Links for Keyword: Stress

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 478

Sara Reardon Some of the people who survived Hurricane Katrina lost loved ones, and many were made homeless by the storm. New Orleans still bears the scars of Hurricane Katrina, ten years later. More than 500,000 people fled when the storm hit, and many never returned. Large swathes of the city are sparsely populated, particularly in the poor neighbourhoods that suffered the most severe flood damage. Psychological scars linger, too. Many hurricane survivors continue to experience mental-health problems related to the storm, whether or not they returned to New Orleans, say researchers tracking Katrina’s psychological aftermath. Such work could ultimately aid people affected by future disasters, by identifying factors — such as lack of a social-support network and unstable environments for children — that seem to increase risk of mental-health trauma. “What’s unique about this disaster is the magnitude of it,” says Joy Osofsky, a clinical psychologist at Louisiana State University in New Orleans. Katrina, a category 3 hurricane when it made landfall on 29 August 2005, ultimately damaged an area the size of the United Kingdom. In New Orleans, it destroyed basic resources such as schools and health clinics to a degree unparalleled in recent US history. Osofsky saw the devastation and despair first hand. With their clinics flooded after the storm, she and other mental-health experts set up treatment centres for emergency responders on cruise ships docked nearby on the Mississippi River, and an emergency psychology unit at the city’s central command centre. Osofsky says that the centres treated thousands of displaced and traumatized people. © 2015 Nature Publishing Group

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 16: Psychopathology: Biological Basis of Behavior Disorders
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 12: Psychopathology: Biological Basis of Behavioral Disorders
Link ID: 21341 - Posted: 08.26.2015

by Jessica Griggs Manoeuvring the colourful tiles of Tetris can help block flashbacks of traumatic events, even after the memory has fixed itself in your mind. Playing the game could be an easy way to reduce the risk of post-traumatic stress disorder (PTSD). After any event, there is a window of about six hours where memories are consolidated and cemented in the mind, says Emily Holmes at the Medical Research Council Cognition and Brain Sciences Unit in Cambridge, UK. Sleeping on the memory strengthens it further. If an event is particularly traumatic, vivid memories of it can reoccur. These intrusive flashbacks are distressing for anyone, but in a proportion of cases they can persist and contribute to PTSD. For example, about half of people who have been raped go on to develop PTSD, as do a number of asylum seekers and people who have been tortured. About 20 per cent of people who have been in a serious car accident are affected by the condition. There are effective treatments for people who are diagnosed with PTSD, but nothing currently exists to help prevent people from developing it in the days and weeks after the initial trauma. Holmes and her colleagues think a dose of Tetris could be the answer. In 2009, they showed that playing the game four hours after being exposed to trauma reduced the number of subsequent flashbacks. But getting the game into a person's hands immediately after they have been raped, for example, won't always be practical, so the team tested whether it could still work a day later – after the memory had been consolidated and slept on. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 16: Psychopathology: Biological Basis of Behavior Disorders
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 12: Psychopathology: Biological Basis of Behavioral Disorders
Link ID: 21142 - Posted: 07.07.2015

Sara Reardon Traumatic experiences, such as those encountered during warfare, can cause long-lasting stress. Tweaking the immune system could be key to treating, or even preventing, post-traumatic stress disorder (PTSD). Research in rodents suggests that immunizing animals can lessen fear if they are later exposed to stress. Researchers have known for some time that depression and immune-system health are linked and can affect each other. Early clinical trials have shown that anti-inflammatory drugs can reduce symptoms of depression1, raising hopes that such treatments might be useful in other types of mental illness, such as PTSD. “I think there’s kind of a frenzy about inflammation in psychiatry right now,” says Christopher Lowry, a neuroscientist at the University of Colorado Boulder. He presented results of experiments probing the link between fearful behaviour and immune response at a meeting in Victoria, Canada, last week of the International Behavioral Neuroscience Society. Studies of military personnel suggest that immune function can influence the development of PTSD. Soldiers whose blood contains high levels of the inflammatory protein CRP before they are deployed2, or who have a genetic mutation that makes CRP more active3, are more likely to develop the disorder. To directly test whether altering the immune system affects fear and anxiety, Lowry and colleagues injected mice with a common bacterium, Mycobacterium vaccae, three times over three weeks to modulate their immune systems. The scientists then placed these mice, and a control group of unimmunized mice, in cages with larger, more aggressive animals. © 2015 Nature Publishing Group

