Links for Keyword: Stress

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 474

Robinson Meyer Brett Redding felt like he was out of options. “It started with little things—having trouble making eye contact,” he told me. Soon it got worse. Redding, a 28-year-old salesman in Seattle, found himself freaking out during normal, everyday conversations. He worried any time his boss wanted to talk. He would dread his regular sales calls, and the city’s booming housing market—he works in construction—seemed to make his ever-increasing meetings all the more crushing. He was suffering social anxiety, a common but debilitating mental illness. “I was afraid of losing my job because I couldn’t do it,” he says. His meetings with a therapist weren’t working, and he didn’t “want to mess with antidepressants.” “I’ve always been so social—I’ve never had issues with looking people in the eye and talking with people,” he says. That’s when Redding’s girlfriend saw an ad on Craigslist that promised an online program could help treat Redding’s social anxiety through methods proven by science. “I had nothing to lose,” he says—so he signed up. That service is now called Joyable. I first saw Joyable when an ad for it appeared in Facebook on my phone. “90 percent of our clients see their anxiety decline,” said the ad, next to a sun-glinted, bokeh-heavy photo of a blonde woman. I clicked on. Joyable’s website, full of affable sans serifs and cheery salmon rectangles, looks Pinterest-esque, at least in its design. Except its text didn’t discuss eye glasses or home decor but “evidence-based” methods shown to reduce social anxiety. I knew those phrases: “Evidence-based” is the watchword of cognitive behavioral therapy, or CBT, the treatment now considered most effective for certain anxiety disorders. Joyable dresses a psychologists’s pitch in a Bay Area startup’s clothes. © 2015 by The Atlantic Monthly Group.

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 20929 - Posted: 05.14.2015

By Melissa Mancini, Many veterans are turning to marijuana to ease symptoms of post traumatic stress disorder, despite concerns from the medical community about how effective pot is at treating the condition. There are a "tremendous" number of testimonials from patients with post traumatic stress disorder who say dried cannabis helps them, but there is a lack of randomized, controlled trials, said Dr. Stewart Cameron, a family physician and professor at Dalhousie University's faculty of medicine. In September 2014, the College of Family Physicians of Canada released a document to help doctors decide how to use cannabis in their practices. "They strongly recommended that it not be used for PTSD," said Cameron. "They suggested it should be reserved as a third or fourth line agent in people who suffer certain types of pain." Veterans Affairs paid out $5.2 million for medical marijuana to veterans across Canada last year. Of that, $3.4 million went to veterans in Atlantic Canada. The department could not say which ailments the veterans are treating with marijuana, because Veterans Affairs doesn't track cannabis reimbursement by condition. Medical marijuana advocate Fabian Henry says most of the 500 veterans who visited his company last year were looking for authorization to use marijuana to help with post traumatic stress disorder. Henry's company, Marijuana for Trauma, connects veterans with physicians willing to authorize medical cannabis. The organization has helped hundreds of veterans fill out forms for medical pot reimbursement from Veterans Affairs Canada. Marijuana for Trauma calls cannabis "a natural choice medicine" and says it's "proven to be effective in 85 per cent of those who suffer with PTSD." But Canadian medical authorities are far from assigning such a high efficacy rate to the drug. ©2015 CBC/Radio-Canada.

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 16: Psychopathology: Biological Basis of Behavior Disorders
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 12: Psychopathology: Biological Basis of Behavioral Disorders
Link ID: 20920 - Posted: 05.13.2015

By Kira Peikoff I draw an uneasy breath as I step into a bright purple office on the 14th floor of Boston’s Prudential Building. I am shown to a small conference table, where I take a seat and await the experiment. A palm-size triangular module is affixed above my right eye. It connects to a single-use strip of electrodes stuck onto my forehead and running down the back of my neck. This is Thync, the latest in transcranial direct current stimulation, or tDCS. The manufacturer says the device, to come out later this year, can alter the user’s mood in minutes via electric current. With a connected smartphone app, the mood-impaired subject chooses one of two settings: “calm vibes” or “energy vibes.” I tap “calm vibes” and wait. Somehow, I am having a hard time picturing myself unwinding at home this way while my husband sips a glass of Merlot. Thync is the latest in a wave of wearable gadgets offering so-called noninvasive brain stimulation. Until recently, it was mostly hobbyists — nine-volt batteries stuck to their heads — who experimented with tDCS as a means of improving concentration, verbal and computation abilities, and creativity. But in the last few years, several companies have introduced slick consumer devices, among them Foc.us, whose headset and controller cost $298, and The Brain Stimulator, whose advanced starter kit costs $150. In January, the journal Brain Stimulation published the largest meta-analysis of tDCS to date. After examining every finding replicated by at least two research groups, leading to 59 analyses, the authors reported that one session of tDCS failed to show any significant benefit for users. © 2015 The New York Times Company

