Links for Keyword: Stroke

Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.


Links 101 - 120 of 391

By Amy Ellis Nutt Debbie Hall undergoes external brain stimulation at Ohio State's Wexner Medical Center. Hall was partially paralyzed on her left side after a stroke. Doctors are conducting a study to see if a device known as NexStim can `prep` a stroke victim's brain immediately prior to physical therapy so that the therapy will be more effective. (The Ohio State University Wexner Medical Center) Using non-invasive transcranial magnetic stimulation, or TMS, researchers at Ohio State Wexner Medical Center may have found a way to help prep a stroke victim's brain prior to physical therapy to aid a more complete recovery. When one side of the brain is damaged by a stroke, the corresponding healthy part goes into overdrive in order to compensate, said Dr. Marcie Bockbrader, principle investigator of the study. She believes the hyperactivity in the healthy side may actually slow recovery in the injured side. The technology, called NexStim, employs TMS to prepare a stroke patient's brain for physical therapy by sending low-frequency magnetic pulses painlessly through a victim's scalp to suppress activity in the healthy part of the motor cortex. This allows the injured side to make use of more energy during physical therapy, which immediately follows the transcranial magnetic stimulation. "This device targets the overactive side, quieting it down enough, so that through therapies the injured side can learn to express itself again," said Bockbrader, an assistant professor of physical medicine and rehabilitation, in a new release.

Related chapters from BN: Chapter 19: Language and Lateralization
Related chapters from MM:Chapter 15: Language and Lateralization
Link ID: 20349 - Posted: 11.24.2014

by Colin Barras LOCKED in but not shut out: for the first time people who have lost the ability to move or talk because of a stroke may be able to communicate with their loved ones using a brain-computer interface. Brain injuries can leave people aware but almost completely paralysed, a condition called locked-in syndrome. Brain-computer interfaces (BCIs) can help some people communicate by passing signals from electrodes attuned to their brain activity as they watch a screen displaying letters. Subtle changes in neural activity let researchers know when a person wishes to select a particular on-screen item, allowing them to spell out messages by thought alone. Until now, BCIs have only been tested on healthy volunteers and people with amyotrophic lateral sclerosis, a neurodegenerative disease that leads to muscle wasting. But no one had tested whether the technology could help people locked in after a brain stem stroke. Now Eric Sellers and his colleagues at East Tennessee State University in Johnson City have tested the technique on a 68-year-old man. After more than a year of training he learned to communicate reliably via the BCI. He took the opportunity to thank his wife for her hard work, and to give his thoughts on gift purchases for his children (Science Translational Medicine, DOI: 10.1126/scitranslmed.3007801). © Copyright Reed Business Information Ltd.

Related chapters from BN: Chapter 19: Language and Lateralization; Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 15: Language and Lateralization; Chapter 5: The Sensorimotor System
Link ID: 20185 - Posted: 10.09.2014

Erin Allday When a person suddenly loses the ability to speak or to understand what others are saying, the hardships that cascade from that loss can be overwhelming - from the seemingly trite to the devastatingly depressing. What hit Derrick Wong, 49, hardest was losing the ability to tell a joke. Ralph Soriano, 56, hates taking his car to the mechanic, knowing he will barely understand what's being said. "Girls," said Luke Waterman, 30, with a sigh. Flirting used to come easy. All three men - actually a pretty happy, hopeful gang for the most part - are longtime members of a group therapy program at the Aphasia Center of California, an Oakland nonprofit that offers treatment and ongoing education to people who have suffered communication disorders as a result of stroke or other brain injury. The nonprofit specializes in long-term therapy, an area of aphasia treatment that has taken off in the past few years. For many decades, doctors and speech pathologists assumed that patients had a window of six months to a year to recover language skills lost to a brain injury. Now, anecdotal reports and clinical research suggest that the window is much wider, and may even stay open a lifetime. "There is evidence that people can improve and regain skills, even years after a stroke," said Blair Menn, a speech language pathologist at Kaiser Permanente Medical Center in Redwood City. © 2014 Hearst Communications, Inc.