Related chapters from BP7e: Chapter 16: Psychopathology: Biological Basis of Behavior Disorders; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 12: Psychopathology: Biological Basis of Behavioral Disorders; Chapter 11: Emotions, Aggression, and Stress
Link ID: 21046 - Posted: 06.13.2015

by Jessica Hamzelou IF YOU knew you were about to go through a stressful experience, would you pop a pill to protect yourself from its knock-on effects? It's an idea that has been mooted after a drug seemed to make mice immune to the negative impacts of stressful events. But could we rationalise prescribing such a drug? We all experience stress during our lives, whether it be a one-off event, such as a loved one dying, or chronic, low-level stress that results from struggling to make ends meet, for example. While most people find ways to cope, for some a particularly stressful event can trigger depression. What if there was a way to boost our stress resilience and thus shield us from depression? Rebecca Brachman at Columbia University in New York stumbled across the idea while she was giving ketamine to mice with the symptoms of depression. Even though the ketamine-taking mice had been chronically stressed, when they were dropped in a pool of water – a one-off stressful event – they were unperturbed and swam to an exit. Mice not given the drug made no attempt to escape, a classic sign of depression in rodents. There was also no change in the ketamine-taking animals' cognitive abilities or metabolism – both of which are altered in human depression. "It's really remarkable," says Brachman. "They basically look like mice that haven't been stressed." A single dose of ketamine protected mice from developing the symptoms of depression after stressful events for four weeks. But the drug only seemed to stop the symptoms of depression – some of the animals still exhibited anxiety behaviours. "It seems to protect against depression rather than anxiety," says Brachman, who controversially describes it as a depression "vaccine". The work will be published in Biological Psychiatry. © Copyright Reed Business Information Ltd

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Link ID: 20994 - Posted: 05.28.2015

Robinson Meyer Brett Redding felt like he was out of options. “It started with little things—having trouble making eye contact,” he told me. Soon it got worse. Redding, a 28-year-old salesman in Seattle, found himself freaking out during normal, everyday conversations. He worried any time his boss wanted to talk. He would dread his regular sales calls, and the city’s booming housing market—he works in construction—seemed to make his ever-increasing meetings all the more crushing. He was suffering social anxiety, a common but debilitating mental illness. “I was afraid of losing my job because I couldn’t do it,” he says. His meetings with a therapist weren’t working, and he didn’t “want to mess with antidepressants.” “I’ve always been so social—I’ve never had issues with looking people in the eye and talking with people,” he says. That’s when Redding’s girlfriend saw an ad on Craigslist that promised an online program could help treat Redding’s social anxiety through methods proven by science. “I had nothing to lose,” he says—so he signed up. That service is now called Joyable. I first saw Joyable when an ad for it appeared in Facebook on my phone. “90 percent of our clients see their anxiety decline,” said the ad, next to a sun-glinted, bokeh-heavy photo of a blonde woman. I clicked on. Joyable’s website, full of affable sans serifs and cheery salmon rectangles, looks Pinterest-esque, at least in its design. Except its text didn’t discuss eye glasses or home decor but “evidence-based” methods shown to reduce social anxiety. I knew those phrases: “Evidence-based” is the watchword of cognitive behavioral therapy, or CBT, the treatment now considered most effective for certain anxiety disorders. Joyable dresses a psychologists’s pitch in a Bay Area startup’s clothes. © 2015 by The Atlantic Monthly Group.

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 20929 - Posted: 05.14.2015

By Melissa Mancini, Many veterans are turning to marijuana to ease symptoms of post traumatic stress disorder, despite concerns from the medical community about how effective pot is at treating the condition. There are a "tremendous" number of testimonials from patients with post traumatic stress disorder who say dried cannabis helps them, but there is a lack of randomized, controlled trials, said Dr. Stewart Cameron, a family physician and professor at Dalhousie University's faculty of medicine. In September 2014, the College of Family Physicians of Canada released a document to help doctors decide how to use cannabis in their practices. "They strongly recommended that it not be used for PTSD," said Cameron. "They suggested it should be reserved as a third or fourth line agent in people who suffer certain types of pain." Veterans Affairs paid out $5.2 million for medical marijuana to veterans across Canada last year. Of that, $3.4 million went to veterans in Atlantic Canada. The department could not say which ailments the veterans are treating with marijuana, because Veterans Affairs doesn't track cannabis reimbursement by condition. Medical marijuana advocate Fabian Henry says most of the 500 veterans who visited his company last year were looking for authorization to use marijuana to help with post traumatic stress disorder. Henry's company, Marijuana for Trauma, connects veterans with physicians willing to authorize medical cannabis. The organization has helped hundreds of veterans fill out forms for medical pot reimbursement from Veterans Affairs Canada. Marijuana for Trauma calls cannabis "a natural choice medicine" and says it's "proven to be effective in 85 per cent of those who suffer with PTSD." But Canadian medical authorities are far from assigning such a high efficacy rate to the drug. ©2015 CBC/Radio-Canada.

