says Cani. © 2013 Nature Publishing Group

Related chapters from BP7e: Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 18156 - Posted: 05.14.2013

By NICHOLAS BAKALAR A large new study confirms that sticking to the Mediterranean diet — fish, poultry, vegetables and fruit, with minimal dairy foods and meat — may be good for the brain. Researchers prospectively followed 17,478 mentally healthy men and women 45 and older, gathering data on diet from food questionnaires, and testing mental function with a well-validated six-item screening tool. They ranked their adherence to the Mediterranean diet on a 10-point scale, dividing the group into low adherence and high adherence. The study was published April 30 in the journal Neurology. During a four-year follow-up, 1,248 people became cognitively impaired. But those with high adherence to the diet were 19 percent less likely to be among them. This association persisted even after controlling for almost two dozen demographic, environmental and vascular risk factors, and held true for both African-Americans and whites. The study included 2,913 people with Type 2 diabetes, but for them adherence to the diet had no effect on the likelihood of becoming impaired. The lead author, Dr. Georgios Tsivgoulis, an assistant professor of neurology at the University of Athens, said that this is the largest study of its kind. The Mediterranean diet, he added, “has many benefits — cardiovascular, cancer risk, anti-inflammatory, central nervous system. We’re on the tip of the iceberg, and trying to understand what is below.” Copyright 2013 The New York Times Company

Related chapters from BP7e: Chapter 13: Homeostasis: Active Regulation of the Internal Environment; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment; Chapter 13: Memory, Learning, and Development
Link ID: 18100 - Posted: 05.01.2013

By TARA PARKER-POPE Are doctors nicer to patients who aren’t fat? A provocative new study suggests that they are — that thin patients are treated with more warmth and empathy than those who are overweight or obese. For the study, published in the medical journal Obesity, researchers at Johns Hopkins obtained permission to record discussions between 39 primary care doctors and more than 200 patients who had high blood pressure. Although patients were there to talk about blood pressure, not weight, most fell into the overweight or obese category. Only 28 were of normal weight, meaning they had a body mass index below 25. Of the remaining patients, 120 were obese (B.M.I. of 30 or greater) and 60 were classified as overweight (index of 25 to 30). For the most part, all of the patients were treated about the same; there were no meaningful differences in the amount of time doctors spent with them or the topics discussed. But when researchers analyzed transcripts of the visits, there was one striking difference. Doctors seemed just a bit nicer to their normal-weight patients, showing more empathy and warmth in their conversations. Although the study was relatively small, the findings are statistically significant. “It’s not like the physicians were being overtly negative or harsh,” said the lead author, Dr. Kimberly A. Gudzune, an assistant professor of general internal medicine at the Johns Hopkins School of Medicine. “They were just not engaging patients in that rapport-building or making that emotional connection with the patient.” Copyright 2013 The New York Times Company

Related chapters from BP7e: Chapter 13: Homeostasis: Active Regulation of the Internal Environment; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment; Chapter 11: Emotions, Aggression, and Stress
Link ID: 18093 - Posted: 04.30.2013

The Brain: Our Food-Traffic Controller By KATHLEEN A. PAGE and ROBERT S. SHERWIN IMAGINE that, instead of this article, you were staring at a plate of freshly baked chocolate chip cookies. The mere sight and smell of them would likely make your mouth water. The first bite would be enough to wake up brain areas that control reward, pleasure and emotion — and perhaps trigger memories of when you tasted cookies like these as a child. That first bite would also stimulate hormones signaling your brain that fuel was available. The brain would integrate these diverse messages with information from your surroundings and make a decision as to what to do next: keep on chewing, gobble down the cookie and grab another, or walk away. Studying the complex brain response to such sweet temptations has offered clues as to how we might one day control a profound health problem in the country: the obesity epidemic. The answer may partly lie in a primitive brain region called the hypothalamus. The hypothalamus, which monitors the body’s available energy supply, is at the center of the brain’s snack-food signal processing. It keeps track of how much long-term energy is stored in fat by detecting levels of the fat-derived hormone leptin — and it also monitors the body’s levels of blood glucose, minute-to-minute, along with other metabolic fuels and hormones that influence satiety. When you eat a cookie, the hypothalamus sends out signals that make you less hungry. Conversely, when food is restricted, the hypothalamus sends signals that increase your desire to ingest high-calorie foods. The hypothalamus is also wired to other brain areas that control taste, reward, memory, emotion and higher-level decision making. These brain regions form an integrated circuit that was designed to control the drive to eat. © 2013 The New York Times Company