Related chapters from BN: Chapter 19: Language and Lateralization
Related chapters from MM:Chapter 15: Language and Lateralization
Link ID: 19996 - Posted: 08.26.2014

By NICHOLAS BAKALAR Childhood treatment with human growth hormone is strongly associated with an increased risk for stroke in early adulthood, a new study has found. The study adds evidence to previous reports suggesting an increased cardiac and cerebrovascular risk in children treated with growth hormone. Researchers studied 6,874 children, average age 11, who were small for their age but otherwise generally healthy and were treated with growth hormone from 1985 to 1996. They followed them to an average age of 28. There were 11 strokes in the group, four of them fatal. The analysis found that this was more than twice as many strokes as would be expected in a population this size, a statistically significant difference. The results, published online in the journal Neurology, were particularly striking for hemorrhagic stroke, the type caused by a ruptured blood vessel — there were more than seven times as many as would be expected. The authors acknowledged that they were unable to take into account some risk factors for stroke, such as family history and smoking. “Subjects on growth hormones should not panic on reading these results,” said the senior author, Dr. Joël Coste, a professor of biostatistics and epidemiology at the Hôtel Dieu hospital in Paris. “The doctor prescribing the hormone or the family doctor should be consulted and will be able to inform and advise patients.” © 2014 The New York Times Company

Related chapters from BN: Chapter 19: Language and Lateralization; Chapter 5: Hormones and the Brain
Related chapters from MM:Chapter 15: Language and Lateralization; Chapter 8: Hormones and Sex
Link ID: 19995 - Posted: 08.26.2014

By James Gallagher Health editor, BBC News website Stimulating the part of the brain which controls movement may improve recovery after a stroke, research suggests. Studies showed firing beams of light into the brains of mice led to the animals moving further and faster than those without the therapy. The research, published in Proceedings of the National Academy of Science, could help explain how the brain recovers and lead to new treatments. The Stroke Association said the findings were interesting. Strokes can affect memory, movement and the ability to communicate. Brain cells die when their supply of oxygen and sugars is cut off by a blood clot. Stroke care is focused on rapid treatment to minimise the damage, but some recovery is possible in the following months as the brain rewires itself. The team at Stanford University School of Medicine investigated whether brain stimulation aided recovery in animal experiments. They used a technique called optogenetics to stimulate just the neurons in the motor cortex - the part of the brain responsible for voluntary movements - following a stroke. After seven days of stimulation, mice were able to walk further down a rotating rod than mice which had not had brain stimulation. After 10 days they were also moving faster. The researchers believe the stimulation is affecting how the wiring of the brain changes after a stroke. They detected higher levels of chemicals linked to the formation of new connections between brain cells. Lead researcher Prof Gary Steinberg said it was a struggle to give people drugs to protect brain cells in time as the "time window is very short". BBC © 2014

Related chapters from BN: Chapter 19: Language and Lateralization
Related chapters from MM:Chapter 15: Language and Lateralization
Link ID: 19979 - Posted: 08.20.2014

Ian Sample, science editor Stroke patients who took part in a small pilot study of a stem cell therapy have shown tentative signs of recovery six months after receiving the treatment. Doctors said the condition of all five patients had improved after the therapy, but that larger trials were needed to confirm whether the stem cells played any part in their progress. Scans of the patients' brains found that damage caused by the stroke had reduced over time, but similar improvements are often seen in stroke patients as part of the normal recovery process. At a six-month check-up, all of the patients fared better on standard measures of disability and impairment caused by stroke, but again their improvement may have happened with standard hospital care. The pilot study was designed to assess only the safety of the experimental therapy and with so few patients and no control group to compare them with, it is impossible to draw conclusions about the effectiveness of the treatment. Paul Bentley, a consultant neurologist at Imperial College London, said his group was applying for funding to run a more powerful randomised controlled trial on the therapy, which could see around 50 patients treated next year. "The improvements we saw in these patients are very encouraging, but it's too early to draw definitive conclusions about the effectiveness of the therapy," said Soma Banerjee, a lead author and consultant in stroke medicine at Imperial College Healthcare NHS Trust. "We need to do more tests to work out the best dose and timescale for treatment before starting larger trials." The five patients in the pilot study were treated within seven days of suffering a severe stroke. Each had a bone marrow sample taken, from which the scientists extracted stem cells that give rise to blood cells and blood vessel lining cells. These stem cells were infused into an artery that supplied blood to the brain. © 2014 Guardian News and Media Limited