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 16: Psychopathology: Biological Basis of Behavior Disorders
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 12: Psychopathology: Biological Basis of Behavioral Disorders
Link ID: 20920 - Posted: 05.13.2015

By Kira Peikoff I draw an uneasy breath as I step into a bright purple office on the 14th floor of Boston’s Prudential Building. I am shown to a small conference table, where I take a seat and await the experiment. A palm-size triangular module is affixed above my right eye. It connects to a single-use strip of electrodes stuck onto my forehead and running down the back of my neck. This is Thync, the latest in transcranial direct current stimulation, or tDCS. The manufacturer says the device, to come out later this year, can alter the user’s mood in minutes via electric current. With a connected smartphone app, the mood-impaired subject chooses one of two settings: “calm vibes” or “energy vibes.” I tap “calm vibes” and wait. Somehow, I am having a hard time picturing myself unwinding at home this way while my husband sips a glass of Merlot. Thync is the latest in a wave of wearable gadgets offering so-called noninvasive brain stimulation. Until recently, it was mostly hobbyists — nine-volt batteries stuck to their heads — who experimented with tDCS as a means of improving concentration, verbal and computation abilities, and creativity. But in the last few years, several companies have introduced slick consumer devices, among them Foc.us, whose headset and controller cost $298, and The Brain Stimulator, whose advanced starter kit costs $150. In January, the journal Brain Stimulation published the largest meta-analysis of tDCS to date. After examining every finding replicated by at least two research groups, leading to 59 analyses, the authors reported that one session of tDCS failed to show any significant benefit for users. © 2015 The New York Times Company

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 20891 - Posted: 05.05.2015

Children who were often bullied by their peers may experience more anxiety and depression than children who were abused by adults, a finding that U.S. and British researchers say highlights an "imbalance" in school services to tackle bullying. Researchers followed the mental health of more than 4,000 children in Avon, south west England from birth to age 18 and 1,400 others in North Carolina from age nine up to age 26 through parent questionnaires and clinical interviews. In the Avon study, maltreatment was defined as physical, emotional, or sexual abuse or "maladaptive parenting" such as hitting, shouting and hostility. Children were interviewed about the frequency of bullying, which included overt threats, physical violence and nasty names as well as social exclusion or spreading lies or rumours. The results consistently showed an increased risk of anxiety, depression, self-harm and suicidal tendencies in children who were bullied, whether or not they had a history of abuse by adults, Prof. William Copeland, a clinical psychologist at Duke University School of Medicine in Durham, N.C. and his co-authors concluded in Tuesday's issue of Lancet Psychiatry. "What was a surprise was to see [the results] were as significant and pervasive as what we see for children that are physically abused, sexually abused or neglected," Copeland said. Government policies have focused almost exclusively on providing services for child abuse but much less attention and resources are devoted to bullying, the researchers said. Copeland's previous research showed long-term repercussions from bullying persist — and that includes impacts on physical health, dropping out of school and trouble with authorities. ©2015 CBC/Radio-Canada

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 13: Memory, Learning, and Development
Link ID: 20861 - Posted: 04.29.2015