Related chapters from BP7e: Chapter 13: Homeostasis: Active Regulation of the Internal Environment; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment; Chapter 14: Attention and Consciousness
Link ID: 18087 - Posted: 04.28.2013

By Stephen L. Macknik Why, oh why, would I order a plastic fork, costing $89 (on-sale), 5 months before its scheduled release? Because it promises to help me control my eating speed, which, I am now convinced, is indeed critical to controlling obesity and diabetes. The fork is essentially a Bluetooth device that communicates to your smartphone and counts how many bites you take each meal. More importantly, I believe it counts the amount of time between each bite and if you go too fast, it vibrates. [Insert vibrator to mouth joke here. Yes, I'm blonde.] The reason I think it will help me goes back to my gastric bypass two months ago. Before and after the surgery, patients of Dr. Robin Blackmore at the Scottsdale Healthcare Bariatric Surgery Unit must take a series of courses aimed at preparing patients for life after surgery. One of the main lessons is that patients must now eat each meal over a 20 minute period. No more, no less. As you might surmise, for patients like me, “no more” is ready to achieve, but “no less” than 20 minutes is surprisingly difficult. And they are well aware of how hard it is, demanding that you practice ahead of time. I don’t know about my fellow patients, but I didn’t practice at all and have paid the price numerous times since my surgery for eating too fast: let’s just say it sometimes leads to a temporary obstruction and leave it at that. Because the details are unbelievably disgusting. © 2013 Scientific American,

Related chapters from BP7e: Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 18068 - Posted: 04.24.2013

By CATHERINE SAINT LOUIS Laura Ward, 41, had always attributed her excess pounds to the drugs she takes for major depression. So Ms. Ward, who is 5-foot-6 and once weighed 220 pounds, didn’t try to slim down or avoid dietary pitfalls like fried chicken. But in a clinical trial, Ms. Ward managed to lose more than 30 pounds doing low-impact aerobics three times a week. During the 18-month experiment, she was introduced to cauliflower and post-workout soreness for the first time. She and the other participants attended counseling sessions where they practiced refusing junk food and choosing smaller portions. She drank two liters of Diet Dr Pepper daily instead of eight. Eventually, Ms. Ward, who lives in Baltimore, realized her waistline wasn’t simply a drug side effect. “If it was only the medications, I would have never lost all that weight,” she said. People with serious mental illnesses, like schizophrenia, bipolar disorder or major depression, are at least 50 percent more likely to be overweight or obese than the general population. They die earlier, too, with the primary cause heart disease. Yet diet and exercise usually take a back seat to the treatment of their illnesses. The drugs used, like antidepressants and antipsychotics, can increase appetite and weight. It has been a difficult issue for mental health experts. A 2012 review of health promotion programs for those with serious mental illness by Dartmouth researchers concluded that of 24 well-designed studies, most achieved statistically significant weight loss, but very few achieved “clinically significant weight loss.” Copyright 2013 The New York Times Company

Related chapters from BP7e: Chapter 16: Psychopathology: Biological Basis of Behavior Disorders; Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 12: Psychopathology: Biological Basis of Behavioral Disorders; Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 18042 - Posted: 04.16.2013