Related chapters from BN: Chapter 19: Language and Lateralization; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 15: Language and Lateralization; Chapter 4: Development of the Brain
Link ID: 19929 - Posted: 08.09.2014

By NICHOLAS BAKALAR The incidence of stroke in the United States has declined significantly over the past two decades, a new analysis has found. The decreases were apparent in people older than 65, the most common age group for stroke, and were similar in men and women and in blacks and whites. There were decreases in stroke deaths as well, but they were concentrated in younger research participants. The report appeared in JAMA. Researchers followed 14,357 people, ages 45 to 64 at the start of the study, from 1987 to 2011. After accounting for coronary heart disease, hypertension, diabetes, smoking, statin use and other factors, they found that the incidence of stroke decreased by about 50 percent over the period of the study, and stroke deaths by about 40 percent. Smoking cessation and better treatment of hypertension and high cholesterol accounted for part of the decrease, according to the senior author, Dr. Josef Coresh, a professor of epidemiology at the Johns Hopkins Bloomberg School of Public Health, and improved medical care and more rigorous control of risk factors probably helped as well. Increased diabetes prevalence, on the other hand, contributed to higher risk. “The decrease in stroke also suggests that there’s a decrease in smaller strokes that we may not detect,” he said, “and that would bode well for overall brain health and the potential for decreasing the risk of dementia with aging.” © 2014 The New York Times Company

Related chapters from BN: Chapter 19: Language and Lateralization
Related chapters from MM:Chapter 15: Language and Lateralization
Link ID: 19839 - Posted: 07.16.2014

By Smitha Mundasad Health reporter, BBC News Researchers have identified a gene that may put people at greater risk of strokes and heart attacks. Writing in PLOS ONE they say the gene fault may encourage the formation of blood clots - the ultimate cause of most heart attacks and strokes. Scientists hope gene tests may help doctors one day to pinpoint individuals more likely to suffer these conditions. But experts say lifestyle factors such as smoking and exercise have the greatest influence on risk. Around one in 10 people in the Caucasian population carries this variation of the gene, named PIA2. And researchers from King's College London reviewed more than 80 studies involving about 50,000 people - the largest analysis of this genetic fault to date. Threat to under-45s They found individuals with PIA2 were more likely to have a stroke - caused by a blood clot blocking blood supply to the brain - than those without the gene. Scientists calculate the gene increases a person's risk of having a stroke by 10-15%. But how significant this increase is depends on an individual's baseline risk - influenced by factors such as smoking, diet, weight and exercise, the scientists say. Heart attacks are caused by a blockage to the blood vessels that carry oxygen to the heart. More than 100,000 heart attacks are recorded in the UK each year And for people with two copies of the gene the risk rises by up to 70% from this baseline. In a second study published in the same journal, the scientists show PIA2 is also linked to an increased risk of heart attacks in people under 45. More research is needed to see whether this holds true for the whole population, they say. About 150,000 people have a stroke in the UK each year and more than 100,000 heart attacks are recorded annually. BBC © 2014

Related chapters from BN: Chapter 19: Language and Lateralization; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 15: Language and Lateralization; Chapter 4: Development of the Brain
Link ID: 19785 - Posted: 07.03.2014

By Michelle Roberts Health editor, BBC News online Scientists say they have devised a helmet that can quickly determine whether a patient has had a stroke. It could speed diagnosis and treatment of stroke to boost chances of recovery, the scientists say. The wearable cap bounces microwaves off the brain to determine whether there has been a bleed or clot deep inside. The Swedish scientists who made the device plan to give it to ambulance crews to test after successful results in early studies with 45 patients. When a person has a stroke, doctors must work quickly to limit any brain damage. If it takes more than four hours to get to hospital and start treatment, parts of their brain tissue may already be dying. But to give the best treatment, doctors first need to find out if the stroke is caused by a leaky blood vessel or one blocked by a clot. A computerised tomography (CT) scan will show this, but it can take some time to organise one for a patient, even if they have been admitted as an emergency to a hospital that has one of these scanners. Any delay in this "golden hour" of treatment opportunity could hamper recovery. To speed up the process, researchers in Sweden, from Chalmers University of Technology, Sahlgrenska Academy and Sahlgrenska University Hospital, have come up with a mobile device that could be used on the way to hospital. The helmet uses microwave signals - the same as the ones emitted by microwave ovens and mobile phones but much weaker - to build a picture of what is going on throughout the brain. BBC © 2014