By Nicholas Bakalar Many people consume sweets in response to stress. Now researchers may have discovered why. Sugar reduces levels of cortisol, the stress hormone. Scientists recruited 19 female volunteers. For 12 days, eight of them consumed beverages sweetened with aspartame, an artificial sweetener. The rest drank an identical beverage containing 25 percent sucrose, or table sugar. Before and after the experiment, researchers measured the volunteers’ saliva cortisol levels and performed functional M.R.I. scans while they took arithmetic tests designed to be just beyond their abilities — a procedure known to increase cortisol levels. The study, in the Journal of Clinical Endocrinology and Metabolism, found no differences in the tests between the two groups before the 12-day diet. But in tests afterward, cortisol levels were lower in the sugar consumers and higher in the aspartame group. The post-diet M.R.I. showed increased activity in the areas of the brain controlling fear and stress in the sugar group. The aspartame group showed decreased activity in those areas. The senior author, Kevin D. Laugero, a nutritionist with the federal Department of Agriculture, said no one should conclude that sugar should be used as a stress reducer. But, he said, “the finding is intriguing because it suggests that there is a metabolic pathway sensitive to sugar outside the brain that may expose new targets for treating neurobehavioral and stress-related conditions.” © 2015 The New York Times Company

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 20842 - Posted: 04.25.2015

By VIRGINIA HEFFERNAN Most newly stylish coinages carry with them some evidence of grammatical trauma. Consider “affluencer,” “selfie,” “impactful.” Notes of cynicism and cutesiness come through. But every now and then a bright exception to this dispiriting routine appears. A rookie word makes its big-league debut, a stadium of pedants prepares to peg it with tomatoes and — nothing. A halfhearted heckle. The new word looks only passably pathetic. Maddeningly, it has heft. “Mindfulness” may be that hefty word now, one that can’t readily be dismissed as trivia or propaganda. Yes, it’s current among jaw-grinding Fortune 500 executives who take sleeping pills and have “leadership coaches,” as well as with the moneyed earnest, who shop at Whole Foods, where Mindful magazine is on the newsstand alongside glossies about woodworking and the environment. It looks like nothing more than the noun form of “mindful” — the proper attitude toward the London subway’s gaps — but “mindfulness” has more exotic origins. In the late 19th century, the heyday of both the British Empire and Victorian Orientalism, a British magistrate in Galle, Ceylon (now Sri Lanka), with the formidable name of Thomas William Rhys Davids, found himself charged with adjudicating Buddhist ecclesiastical disputes. He set out to learn Pali, a Middle Indo-Aryan tongue and the liturgical language of Theravada, an early branch of Buddhism. In 1881, he thus pulled out “mindfulness” — a synonym for “attention” from 1530 — as an approximate translation of the Buddhist concept of sati. The translation was indeed rough. Sati, which Buddhists consider the first of seven factors of enlightenment, means, more nearly, “memory of the present,” which didn’t track in tense-preoccupied English. “Mindfulness” stuck — but may have saddled the subtle sati with false-note connotations of Victorian caution, or even obedience. (“Mind your manners!”) © 2015 The New York Times Company

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 20818 - Posted: 04.20.2015

By VIRGINIA HEFFERNAN Most newly stylish coinages carry with them some evidence of grammatical trauma. Consider “affluencer,” “selfie,” “impactful.” Notes of cynicism and cutesiness come through. But every now and then a bright exception to this dispiriting routine appears. A rookie word makes its big-league debut, a stadium of pedants prepares to peg it with tomatoes and — nothing. A halfhearted heckle. The new word looks only passably pathetic. Maddeningly, it has heft. “Mindfulness” may be that hefty word now, one that can’t readily be dismissed as trivia or propaganda. Yes, it’s current among jaw-grinding Fortune 500 executives who take sleeping pills and have “leadership coaches,” as well as with the moneyed earnest, who shop at Whole Foods, where Mindful magazine is on the newsstand alongside glossies about woodworking and the environment. It looks like nothing more than the noun form of “mindful” — the proper attitude toward the London subway’s gaps — but “mindfulness” has more exotic origins. In the late 19th century, the heyday of both the British Empire and Victorian Orientalism, a British magistrate in Galle, Ceylon (now Sri Lanka), with the formidable name of Thomas William Rhys Davids, found himself charged with adjudicating Buddhist ecclesiastical disputes. He set out to learn Pali, a Middle Indo-Aryan tongue and the liturgical language of Theravada, an early branch of Buddhism. In 1881, he thus pulled out “mindfulness” — a synonym for “attention” from 1530 — as an approximate translation of the Buddhist concept of sati. The translation was indeed rough. Sati, which Buddhists consider the first of seven factors of enlightenment, means, more nearly, “memory of the present,” which didn’t track in tense-preoccupied English. “Mindfulness” stuck — but may have saddled the subtle sati with false-note connotations of Victorian caution, or even obedience. (“Mind your manners!”) © 2015 The New York Times Company

