Links for Keyword: Animal Communication

Follow us on Facebook or subscribe to our mailing list, to receive news updates. Learn more.


Links 41 - 60 of 249

By Knvul Sheikh On Sálvora Island, off the coast of Spain, thousands of yellow-legged gulls dot the grassy cliffs from April to late July. It is a riot of white wings and plaintive calls. Occasionally, the chorus changes as the seabirds engage in courtship and chick-feeding. And when the adults notice a predator, such as a dusky-coated mink, the chorus shifts again, to a characteristic alarm call — ha-ha-ha. These acoustic cues reach not just young and adult gulls but unhatched embryos, too. In 2018, researchers found that when gull eggs hatch, the ones that were exposed to alarm calls were able to crouch and hide from predators a couple of seconds faster than others. A few other bird species, including quails, fairywrens and zebra finches, are known to relay similar cues about the environment to their unhatched young, to prepare hatchlings to fend for themselves. But embryos aren’t receiving wisdom only from their parents. A new study, published Monday in the journal Nature Ecology & Evolution, suggests that they’re also receiving cues from nearby unhatched siblings. “Paying attention to cues from the outside is important for survival,” said Jose C. Noguera, an evolutionary ecologist at the University of Vigo in Spain, who led the study. Embryos that do so develop traits that provide an advantage in avoiding predators, identifying other species of birds or building their own nests in warmer temperatures later in life, he said. © 2019 The New York Times Company

Related chapters from BN: Chapter 19: Language and Lateralization; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 15: Language and Lateralization; Chapter 4: Development of the Brain
Link ID: 26442 - Posted: 07.23.2019

Laura Sanders When animals are together, their brain activity aligns. These simpatico signals, described in bats and mice, bring scientists closer to understanding brains as they normally exist — enmeshed in complex social situations. Researchers know that neural synchrony emerges in people who are talking, taking a class together and even watching the same movie. But scientists tend to study human brains in highly constrained scenarios, in part because it’s technologically difficult to capture brain activity as people experience rich social interactions (SN: 5/11/19, p. 4). Now two studies published June 20 in Cell offer more details about how synced brains might influence social behavior. In one study, researchers monitored a pair of Egyptian fruit bats in a dark chamber for more than an hour. Neural implants recorded brain activity as the bats groomed themselves, fought, rested and performed other behaviors. The brain activity of the two bats was highly coordinated. When one bat’s neural activity oscillated in a fast rhythm, for example, the other bat’s brain was likely to do the same thing. This coordination continued even when the bats weren’t directly interacting with each other, the team found. But when the bats were separated into two chambers in the same room, this correlated activity fell away, suggesting that the bats had to be sharing the same social context for their brains to link up. |© Society for Science & the Public 2000 - 2019.

Related chapters from BN: Chapter 19: Language and Lateralization; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 15: Language and Lateralization
Link ID: 26345 - Posted: 06.22.2019

Helen Thompson Whether practical, dramatical or pragmatical, domestic cats appear to recognize the familiar sound of their own names and can distinguish them from other words, researchers report April 4 in Scientific Reports. While dog responses to human behavior and speech have received much attention (SN: 10/1/16, p. 11), researchers are just scratching the surface of human-cat interactions. Research has shown that domestic cats (Felis catus) appear to respond to human facial expressions, and can distinguish between different human voices. But can cats recognize their own names? “I think many cat owners feel that cats know their names, or the word ‘food,’” but until now, there was no scientific evidence to back that up, says Atsuko Saito, a psychologist at Sophia University in Tokyo and a cat owner. So Saito and her colleagues pounced on that research question. They asked cat owners to say four nouns of similar length followed by the cat’s name. Cats gradually lost interest with each noun, but then reacted strongly to their names — moving their ears, head or tail, shifting their hind paw position or, of course, meowing. The results held up with cats living alone, with other cats and at a cat café, where customers can hang out with cats. And when someone other than the owner said the name, the cats still responded to their names more than to other nouns. One finding did give the team pause. Cat café cats almost always reacted to their names and those of other cats living there. Housecats did so much less frequently. Lots of humans visit cat cafés, and cats’ names are frequently called together, so it may be harder for cats to associate their own names with positive reinforcement in these environments, the researchers write. As for whether or not a cat understands what a name is, well, only the cat knows that. |© Society for Science & the Public 2000 - 2019