Related chapters from BN: Chapter 19: Language and Lateralization; Chapter 2: Functional Neuroanatomy: The Cells and Structure of the Nervous System
Related chapters from MM:Chapter 15: Language and Lateralization; Chapter 1: Cells and Structures: The Anatomy of the Nervous System
Link ID: 19741 - Posted: 06.17.2014

A selfie video that a 49-year-old Toronto-area woman took to show numbness and slurred speech she was experiencing helped doctors to diagnose her as having a mini-stroke, after she had earlier been given a diagnosis of stress. When Stacey Yepes’s face originally froze and she had trouble speaking in April, she remembered the signs of stroke from public service announcements. After the symptoms subsided, she went to a local emergency room, but the tests were clear and she was given tips on how to manage stress. The numbing sensation happened again as she left the hospital. When the left side of her body went numb while driving two days later, she pulled over, grabbed her smartphone and hit record. "The sensation is happening again," the Thornhill, Ont., woman says at the beginning of the video posted on YouTube by Toronto’s University Health Network. "It’s all tingling on left side," as she points to her lower lip, trying to smile. Yepes remembers that doctors said to breathe in and out and to try to manage stress, and she says she's trying. "I don’t know why this is happening to me." About a minute later, she shows that it’s hard to lift up her hand. "I think it was just to show somebody, because I knew it was not stress-related," she said in an interview. "And I thought if I could show somebody what was happening, they would have a better understanding." After going to Mount Sinai Hospital in downtown Toronto, Yepes was referred to Toronto Western Hospital’s stroke centre. © CBC 2014

Related chapters from BN: Chapter 19: Language and Lateralization
Related chapters from MM:Chapter 15: Language and Lateralization
Link ID: 19740 - Posted: 06.17.2014

By SAM KEAN UNTIL the past few decades, neuroscientists really had only one way to study the human brain: Wait for strokes or some other disaster to strike people, and if the victims pulled through, determine how their minds worked differently afterward. Depending on what part of the brain suffered, strange things might happen. Parents couldn’t recognize their children. Normal people became pathological liars. Some people lost the ability to speak — but could sing just fine. These incidents have become classic case studies, fodder for innumerable textbooks and bull sessions around the lab. The names of these patients — H. M., Tan, Phineas Gage — are deeply woven into the lore of neuroscience. When recounting these cases today, neuroscientists naturally focus on these patients’ deficits, emphasizing the changes that took place in their thinking and behavior. After all, there’s no better way to learn what some structure in the brain does than to see what happens when it shorts out or otherwise gets destroyed. But these case snippets overlook something crucial about people with brain damage. However glaring their deficits are, their brains still work like ours to a large extent. Most can still read and reason. They can still talk, walk and emote. And they still have the same joys and fears — facts that the psychological caricatures passed down from generation to generation generally omit. The famous amnesiac H. M., for instance, underwent radical brain surgery in 1953 and had most of the hippocampus removed on both sides of his brain; afterward, he seemed to lose the ability to form new long-term memories. Names, dates, directions to the bathroom all escaped him now. He’d eat two breakfasts if no one stopped him. Careful testing, however, revealed that H. M. could form new motor memories — memories of things like how to ride a bicycle — because they rely on different structures in the brain. This work established that memory isn’t a single, monolithic thing, but a collection of different faculties. © 2014 The New York Times Company

Related chapters from BN: Chapter 15: Emotions, Aggression, and Stress; Chapter 19: Language and Lateralization
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 15: Language and Lateralization
Link ID: 19570 - Posted: 05.04.2014