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 20797 - Posted: 04.14.2015

By MALIA WOLLAN “A polygraph is nothing more than a psychological billy club used to coerce and intimidate people,” says Doug Williams, a former Oklahoma City police detective and polygraph examiner who for 36 years has trained people to pass the lie-detector test. The first step is not to be intimidated. Most tests include two types of questions: relevant ones about a specific incident (“Did you leak classified information to The New York Times?”) and broader so-called control questions (“Have you ever lied to anyone who trusted you?”). The test assumes that an innocent person telling the truth will have a stronger reaction to the control questions than to the relevant ones. Before your test, practice deciphering between the two question types. “Go to the beach” when you hear a relevant question, Williams says. Calm yourself before answering by imagining gentle waves and warm sand. When you get a control question, which is more general, envision the scariest thing you can in order to trigger physiological distress; the polygraph’s tubes around your chest measure breathing, the arm cuff monitors heart rate and electrodes attached to you fingertips detect perspiration. What is your greatest fear? Falling? Drowning? Being buried alive? “Picture that,” Williams says. He used to advise trainees to clench their anus but has since concluded that terrifying mental imagery works better. Williams, who is 69, may be among the more vitriolic critics of polygraphs, which he refers to as “insidious Orwellian instruments of torture,” but their reliability has long been questioned elsewhere, too. Federal legislation prohibits most private employers from using polygraphs. The U.S. Supreme Court has ruled that lower courts can ban them as evidence, and the scientific community has repeatedly raised concerns about their ability to accurately detect lies. © 2015 The New York Times Company

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 20789 - Posted: 04.13.2015

By Will Boggs MD NEW YORK (Reuters Health) - Adolescents with a history of childhood trauma show different neural responses to subjective anxiety and craving, researchers report. "I think the finding of increased activation of insula, anterior cingulate, and prefrontal cortex in response to stress cues in the high- relative to low-trauma group, while arguably not necessarily unexpected, is important as it suggests that youth exposed to higher levels of trauma may experience different brain responses to similar stressors," Dr. Marc N. Potenza from Yale University, New Haven, Connecticut told Reuters Health by email. Childhood trauma has been associated with anxiety and depression, as well as obesity, risky sexual behavior, and substance use. Previous imaging studies have not investigated neural responses to personalized stimuli, Dr. Potenza and his colleagues write in Neuropsychopharmacology, online January 8. The team used functional MRI to assess regional brain activations to personalized appetitive (favorite food), aversive (stress), and neutral/relaxing cues in 64 adolescents, including 33 in the low-trauma group and 31 in the high-trauma group. Two-thirds of the adolescents had been exposed to cocaine prenatally, with prenatal cocaine exposure being significantly over-represented in the high-trauma group. Compared with the low-trauma group, the high-trauma group showed increased responsivity in several cortical regions in response to stress, as well as decreased activation in the cerebellar vermis and right cerebellum in response to neutral/relaxing cues. But the two groups did not differ significantly in their responses to favorite-food cues, the researchers found. © 2015 Scientific American

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 13: Memory, Learning, and Development
Link ID: 20652 - Posted: 03.05.2015

By Sandhya Sekar It’s stressful being a low-ranking hyena—so stressful that even their chromosomes feel it. Researchers have discovered that the challenges of African savanna hyena society shorten underdogs’ telomeres, stretches of DNA that bookend chromosomes and protect them from wear and tear during cell replication. The stress may come from the top hyenas getting the best meat, whereas lower ranking individuals have to travel long distances—sometimes to the edges of the group territory—to fend for themselves. With increased stress, higher amounts of stress hormones and cellular byproducts like oxygen ions and peroxides are produced, both of which have been shown to shorten telomeres in other species. When telomeres fall below a certain length, cells go into damage-control mode and kick off biochemical pathways that can result in cell death. The study, the team reports online today in Biology Letters, is the first to show that the stress of social hierarchy can shorten telomeres in a wild species. © 2015 American Association for the Advancement of Science.