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 20891 - Posted: 05.05.2015

Children who were often bullied by their peers may experience more anxiety and depression than children who were abused by adults, a finding that U.S. and British researchers say highlights an "imbalance" in school services to tackle bullying. Researchers followed the mental health of more than 4,000 children in Avon, south west England from birth to age 18 and 1,400 others in North Carolina from age nine up to age 26 through parent questionnaires and clinical interviews. In the Avon study, maltreatment was defined as physical, emotional, or sexual abuse or "maladaptive parenting" such as hitting, shouting and hostility. Children were interviewed about the frequency of bullying, which included overt threats, physical violence and nasty names as well as social exclusion or spreading lies or rumours. The results consistently showed an increased risk of anxiety, depression, self-harm and suicidal tendencies in children who were bullied, whether or not they had a history of abuse by adults, Prof. William Copeland, a clinical psychologist at Duke University School of Medicine in Durham, N.C. and his co-authors concluded in Tuesday's issue of Lancet Psychiatry. "What was a surprise was to see [the results] were as significant and pervasive as what we see for children that are physically abused, sexually abused or neglected," Copeland said. Government policies have focused almost exclusively on providing services for child abuse but much less attention and resources are devoted to bullying, the researchers said. Copeland's previous research showed long-term repercussions from bullying persist — and that includes impacts on physical health, dropping out of school and trouble with authorities. ©2015 CBC/Radio-Canada

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 13: Memory, Learning, and Development
Link ID: 20861 - Posted: 04.29.2015

By Nicholas Bakalar Many people consume sweets in response to stress. Now researchers may have discovered why. Sugar reduces levels of cortisol, the stress hormone. Scientists recruited 19 female volunteers. For 12 days, eight of them consumed beverages sweetened with aspartame, an artificial sweetener. The rest drank an identical beverage containing 25 percent sucrose, or table sugar. Before and after the experiment, researchers measured the volunteers’ saliva cortisol levels and performed functional M.R.I. scans while they took arithmetic tests designed to be just beyond their abilities — a procedure known to increase cortisol levels. The study, in the Journal of Clinical Endocrinology and Metabolism, found no differences in the tests between the two groups before the 12-day diet. But in tests afterward, cortisol levels were lower in the sugar consumers and higher in the aspartame group. The post-diet M.R.I. showed increased activity in the areas of the brain controlling fear and stress in the sugar group. The aspartame group showed decreased activity in those areas. The senior author, Kevin D. Laugero, a nutritionist with the federal Department of Agriculture, said no one should conclude that sugar should be used as a stress reducer. But, he said, “the finding is intriguing because it suggests that there is a metabolic pathway sensitive to sugar outside the brain that may expose new targets for treating neurobehavioral and stress-related conditions.” © 2015 The New York Times Company

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 20842 - Posted: 04.25.2015

By VIRGINIA HEFFERNAN Most newly stylish coinages carry with them some evidence of grammatical trauma. Consider “affluencer,” “selfie,” “impactful.” Notes of cynicism and cutesiness come through. But every now and then a bright exception to this dispiriting routine appears. A rookie word makes its big-league debut, a stadium of pedants prepares to peg it with tomatoes and — nothing. A halfhearted heckle. The new word looks only passably pathetic. Maddeningly, it has heft. “Mindfulness” may be that hefty word now, one that can’t readily be dismissed as trivia or propaganda. Yes, it’s current among jaw-grinding Fortune 500 executives who take sleeping pills and have “leadership coaches,” as well as with the moneyed earnest, who shop at Whole Foods, where Mindful magazine is on the newsstand alongside glossies about woodworking and the environment. It looks like nothing more than the noun form of “mindful” — the proper attitude toward the London subway’s gaps — but “mindfulness” has more exotic origins. In the late 19th century, the heyday of both the British Empire and Victorian Orientalism, a British magistrate in Galle, Ceylon (now Sri Lanka), with the formidable name of Thomas William Rhys Davids, found himself charged with adjudicating Buddhist ecclesiastical disputes. He set out to learn Pali, a Middle Indo-Aryan tongue and the liturgical language of Theravada, an early branch of Buddhism. In 1881, he thus pulled out “mindfulness” — a synonym for “attention” from 1530 — as an approximate translation of the Buddhist concept of sati. The translation was indeed rough. Sati, which Buddhists consider the first of seven factors of enlightenment, means, more nearly, “memory of the present,” which didn’t track in tense-preoccupied English. “Mindfulness” stuck — but may have saddled the subtle sati with false-note connotations of Victorian caution, or even obedience. (“Mind your manners!”) © 2015 The New York Times Company