By Gabriella Rosen Kellerman By 1664, the year he published his most famous book of neuroanatomy, Cerebri Anatome, Dr. Thomas Willis was already renowned in Britain for saving lives. Fourteen years earlier, the corpse of executed murderer Anne Green had been delivered to Willis and some of his colleagues for autopsy. Upon opening the coffin—the story goes—the doctors heard a gasp. Ms. Green, they discovered, had been hanged but not executed. Thanks to the resuscitation efforts of Willis and his colleagues, Green survived, and was given a stay of execution. She died fifteen years later. The episode supposedly drew jealousy from Willis’s contemporaries, who could have had no idea just how many lives Willis’s work would one day save. Among the important discoveries included in Cerebri Anatome, considered the founding text of neurology, is the Circle of Willis, a map of the interconnecting arteries at the base of the brain. Such circular connections among arteries are called anastomoses. They enable blood to reach vital tissue along multiple routes so that when one is blocked, the blood has an alternative outlet. The Circle of Willis is perhaps most important because of its implications for stroke. Stroke, which is the third leading cause of death in this country, occurs when blood flow to the brain is disrupted. This can occur when an artery gets blocked with plaque or a clot (called an ischemic stroke) or when at artery bursts (called hemorrhagic stroke). Many of these problems, particularly the latter kind of stroke, occur in the Circle of Willis. © 2014 Scientific American

Related chapters from BN: Chapter 2: Functional Neuroanatomy: The Cells and Structure of the Nervous System; Chapter 19: Language and Lateralization
Related chapters from MM:Chapter 1: Cells and Structures: The Anatomy of the Nervous System; Chapter 15: Language and Lateralization
Link ID: 19564 - Posted: 05.03.2014

National Institutes of Health researchers have identified gene variants that cause a rare syndrome of sporadic fevers, skin rashes and recurring strokes, beginning early in childhood. The team’s discovery coincides with findings by an Israeli research group that identified an overlapping set of variants of the same gene in patients with a similar type of blood vessel inflammation. The NIH group first encountered a patient with the syndrome approximately 10 years ago. The patient, then 3 years old, experienced fevers, skin rash and strokes that left her severely disabled. Because there was no history of a similar illness in the family, the NIH group did not at first suspect a genetic cause, and treated the patient with immunosuppressive medication. However, when the NIH team evaluated a second patient with similar symptoms two years ago — a child who had experienced recurrent fevers and six strokes by her sixth birthday — they began to suspect a common genetic cause and embarked on a medical odyssey that has led not only to a diagnosis, but to fundamental new insights into blood vessel disease. In their study, which appears in the Feb. 19, 2014, advance online edition of the New England Journal of Medicine, the researchers describe how next-generation genome sequencing, only recently available, facilitated a molecular diagnosis for patients in their study. The researchers found that harmful variants in the CECR1 gene impede production of a protein vital to the integrity of healthy blood vessel walls. The researchers showed that faulty variants in their patients’ DNA that encode the CECR1 gene cause a loss of function of the gene’s ability to produce of an enzyme called adenosine deaminase 2 (ADA2). Without it, abnormalities and inflammation in blood vessel walls result. The researchers call the new syndrome, deficiency of ADA2, or DADA2.

Related chapters from BN: Chapter 19: Language and Lateralization; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 15: Language and Lateralization; Chapter 4: Development of the Brain
Link ID: 19277 - Posted: 02.22.2014

Women have a poorer quality of life after a stroke than men, a study has found. The US research, published in Neurology, assessed the mental and physical health of 1,370 patients three months and a year after a stroke. Women had more depression and anxiety, pain and discomfort, and more restricted mobility. UK experts said women tended to have strokes later, and might therefore need more support. But the study did say more people survive a stroke now than 10 years ago because of improved treatment and prevention. The researchers at Wake Forest Baptist Medical Center, North Carolina, looked at patients who had had a stroke or transient ischaemic attack (TIA), also known as a mini-stroke. Quality of life is calculated using a formula that assesses mobility, self-care, everyday activities, depression/anxiety and pain. At three months, women were more likely than men to report problems with mobility, pain and discomfort, anxiety and depression, but the difference was greatest in those aged over 75. After a year, women still had lower quality-of-life scores overall than men but the difference between them was smaller. Support needs Prof Cheryl Bushnell, who led the study, said: "We found that women had a worse quality of life than men up to 12 months following a stroke." BBC © 2014

Related chapters from BN: Chapter 19: Language and Lateralization; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 15: Language and Lateralization; Chapter 8: Hormones and Sex
Link ID: 19221 - Posted: 02.08.2014