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 20611 - Posted: 02.25.2015

By Nathan Seppa Ask anybody — stress is bad news. The negative view of stress has been expressed so consistently that the concept is now built into our vernacular, which is spiced with advice on avoiding it: Take it easy. Calm down. Chill. Of course, a good case of stress comes in handy during an encounter with a grizzly bear on a hiking trail. In that situation, a stress reaction delivers a burst of hormones that revs up the heart and sharpens attention. This automatic response has served humans well throughout evolution, improving our odds of seeing another day. Problems arise, however, when stress becomes a feature of daily life. Chronic stress is the kind that comes from recurring pain, post-traumatic memories, unemployment, family tension, poverty, childhood abuse, caring for a sick spouse or just living in a sketchy neighborhood. Nonstop, low-grade stress contributes directly to physical deterioration, adding to the risk of heart attack, stroke, infection and asthma. Even recovery from cancer becomes harder. Scientists have now identified many of the biological factors linking stress to these medical problems. The evidence centers on nagging inflammation and genetic twists that steer cells off a healthy course, resulting in immune changes that allow ailments to take hold or worsen. Despite the bad rap stress has acquired throughout history, researchers have only recently been able to convince others that it’s dangerous. “It’s taken much more seriously now,” says Janice Kiecolt-Glaser, a clinical psychologist at Ohio State University in Columbus. “In the 1980s, we were still in the dark ages on this stuff.” © Society for Science & the Public 2000 - 2015

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 20599 - Posted: 02.21.2015

By PAULA SPAN The word “benzodiazepines” and the phrase “widely prescribed for anxiety and insomnia” appear together so frequently that they may remind you of the apparently unbreakable connection between “powerful” and “House Ways and Means Committee.” But now we have a better sense of just how widely prescribed these medications are. A study in this month’s JAMA Psychiatry reports that among 65- to 80-year-old Americans, close to 9 percent use one of these sedative-hypnotics, drugs like Valium, Xanax, Ativan and Klonopin. Among older women, nearly 11 percent take them. “That’s an extraordinarily high rate of use for any class of medications,” said Michael Schoenbaum, a senior adviser at the National Institutes of Mental Health and a co-author of the new report. “It seemed particularly striking given the identified clinical concerns associated with benzodiazepine use in anybody, but especially in older adults.” He was referring to decades of warnings about the potentially unhappy consequences of benzodiazepines for older users. The drugs still are recommended for a handful of specific disorders, including acute alcohol withdrawal and, sometimes, seizures and panic attacks. But concerns about the overuse of benzodiazepines have been aired again and again: in the landmark nursing home reform law of 1987, in the American Geriatrics Society’s Choosing Wisely list of questionable practices in 2013, in last year’s study in the journal BMJ suggesting an association with Alzheimer’s disease. Benzodiazepine users face increased risks of falls and fractures, of auto accidents, of reduced cognition. “Even after one or two doses, you have impaired cognitive performance on memory and other neuropsychological tests, compared to a placebo,” said Dr. D.P. Devanand, director of geriatric psychiatry at Columbia University Medical Center. © 2015 The New York Times Company

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 13: Memory, Learning, and Development
Link ID: 20578 - Posted: 02.16.2015

by Jessica Hamzelou WHAT doesn't kill you makes you stronger, at least when it comes to stress and immune cells. Mice that received a cocktail of immune cells from bullied mice appeared to experience a mood boost. The unexpected discovery may have implications for treating depression. We know that prolonged bouts of stress take their toll on the immune system. That leaves us susceptible to illness, which in some cases can lead to depression. Most research on the link between immune health and mood has focused on the innate branch of the immune system – the cells that mount the first response to pathogens, says Miles Herkenham at the National Institutes of Health in Bethesda, Maryland. His team wondered if there might also be a role for the adaptive branch of the immune system, which "learns" about a pathogen in order to respond rapidly the next time it appears. To find out, the team introduced an aggressive competitor mouse into the cages of male mice. "These mice are like bullies," says Herkenham. Two weeks later, the bullied mice seemed depressed: they cowered in dark corners and seemed uninterested in the scent of a female. The team extracted their adaptive immune cells and injected them into another set of mice bred to lack these cells. This meant that the recipient mice essentially acquired the adaptive immune system of the bullied ones. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 16: Psychopathology: Biological Basis of Behavior Disorders; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 12: Psychopathology: Biological Basis of Behavioral Disorders; Chapter 11: Emotions, Aggression, and Stress
Link ID: 20534 - Posted: 01.29.2015