Related chapters from BN: Chapter 19: Language and Lateralization
Related chapters from MM:Chapter 15: Language and Lateralization
Link ID: 26115 - Posted: 04.06.2019

By Malia Wollan “If you’re talking to a puppy, increase the pitch of your voice and slow the tempo,” says Mario Gallego-Abenza, a cognitive biologist and an author of a recent study analyzing canine response to human speech. People tend to use that high-register, baby-talk tone with all dogs, but it’s really only puppies under a year old that seem to like it. “With older dogs, just use your normal voice,” he says. Dogs can learn words. One well-studied border collie named Rico knew 200 objects by name and, like a toddler, could infer the names of novel objects by excluding things with labels he already knew. Use facial expressions, gestures and possibly food treats while you talk. “Maintain eye contact,” Gallego-Abenza says. Research shows that even wolves are attuned to the attention of human faces and that dogs are particularly receptive to your gaze and pointing gestures. Scientists disagree about whether dogs are capable of full-blown empathy, but studies suggest canines feel at least a form of primitive empathy known as “emotional contagion.” In one study, dogs that heard recordings of infants crying experienced the same spike in cortisol levels and alertness as their human counterparts. You might find yourself wondering: Is this dog even listening to me? Does it care? Look for the sorts of social cues you would seek in an attentive human listener. “Is the dog looking at you?” Gallego-Abenza says. “Is it getting closer?” You are a social animal; connection with other social animals can make you feel better about the world. Gallego-Abenza, no longer studying dogs, is now working on a doctorate at the University of Vienna focused on vocalizations between ravens. Last year, a couple contacted him, sure that they were able to converse with the birds in their garden. “Humans have this rich language, and we really want to communicate,” he says. “We think that every other animal is the same, but they’re not.” Go ahead and talk to dogs, but consider letting wild creatures alone to their own intraspecies squeaks, howls and whispers. © 2019 The New York Times Company

Related chapters from BN: Chapter 19: Language and Lateralization
Related chapters from MM:Chapter 15: Language and Lateralization
Link ID: 26077 - Posted: 03.26.2019

Jef Akst A robot interacting with young honey bees in Graz, Austria, exchanged information with a robot swimming with zebrafish in Lausanne, Switzerland, and the robots’ communication influenced the behavior of each animal group, according to a study published in Science Robotics today (March 20). “It’s the first time that people are using this kind of technology to have two different species communicate with each other,” says Simon Garnier, a complex systems biologist at New Jersey Institute of Technology who did not participate in the study. “It’s a proof of concept that you can have robots mediate interactions between distant groups.” He adds, however, that the specific applications of such a setup remains to be seen. As robotics technology has advanced, biologists have sought to harness it, building robots that look and behave like animals. This has allowed researchers to control one side of social interactions in studies of animal behavior. Robots that successfully integrate into animal populations also provide scientists with a means to influence the groups’ behavior. “The next step, we were thinking . . . [is] adding features to the group that the animals cannot do because they don’t have the capabilities to do so,” José Halloy, a physicist at Paris Diderot University who has been working on developing robots to interact intelligently with animals for more than a decade, writes in an email. “The simple and striking thing is that robots can use telecommunication or the Internet and animals cannot do that.” © 1986 - 2019 The Scientist.

Related chapters from BN: Chapter 19: Language and Lateralization
Related chapters from MM:Chapter 15: Language and Lateralization
Link ID: 26060 - Posted: 03.22.2019

Laura Sanders In the understory of Central American cloud forests, musical mice trill songs to one another. Now a study of the charismatic creatures reveals how their brains orchestrate these rapid-fire duets. The results, published in the March 1 Science, show that the brains of singing mice split up the musical work. One brain system directs the patterns of notes that make up songs, while another coordinates duets with another mouse, which are carried out with split-second precision. The study suggests that “a quirky animal from the cloud forest of Costa Rica could give us a brand new insight,” into the rapid give-and-take in people’s conversations, says study coauthor Michael Long, a neuroscientist at New York University’s School of Medicine. Quirks abound in these mice, known as Alston’s singing mice (Scotinomys teguina). Like famous singers with extreme green room demands, these mice are “kind of divas,” Long says, requiring larger terrariums, exercise equipment and a very special diet. In the lab, standard mouse chow doesn’t cut it; instead, singing mice feast on fresh meal worm, dry cat food and fresh fruits and berries, says Bret Pasch. The biologist at Northern Arizona University in Flagstaff has studied these singing mice for years but wasn’t involved in this study. The mice are also, of course, loud. “They’re very vocal,” particularly in the confines of a lab, Pasch says. “Once an animal calls, it’s like a symphony that goes off,” with repeating calls. In the wild, these duets are thought to attract mates and stake out territory. |© Society for Science & the Public 2000 - 2019.