By Susan Berger, The chiropractor had just worked on Lynne Beliveau’s neck when she became dizzy, unable to see or move. Rushed to the hospital, Beliveau had a shunt inserted to relieve pressure caused by swelling in her brain. The Ashburn woman suffered a series of strokes and today, eight years later, the 41-year-old mother of three suffers from constant vertigo. Elizabeth Haran Caplan knew she was in trouble seconds after a chiropractor in Oklahoma City manipulated her neck. The room got dark and she felt dizzy. Because of her years of service as a combat medic in Kosovo and Somalia, she knew what was happening and yelled, “Stop. I’m having a stroke.” More than a decade later, she is blind in her left eye and has problems swallowing without choking due to paralysis of one side of her throat. Approximately 20 million Americans visit chiropractors each year, according to the American Chiropractic Association, seeking relief from back pain, neck pain, headaches, sinus problems, ringing in the ears and more. For many, the manipulations provide relief. But one of the techniques chiropractors use, called cervical neck manipulation or “cracking the neck,” has raised concerns that it can cause serious harm. “I have jumped out of airplanes, escaped bullets in Somalia,” said Haran Caplan, 47, who retired from the Army nine years ago as a lieutenant colonel. “Who knew the most dangerous place I would put myself would be on a chiropractor’s table?” © 1996-2014 The Washington Post

Related chapters from BN: Chapter 19: Language and Lateralization
Related chapters from MM:Chapter 15: Language and Lateralization
Link ID: 19109 - Posted: 01.08.2014

by Jessica Griggs, San Diego No practice required. Wouldn't it be great if you could get better at playing sport or hone your piano skills simply by thinking about it? A small pilot study suggests that it might be possible. In the last few years, brain training using computer games that provide neurofeedback – a real-time representation of your brain activity – has become a popular, if controversial, method of enhancing cognitive abilities such as spatial memory, planning and multitasking. It has even been used to help actors get into character. Most of the games aim to enhance activation in a single part of the brain. But motor skills are known to involve two main areas – the premotor cortex and the supplementary motor cortex. Both are involved when people make movements or imagine moving. Brain activity between these regions is known to be less synchronised in people who are poor at motor tasks than in those who excel at them. So to see if brain training could target both areas and improve motor performance, Sook-Lei Liew and her colleagues from the National Institute of Neurological Disorders and Stroke in Bethesda, Maryland, recruited eight young adults. The researchers and asked the participants to watch a white circle on a screen while an fMRI machine scanned their brain. When the circle turned into a red triangle, the volunteers were told to move their fingers. This movement caused activation in their premotor cortex and supplementary motor cortex, which in turn moved a bar on the screen. The higher the synchronisation of activity between the two brain areas, the higher the bar went. © Copyright Reed Business Information Ltd.

Related chapters from BN: Chapter 11: Motor Control and Plasticity; Chapter 19: Language and Lateralization
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 15: Language and Lateralization
Link ID: 18928 - Posted: 11.14.2013

By NELSON GRAVES Six years ago I suffered a stroke that forced me to relearn how to walk. The other day I ran a half-marathon. Strokes strike with stealth, but for me it was not entirely a surprise. During a physical in Milan in 2007, the doctor listened to my heart, then ordered an electrocardiogram. “Fair enough,” I reassured myself. “I’m 52 years old, and it’s no use taking anything for granted.” The nurse furrowed her brow as she studied the first read-out, then conducted a second, longer EKG. I put my shirt back on and returned to the doctor’s office. “I have some news for you,” he said. “You have atrial fibrillation. AF for short.” He wrote down the two words and explained they meant an irregular beating of the heart’s upper chambers. “It’s not life threatening. But it increases the risk of stroke six-fold.” I was too young to have a stroke. “I work 12-hour days, play squash three times a week and haven’t missed a day of work in 24 years,” I said. My attention piqued, I could now hear my heart’s irregular beat as I lay my head on my pillow. That must explain the dizziness when I get up at night to go to the bathroom. Or the fatigue at the end of a squash match. So when, on a September afternoon in Tokyo, my head began to spin wildly and I could hardly speak, I knew what was happening. After an ambulance ride to the hospital and an M.R.I., I heard the doctor say, “You’ve had a cerebral embolism.” That would be a stroke. Copyright 2013 The New York Times Company

Related chapters from BN: Chapter 19: Language and Lateralization; Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 15: Language and Lateralization; Chapter 5: The Sensorimotor System
Link ID: 18833 - Posted: 10.26.2013