By Tara Haelle New evidence is confirming that the environment kids live in has a greater impact than factors such as genetics, insufficient physical activity or other elements in efforts to control child obesity. Three new studies, published in the April 8 Pediatrics, land on the import of the 'nurture' side of the equation and focus on specific circumstances in children's or teen's lives that potentially contribute to unhealthy bulk. In three decades child and adolescent obesity has tripled in the U.S., and estimates from 2010 classify more than a third of children and teens as overweight or obese. Obesity puts these kids at higher risk for type 2 diabetes, cardiovascular disease, sleep apnea, and bone or joint problems. The variables responsible are thought to range from too little exercise to too many soft drinks. Now it seems that blaming Pepsi or too little PE might neglect the bigger picture. "We are raising our children in a world that is vastly different than it was 40 or 50 years ago," says Yoni Freedhoff, an obesity doctor and assistant professor of medicine at the University of Ottawa. "Childhood obesity is a disease of the environment. It's a natural consequence of normal kids with normal genes being raised in unhealthy, abnormal environments." The environmental factors in these studies range from the seemingly minor, such as kids' plate sizes, to bigger challenges, such as school schedules that may keep teens from getting sufficient sleep. But they are part of an even longer list: the ubiquity of fast food, changes in technology, fewer home-cooked meals, more food advertising, an explosion of low-cost processed foods and increasing sugary drink serving sizes (pdf) as well as easy access to unhealthy snacks in vending machines, at sports games and in nearly every setting children inhabit—these are just a handful of environmental factors research has linked to increasing obesity, and researchers are starting to pick apart which among them play bigger or lesser roles in making kids supersized. © 2013 Scientific American

Related chapters from BP7e: Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 18009 - Posted: 04.10.2013

Scientists have identified a group of brain cells which have the power to control appetite and could be a major cause of eating disorders such as obesity. In experiments in rodents, cells called tanycytes were found to produce neurons which specifically regulate appetite. The University of East Anglia researchers say their find means appetite is not fixed at birth. Their study is published in the Journal of Neuroscience. It was previously thought that nerve cells in the brain associated with appetite regulation were generated entirely during an embryo's development in the womb and could not be altered. But the UEA study's discovery of these tanycytes, which act like stem cells, in the brains of young and adult rodents shows that appetite can be modified. Researchers looked in detail at the hypothalamus section of the brain, which is known to regulate sleep, energy expenditure, appetite, thirst and many other critical biological functions. They studied the nerve cells that regulate appetite using a 'genetic fate mapping' technique and found that some cells added neurons to the appetite-regulating circuitry of the mouse brain after birth and into adulthood. BBC © 2013

Related chapters from BP7e: Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 17998 - Posted: 04.08.2013

Steve Connor The rise in the number of overweight children in Britain may be as much to do with their genes as their diet and exercise levels, according to a study that has identified a handful of genetic mutations linked with childhood obesity. Scientists have discovered that children with the most severe kinds of obesity are more likely than other children to have one or more of four genetic variations in their DNA, which could influence such things as appetite and food metabolism. The discovery is part of a wider search for the genes involved in increasing a person’s risk of becoming overweight when exposed to an “obesogenic environment” of high-calorie food and inactivity – which is known to affect some people more than others. The study looked at 1,000 children with the most severe form of early-onset obesity, which is highly likely to result in obesity in adulthood. Some of the 10-year-olds in the study weighed between 80kg and 100kg (12.5st-15.7st). Some of the genetic variations revealed by the study were rare but others are relatively common, suggesting an interaction between genetics and environment, which could explain why certain children become obese while others do not even when they share a similar upbringing. Obesity among British children aged between two and ten has risen since 1995 from 10.1 per cent to 13.9 per cent in 2011. This rise cannot be due to a change in genes alone, because it takes many generations to alter the frequency of genetic mutations in the population. © independent.co.uk

Related chapters from BP7e: Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 17997 - Posted: 04.08.2013