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 20818 - Posted: 04.20.2015

By VIRGINIA HEFFERNAN Most newly stylish coinages carry with them some evidence of grammatical trauma. Consider “affluencer,” “selfie,” “impactful.” Notes of cynicism and cutesiness come through. But every now and then a bright exception to this dispiriting routine appears. A rookie word makes its big-league debut, a stadium of pedants prepares to peg it with tomatoes and — nothing. A halfhearted heckle. The new word looks only passably pathetic. Maddeningly, it has heft. “Mindfulness” may be that hefty word now, one that can’t readily be dismissed as trivia or propaganda. Yes, it’s current among jaw-grinding Fortune 500 executives who take sleeping pills and have “leadership coaches,” as well as with the moneyed earnest, who shop at Whole Foods, where Mindful magazine is on the newsstand alongside glossies about woodworking and the environment. It looks like nothing more than the noun form of “mindful” — the proper attitude toward the London subway’s gaps — but “mindfulness” has more exotic origins. In the late 19th century, the heyday of both the British Empire and Victorian Orientalism, a British magistrate in Galle, Ceylon (now Sri Lanka), with the formidable name of Thomas William Rhys Davids, found himself charged with adjudicating Buddhist ecclesiastical disputes. He set out to learn Pali, a Middle Indo-Aryan tongue and the liturgical language of Theravada, an early branch of Buddhism. In 1881, he thus pulled out “mindfulness” — a synonym for “attention” from 1530 — as an approximate translation of the Buddhist concept of sati. The translation was indeed rough. Sati, which Buddhists consider the first of seven factors of enlightenment, means, more nearly, “memory of the present,” which didn’t track in tense-preoccupied English. “Mindfulness” stuck — but may have saddled the subtle sati with false-note connotations of Victorian caution, or even obedience. (“Mind your manners!”) © 2015 The New York Times Company

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 20797 - Posted: 04.14.2015

By MALIA WOLLAN “A polygraph is nothing more than a psychological billy club used to coerce and intimidate people,” says Doug Williams, a former Oklahoma City police detective and polygraph examiner who for 36 years has trained people to pass the lie-detector test. The first step is not to be intimidated. Most tests include two types of questions: relevant ones about a specific incident (“Did you leak classified information to The New York Times?”) and broader so-called control questions (“Have you ever lied to anyone who trusted you?”). The test assumes that an innocent person telling the truth will have a stronger reaction to the control questions than to the relevant ones. Before your test, practice deciphering between the two question types. “Go to the beach” when you hear a relevant question, Williams says. Calm yourself before answering by imagining gentle waves and warm sand. When you get a control question, which is more general, envision the scariest thing you can in order to trigger physiological distress; the polygraph’s tubes around your chest measure breathing, the arm cuff monitors heart rate and electrodes attached to you fingertips detect perspiration. What is your greatest fear? Falling? Drowning? Being buried alive? “Picture that,” Williams says. He used to advise trainees to clench their anus but has since concluded that terrifying mental imagery works better. Williams, who is 69, may be among the more vitriolic critics of polygraphs, which he refers to as “insidious Orwellian instruments of torture,” but their reliability has long been questioned elsewhere, too. Federal legislation prohibits most private employers from using polygraphs. The U.S. Supreme Court has ruled that lower courts can ban them as evidence, and the scientific community has repeatedly raised concerns about their ability to accurately detect lies. © 2015 The New York Times Company