Stroke deaths and illnesses are likely to continue shifting younger, global research suggests. In the Global and Regional Burden of Stroke in 1999-2010 study published in Thursday's issue of the medical journal The Lancet, researchers take a comprehensive look at stroke rates by country and region. "Stroke burden worldwide continues to increase," Prof. Valery Feigin, director of the National Institute for Stroke and Applied Neurosciences at AUT University in New Zealand said in an interview. "It's increasing at increased pace, more than we expected, disproportionately affecting low-to middle-income countries." The proportion of stroke in people younger than 65 is substantial, Feigin's team said. More than 83,000 children and youths aged 20 years and younger are affected by stroke annually. Feigin said the epidemic of obesity, and Type 2 diabetes in children and young people is increasing worldwide, which will be important risk factors for stroke 20 or 30 years down the road. If the trends in low-income and middle-income countries continue, by 2030 there will be almost 12 million stroke deaths and 70 million stroke survivors worldwide, the researchers projected. More than 90 per cent of strokes are preventable through lifestyle changes such as improving diet, quitting smoking, reducing salt and alcohol intake, increasing physical activity and managing stress, Feigin said.

Related chapters from BN: Chapter 19: Language and Lateralization
Related chapters from MM:Chapter 15: Language and Lateralization
Link ID: 18828 - Posted: 10.24.2013

By Meeri Kim, Dizziness, vertigo and nausea are common symptoms of an inner-ear infection. But they can also be signs of a stroke. For doctors, especially those working in emergency rooms, quickly and accurately making the distinction is vital. But basic diagnostic tools, including the otoscope and simple eye-movement tests, are far from definitive. As a result, many doctors resort to a pricey imaging test such as a CT scan or an MRI. Nearly half of the 4 million people who visit U.S. emergency rooms each year with dizziness are given an MRI or CT scan, according to a study issued last month. Only about 3 percent of those 4 million people are actually having strokes. Why did the physical therapist’s staff push him to make more visits? Hefty insurance payments, perhaps. For the 25 percent of strokes that restrict blood flow to the back portions of the brain, CT scans are a poor diagnostic tool, according to the study’s leader, David Newman-Toker, an associate professor of neurology and otolaryngology at the Johns Hopkins University School of Medicine. “CT scans are so bad at detecting [these strokes] that they miss about 85 percent of them” in the first day after symptoms begin, he said. “That’s pretty close to useless.” Even MRIs miss almost 20 percent of strokes if the test is done within the first 24 hours. A new device offers a promising option for rooting out the cause of dizziness: eye-tracking goggles. © 1996-2013 The Washington Post

Related chapters from BN: Chapter 19: Language and Lateralization; Chapter 10: Vision: From Eye to Brain
Related chapters from MM:Chapter 15: Language and Lateralization; Chapter 7: Vision: From Eye to Brain
Link ID: 18464 - Posted: 08.06.2013

Here’s yet another reason to get off the couch: new research findings suggest that regularly breaking a sweat may lower the risk of having a stroke. A stroke can occur when a blood vessel in the brain gets blocked. As a result, nearby brain cells will die after not getting enough oxygen and other nutrients. A number of risk factors for stroke have been identified, including smoking, high blood pressure, diabetes and being inactive. For this study, published in the journal Stroke, Michelle N. McDonnell, Ph.D., from the University of South Australia, Adelaide and her colleagues obtained data from the Reasons for Geographic and Racial Differences in Stroke (REGARDS) study. REGARDS is a large, long-term study funded by the NIH National Institute of Neurological Disorders and Stroke (NINDS) to look at the reasons behind the higher rates of stroke mortality among African-Americans and other residents living in the Southeastern United States. “Epidemiological studies such as REGARDS provide an important opportunity to explore race, genetics, environmental, and lifestyle choices as stroke risk factors,” said Claudia Moy, Ph.D., program director at NINDS. Over 30,000 participants supplied their medical history over the phone. The researchers also visited them to obtain health measures such as body mass index and blood pressure. At the beginning of the study, the researchers asked participants how many times per week they exercised vigorously enough to work up a sweat. The researchers contacted participants every six months to see if they had experienced a stroke or a mini-stroke known as a transient ischemic attack (TIA). To confirm their responses, the researchers reviewed participants’ medical records.

Related chapters from BN: Chapter 19: Language and Lateralization; Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 15: Language and Lateralization; Chapter 5: The Sensorimotor System
Link ID: 18393 - Posted: 07.20.2013