By Richard Leiby NEWPORT BEACH, Calif. — The headquarters of Oakley, a maker of recreational and military gear, looks as if it belongs in a war zone. It’s a massive bunker with exposed steel pipes, girders and blast walls. Even the dais in the auditorium is armored. But on a recent afternoon, the talk inside the building, set atop an arid, inland hillside in Orange County, is not about fighting wars but about caring for warriors. Doctors, scientists and veterans approach the podium at a conference to present some of the latest tools to help vets recover from wounds both mental and physical: bionics, virtual reality, magnetic waves. A session called “Healing the Warrior Brain” features a trim, bleach-blond former Army staff sergeant named Jonathan Warren, who recounts on video his struggle with post-traumatic stress disorder after combat in Iraq. His flashbacks, panic attacks and booze benders were well chronicled: For a year, the Los Angeles Times tracked Warren’s efforts to find peace, including via Department of Veterans Affairs therapy. It didn’t work, he says. But now a different Jon Warren is here to say that he is finally free of symptoms, one year after that 2013 story ran. No longer does his worst memory of the Iraq war — failing to rescue his best friend, who nearly burned to death after their Humvee hit a roadside bomb in 2006 — grasp his psyche and inflict guilt. That’s because of a revolutionary new treatment that retuned his brain, he says, and set “my frequencies right.” Now he’s able to proudly embrace his military service, “to keep the memory, to be able to go there,” Warren tells the audience, “and not be controlled by it.”

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 16: Psychopathology: Biological Basis of Behavior Disorders
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 12: Psychopathology: Biological Basis of Behavioral Disorders
Link ID: 20474 - Posted: 01.13.2015

by Bethany Brookshire We all experience stress, but some handle it better than others. A lot of research has focused on what makes animals and people susceptible to stress and how that, in turn, can trigger depression. It makes sense to study the condition, not the people that don’t experience it. Depression and susceptibility are the broken state. Resilience seems normal by comparison. But resilience is not just the absence of susceptibility. It turns out that a protein called beta-catenin plays an active role in resilience. A new study, from Eric Nestler’s laboratory at the Mount Sinai School of Medicine in New York City, also identifies a large number of new targets that could help scientists understand why some people are susceptible to stress — and how they might be made more resilient. “When people study stress responses, we often just assume that in an animal that’s stressed, there’s an active process that creates these depression-like behaviors,” says Andre Der-Avakian, a neuroscientist at the University of California, San Diego. “But this study and studies from others have shown that resilience is also an active process.” The nucleus accumbens is an area of the brain most often linked with reward and pleasure from items we enjoy, such as food or drugs. But the area also shows changes in people with depression. “It makes sense — here’s a region important in responding to rewards,” Nestler explains. “One of the symptoms of people with depression is that they don’t derive pleasure from things in life.” © Society for Science & the Public 2000 - 2014

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 16: Psychopathology: Biological Basis of Behavior Disorders
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 12: Psychopathology: Biological Basis of Behavioral Disorders
Link ID: 20363 - Posted: 11.26.2014

BY Bethany Brookshire Stress is our coping response. Whether emotional or physical, stress is how organisms react to upheaval in their lives. And in many cases, that response requires tradeoffs. An animal will make it through now, but may come out with fewer fat stores or a shorter life span. But a new study shows that under certain conditions, developmental stress in male zebra finches might have a positive effect, in the form of more offspring to carry on his genes. Ondi Crino, a biologist now at Macquarie University in Sydney, examined how stress during development might affect reproductive success in male zebra finches. She purchased 10 male and 10 female zebra finches from pet shops near the University of Montana. The birds were allowed to pair off and nest. When the first batch of chicks was 12 days old, Crino fed half of the male offspring peanut oil, and half peanut oil with the hormone corticosterone mixed in. Both humans and finches produce stress-related hormones. Humans produce cortisol, while finches produce corticosterone. These two hormones increase during times of stress and cause many of the negative effects we associate with worry and pressure. So administering corticosterone is one method of “stressing” an animal without changing anything else in its environment. The dose was in the range of what a young bird might experience in the midst of a natural upheaval such as a cold snap or famine. After 16 days of the peanut oil supplement, the young male birds receiving corticosterone were smaller than their relaxed counterparts. They also had a larger spike in their own corticosterone levels when they were stressed. But over time, the chicks that received corticosterone appeared to grow out of their stressful upbringing. By adulthood they were the same size as controls, and they did not show frazzled feathers or pale colors that might indicate a rough chickhood. © Society for Science & the Public 2000 - 2014

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 8: Hormones and Sex
Link ID: 20209 - Posted: 10.16.2014