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 20789 - Posted: 04.13.2015

By Will Boggs MD NEW YORK (Reuters Health) - Adolescents with a history of childhood trauma show different neural responses to subjective anxiety and craving, researchers report. "I think the finding of increased activation of insula, anterior cingulate, and prefrontal cortex in response to stress cues in the high- relative to low-trauma group, while arguably not necessarily unexpected, is important as it suggests that youth exposed to higher levels of trauma may experience different brain responses to similar stressors," Dr. Marc N. Potenza from Yale University, New Haven, Connecticut told Reuters Health by email. Childhood trauma has been associated with anxiety and depression, as well as obesity, risky sexual behavior, and substance use. Previous imaging studies have not investigated neural responses to personalized stimuli, Dr. Potenza and his colleagues write in Neuropsychopharmacology, online January 8. The team used functional MRI to assess regional brain activations to personalized appetitive (favorite food), aversive (stress), and neutral/relaxing cues in 64 adolescents, including 33 in the low-trauma group and 31 in the high-trauma group. Two-thirds of the adolescents had been exposed to cocaine prenatally, with prenatal cocaine exposure being significantly over-represented in the high-trauma group. Compared with the low-trauma group, the high-trauma group showed increased responsivity in several cortical regions in response to stress, as well as decreased activation in the cerebellar vermis and right cerebellum in response to neutral/relaxing cues. But the two groups did not differ significantly in their responses to favorite-food cues, the researchers found. © 2015 Scientific American

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 13: Memory, Learning, and Development
Link ID: 20652 - Posted: 03.05.2015

By Sandhya Sekar It’s stressful being a low-ranking hyena—so stressful that even their chromosomes feel it. Researchers have discovered that the challenges of African savanna hyena society shorten underdogs’ telomeres, stretches of DNA that bookend chromosomes and protect them from wear and tear during cell replication. The stress may come from the top hyenas getting the best meat, whereas lower ranking individuals have to travel long distances—sometimes to the edges of the group territory—to fend for themselves. With increased stress, higher amounts of stress hormones and cellular byproducts like oxygen ions and peroxides are produced, both of which have been shown to shorten telomeres in other species. When telomeres fall below a certain length, cells go into damage-control mode and kick off biochemical pathways that can result in cell death. The study, the team reports online today in Biology Letters, is the first to show that the stress of social hierarchy can shorten telomeres in a wild species. © 2015 American Association for the Advancement of Science.

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 20611 - Posted: 02.25.2015

By Nathan Seppa Ask anybody — stress is bad news. The negative view of stress has been expressed so consistently that the concept is now built into our vernacular, which is spiced with advice on avoiding it: Take it easy. Calm down. Chill. Of course, a good case of stress comes in handy during an encounter with a grizzly bear on a hiking trail. In that situation, a stress reaction delivers a burst of hormones that revs up the heart and sharpens attention. This automatic response has served humans well throughout evolution, improving our odds of seeing another day. Problems arise, however, when stress becomes a feature of daily life. Chronic stress is the kind that comes from recurring pain, post-traumatic memories, unemployment, family tension, poverty, childhood abuse, caring for a sick spouse or just living in a sketchy neighborhood. Nonstop, low-grade stress contributes directly to physical deterioration, adding to the risk of heart attack, stroke, infection and asthma. Even recovery from cancer becomes harder. Scientists have now identified many of the biological factors linking stress to these medical problems. The evidence centers on nagging inflammation and genetic twists that steer cells off a healthy course, resulting in immune changes that allow ailments to take hold or worsen. Despite the bad rap stress has acquired throughout history, researchers have only recently been able to convince others that it’s dangerous. “It’s taken much more seriously now,” says Janice Kiecolt-Glaser, a clinical psychologist at Ohio State University in Columbus. “In the 1980s, we were still in the dark ages on this stuff.” © Society for Science & the Public 2000 - 2015

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 20599 - Posted: 02.21.2015

By PAULA SPAN The word “benzodiazepines” and the phrase “widely prescribed for anxiety and insomnia” appear together so frequently that they may remind you of the apparently unbreakable connection between “powerful” and “House Ways and Means Committee.” But now we have a better sense of just how widely prescribed these medications are. A study in this month’s JAMA Psychiatry reports that among 65- to 80-year-old Americans, close to 9 percent use one of these sedative-hypnotics, drugs like Valium, Xanax, Ativan and Klonopin. Among older women, nearly 11 percent take them. “That’s an extraordinarily high rate of use for any class of medications,” said Michael Schoenbaum, a senior adviser at the National Institutes of Mental Health and a co-author of the new report. “It seemed particularly striking given the identified clinical concerns associated with benzodiazepine use in anybody, but especially in older adults.” He was referring to decades of warnings about the potentially unhappy consequences of benzodiazepines for older users. The drugs still are recommended for a handful of specific disorders, including acute alcohol withdrawal and, sometimes, seizures and panic attacks. But concerns about the overuse of benzodiazepines have been aired again and again: in the landmark nursing home reform law of 1987, in the American Geriatrics Society’s Choosing Wisely list of questionable practices in 2013, in last year’s study in the journal BMJ suggesting an association with Alzheimer’s disease. Benzodiazepine users face increased risks of falls and fractures, of auto accidents, of reduced cognition. “Even after one or two doses, you have impaired cognitive performance on memory and other neuropsychological tests, compared to a placebo,” said Dr. D.P. Devanand, director of geriatric psychiatry at Columbia University Medical Center. © 2015 The New York Times Company

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 13: Memory, Learning, and Development
Link ID: 20578 - Posted: 02.16.2015

by Jessica Hamzelou WHAT doesn't kill you makes you stronger, at least when it comes to stress and immune cells. Mice that received a cocktail of immune cells from bullied mice appeared to experience a mood boost. The unexpected discovery may have implications for treating depression. We know that prolonged bouts of stress take their toll on the immune system. That leaves us susceptible to illness, which in some cases can lead to depression. Most research on the link between immune health and mood has focused on the innate branch of the immune system – the cells that mount the first response to pathogens, says Miles Herkenham at the National Institutes of Health in Bethesda, Maryland. His team wondered if there might also be a role for the adaptive branch of the immune system, which "learns" about a pathogen in order to respond rapidly the next time it appears. To find out, the team introduced an aggressive competitor mouse into the cages of male mice. "These mice are like bullies," says Herkenham. Two weeks later, the bullied mice seemed depressed: they cowered in dark corners and seemed uninterested in the scent of a female. The team extracted their adaptive immune cells and injected them into another set of mice bred to lack these cells. This meant that the recipient mice essentially acquired the adaptive immune system of the bullied ones. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 16: Psychopathology: Biological Basis of Behavior Disorders; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 12: Psychopathology: Biological Basis of Behavioral Disorders; Chapter 11: Emotions, Aggression, and Stress
Link ID: 20534 - Posted: 01.29.2015

By Richard Leiby NEWPORT BEACH, Calif. — The headquarters of Oakley, a maker of recreational and military gear, looks as if it belongs in a war zone. It’s a massive bunker with exposed steel pipes, girders and blast walls. Even the dais in the auditorium is armored. But on a recent afternoon, the talk inside the building, set atop an arid, inland hillside in Orange County, is not about fighting wars but about caring for warriors. Doctors, scientists and veterans approach the podium at a conference to present some of the latest tools to help vets recover from wounds both mental and physical: bionics, virtual reality, magnetic waves. A session called “Healing the Warrior Brain” features a trim, bleach-blond former Army staff sergeant named Jonathan Warren, who recounts on video his struggle with post-traumatic stress disorder after combat in Iraq. His flashbacks, panic attacks and booze benders were well chronicled: For a year, the Los Angeles Times tracked Warren’s efforts to find peace, including via Department of Veterans Affairs therapy. It didn’t work, he says. But now a different Jon Warren is here to say that he is finally free of symptoms, one year after that 2013 story ran. No longer does his worst memory of the Iraq war — failing to rescue his best friend, who nearly burned to death after their Humvee hit a roadside bomb in 2006 — grasp his psyche and inflict guilt. That’s because of a revolutionary new treatment that retuned his brain, he says, and set “my frequencies right.” Now he’s able to proudly embrace his military service, “to keep the memory, to be able to go there,” Warren tells the audience, “and not be controlled by it.”

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 16: Psychopathology: Biological Basis of Behavior Disorders
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 12: Psychopathology: Biological Basis of Behavioral Disorders
Link ID: 20474 - Posted: 01.13.2015

by Bethany Brookshire We all experience stress, but some handle it better than others. A lot of research has focused on what makes animals and people susceptible to stress and how that, in turn, can trigger depression. It makes sense to study the condition, not the people that don’t experience it. Depression and susceptibility are the broken state. Resilience seems normal by comparison. But resilience is not just the absence of susceptibility. It turns out that a protein called beta-catenin plays an active role in resilience. A new study, from Eric Nestler’s laboratory at the Mount Sinai School of Medicine in New York City, also identifies a large number of new targets that could help scientists understand why some people are susceptible to stress — and how they might be made more resilient. “When people study stress responses, we often just assume that in an animal that’s stressed, there’s an active process that creates these depression-like behaviors,” says Andre Der-Avakian, a neuroscientist at the University of California, San Diego. “But this study and studies from others have shown that resilience is also an active process.” The nucleus accumbens is an area of the brain most often linked with reward and pleasure from items we enjoy, such as food or drugs. But the area also shows changes in people with depression. “It makes sense — here’s a region important in responding to rewards,” Nestler explains. “One of the symptoms of people with depression is that they don’t derive pleasure from things in life.” © Society for Science & the Public 2000 - 2014

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 16: Psychopathology: Biological Basis of Behavior Disorders
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 12: Psychopathology: Biological Basis of Behavioral Disorders
Link ID: 20363 - Posted: 11.26.2014

BY Bethany Brookshire Stress is our coping response. Whether emotional or physical, stress is how organisms react to upheaval in their lives. And in many cases, that response requires tradeoffs. An animal will make it through now, but may come out with fewer fat stores or a shorter life span. But a new study shows that under certain conditions, developmental stress in male zebra finches might have a positive effect, in the form of more offspring to carry on his genes. Ondi Crino, a biologist now at Macquarie University in Sydney, examined how stress during development might affect reproductive success in male zebra finches. She purchased 10 male and 10 female zebra finches from pet shops near the University of Montana. The birds were allowed to pair off and nest. When the first batch of chicks was 12 days old, Crino fed half of the male offspring peanut oil, and half peanut oil with the hormone corticosterone mixed in. Both humans and finches produce stress-related hormones. Humans produce cortisol, while finches produce corticosterone. These two hormones increase during times of stress and cause many of the negative effects we associate with worry and pressure. So administering corticosterone is one method of “stressing” an animal without changing anything else in its environment. The dose was in the range of what a young bird might experience in the midst of a natural upheaval such as a cold snap or famine. After 16 days of the peanut oil supplement, the young male birds receiving corticosterone were smaller than their relaxed counterparts. They also had a larger spike in their own corticosterone levels when they were stressed. But over time, the chicks that received corticosterone appeared to grow out of their stressful upbringing. By adulthood they were the same size as controls, and they did not show frazzled feathers or pale colors that might indicate a rough chickhood. © Society for Science & the Public 2000 - 2014

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 8: Hormones and Sex
Link ID: 20209 - Posted: 10.16.2014

By ALINA TUGEND MANY workers now feel as if they’re doing the job of three people. They are on call 24 hours a day. They rush their children from tests to tournaments to tutoring. The stress is draining, both mentally and physically. At least that is the standard story about stress. It turns out, though, that many of the common beliefs about stress don’t necessarily give the complete picture. MISCONCEPTION NO. 1 Stress is usually caused by having too much work. While being overworked can be overwhelming, research increasingly shows that being underworked can be just as challenging. In essence, boredom is stressful. “We tend to think of stress in the original engineering way, that too much pressure or too much weight on a bridge causes it to collapse,” said Paul E. Spector, a professor of psychology at the University of South Florida. “It’s more complicated than that.” Professor Spector and others say too little to do — or underload, as he calls it — can cause many of the physical discomforts we associate with being overloaded, like muscle tension, stomachaches and headaches. A study published this year in the journal Experimental Brain Research found that measurements of people’s heart rates, hormonal levels and other factors while watching a boring movie — men hanging laundry — showed greater signs of stress than those watching a sad movie. “We tend to think of boredom as someone lazy, as a couch potato,” said James Danckert, a professor of neuroscience at the University of Waterloo in Ontario, Canada, and a co-author of the paper. “It’s actually when someone is motivated to engage with their environment and all attempts to do so fail. It’s aggressively dissatisfying.” © 2014 The New York Times Company

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 13: Memory, Learning, and Development
Link ID: 20161 - Posted: 10.04.2014

By Dick Miller, CBC News Dan Campbell felt the bullets whiz past his head. The tracer rounds zipped between his legs. It was his first firefight as a Canadian soldier in Afghanistan. "I was completely frightened and scared like I’d never been before in my life,” he says. As the attack continued, the sights, sounds and smells started to form memories inside his brain. The fear he felt released the hormone norepinephrine, and in the complex chemistry of the brain, the memories of the battle became associated with the fear. 'I think one day, hopefully in the not-too-distant future, we will be able to delete a memory.'- Dr. Sheena Josselyn, senior scientist, Hospital For Sick Children Research Institute Six years later, a sight or sound such as a firecracker or car backfiring can remind him of that night in 2008. The fear comes back and he relives rather than remembers the moments. "It can be hard. Physically, you know, there’s the tapping foot, my heart beating,” he says. Like so many soldiers and victims of assault or people who have experienced horrific accidents, Campbell was diagnosed with post traumatic stress disorder. Now a newspaper reporter in Yellowknife, Campbell thinks one day he may get therapy. But for now he is working on his own to control the fear and anger the memories bring. © CBC 2014

Related chapters from BP7e: Chapter 16: Psychopathology: Biological Basis of Behavior Disorders; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 12: Psychopathology: Biological Basis of Behavioral Disorders; Chapter 13: Memory, Learning, and Development
Link ID: 20111 - Posted: 09.24.2014

|By Corinne Iozzio Albert “Skip” Rizzo of the University of Southern California began studying virtual reality (VR) as psychological treatment in 1993. Since then, dozens of studies, his included, have shown the immersion technique to be effective for everything from post-traumatic stress disorder (PTSD) and anxiety to phobias and addiction. But a lack of practical hardware has kept VR out of reach for clinicians. The requirements for a VR headset seem simple—a high-resolution, fast-reacting screen, a field of vision that is wide enough to convince patients they are in another world and a reasonable price tag— yet such a product has proved elusive. Says Rizzo, “It’s been 20 frustrating years.” In 2013 VR stepped into the consumer spotlight in the form of a prototype head- mounted display called the Oculus Rift. Inventor Palmer Luckey’s goal was to create a platform for immersive video games, but developers from many fields—medicine, aviation, tourism—are running wild with possibilities. The Rift’s reach is so broad that Oculus, now owned by Facebook, hosted a conference for developers in September. The Rift, slated for public release in 2015, is built largely from off- the-shelf parts, such as the screens used in smartphones. A multi- axis motion sensor lets the headset refresh imagery in real time as the wearer’s head moves. The kicker is the price: $350. (Laboratory systems start at $20,000.) Rizzo has been among the first in line. His work focuses on combat PTSD. In a 2010 study, he placed patients into controlled traumatic scenarios, including a simulated battlefield, so they could confront and process emotions triggered in those situations. © 2014 Scientific American

Related chapters from BP7e: Chapter 16: Psychopathology: Biological Basis of Behavior Disorders; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 12: Psychopathology: Biological Basis of Behavioral Disorders; Chapter 11: Emotions, Aggression, and Stress
Link ID: 20106 - Posted: 09.23.2014

by Bethany Brookshire Post-traumatic stress disorder, or PTSD, has many different symptoms. Patients may suffer from anxiety, flashbacks, memory problems and a host of other reactions to a traumatic event. But one symptom is especially common: 70 percent of civilian patients and 90 percent of combat veterans with PTSD just can’t get a decent night’s sleep. Problems with sleep, including rapid-eye movement — or REM — sleep, have long been associated with PTSD. “We know that sleep difficulties in the weeks following trauma predict the development of PTSD, and we know that bad sleep makes PTSD symptoms worse,” says Sean Drummond, a clinical psychologist who studies sleep at the University of California at San Diego. Studies in rats show that exposing the animals to traumatic, fearful experiences such as foot shocks disrupts their REM sleep. Drummond and his research assistant Anisa Marshall wanted to connect those findings to humans. But he soon found out that in humans, it’s not fear that predicts REM sleep. Instead, it’s safety. The scientists tested this in 42 people without PTSD using a measure called fear-potentiated startle. Subjects sit in a comfortable chair with an electrode on their wrists. A screen shows blue squares or yellow squares. If participants see blue squares, they run a high risk of receiving an annoying shock to the wrist. If they see yellow squares, they can relax; no shocks are headed their way. During this time, they will also hear random, loud bursts of white noise. The scientists measure how much the subjects startle in response to the noise by measuring the strength of their eyeblinks in response to the noise. In the presence of the blue squares, the blinks become much stronger, an effect called fear-potentiated startle. With yellow squares, the blinks weaken. © Society for Science & the Public 2000 - 2014.

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 16: Psychopathology: Biological Basis of Behavior Disorders
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 12: Psychopathology: Biological Basis of Behavioral Disorders
Link ID: 20072 - Posted: 09.13.2014