Related chapters from BN: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases; Chapter 19: Language and Lateralization
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 15: Language and Lateralization
Link ID: 25998 - Posted: 03.01.2019

By Virginia Morell It’s hard to imagine a teen asking their mother for approval on anything. But a new study shows that male zebra finches—colorful songbirds with complex songs—learn their father’s tune better when mom “fluffs up” to signal her approval. This is the first time the songbirds, thought to be mere memorization machines, have been shown to use social cues for learning—putting them in an elite club that includes cowbirds, marmosets, and humans. The finding suggests other songbirds might also learn their tunes this way, and that zebra finches are better models for studying language development than thought. “Female zebra finches play an important role in male learning, in some ways even rivaling that of the male tutors,” says Karl Berg, an avian ecologist at the University of Texas in Brownsville, who was not involved in the new study. Previously, scientists knew only that the nonsinging females played some role in song acquisition, because males raised with deaf females develop incorrect songs. Researchers have long known that female brown-headed cowbirds make quick, lateral wing strokes to approve the songs of juvenile males (as in finches, only male cowbirds learn to sing). Most scientists discounted the cowbirds’ social cues as an isolated oddity, because the birds are brood parasites. But cowbirds’ similarities to zebra finches—both are highly social and use their songs to attract mates rather than claim territories—led Cornell University developmental psychobiologists Samantha Carouso-Peck and Michael Goldstein to wonder whether female finches also use social cues to help young males learn the best, mate-attracting songs. © 2018 American Association for the Advancement of Science.

Related chapters from BN: Chapter 19: Language and Lateralization; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 15: Language and Lateralization; Chapter 8: Hormones and Sex
Link ID: 25922 - Posted: 02.01.2019

Susan Milius After some 20 years of theorizing, a scientist is publicly renouncing the “beautiful hypothesis” that male birds’ sexy songs could indicate the quality of their brains. Behavioral ecologist Steve Nowicki of Duke University called birdsong “unreliable” as a clue for choosy females seeking a smart mate, in a paper published in the March 2018 Animal Behaviour. He will also soon publish another critique based on male songbirds that failed to score consistently on learning tests. And in what he calls a “public service announcement,” Nowicki summarized the negative results of those tests on January 4 at the annual meeting of the Society for Integrative and Comparative Biology in Tampa, Fla. “This was a beautiful hypothesis that got beaten up by data,” he says. Knowing that something about male singing matters to a female songbird, Nowicki and other researchers once proposed that the quality of singing might indicate a bird’s brainpower. The idea was that, because songbirds need to learn their songs, females could select males with the best brain development by selecting those singing the most precisely copied songs. A brainier male might be better at hunting baby food or spotting predators, thus helping more chicks to survive. Or braininess might signal an indirect benefit, such as contributing good genes to chicks. The first evidence for the notion that birdsong indicates bird smarts came from Neeltje Boogert at the University of Exeter in England, whose research suggested female zebra finches preferred smarter males with more complex songs. But subsequent studies have found evidence both supporting and contradicting the theory. To try to settle the matter, Nowicki and collaborators hand-raised 19 male song sparrows in the lab, controlling which songs the little birds heard as examples to copy so that it was clear how well each youngster learned each song. |© Society for Science & the Public 2000 - 2019

Related chapters from BN: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases; Chapter 19: Language and Lateralization
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 15: Language and Lateralization
Link ID: 25900 - Posted: 01.26.2019

By Karen Weintraub Sometimes a whale just wants to change its tune. That’s one of the things researchers have learned recently by eavesdropping on whales in several parts of the world and listening for changes in their pattern and pitch. Together, the new studies suggest that whales are not just whistling in the water, but constantly evolving a form of communication that we are only beginning to understand. Most whales and dolphins vocalize, but dolphins and toothed whales mostly make clicking and whistling sounds. Humpbacks, and possibly bowheads, sing complex songs with repeated patterns, said Michael Noad, an associate professor in the Cetacean Ecology and Acoustics Laboratory at the University of Queensland in Australia. Birds may broadcast their social hierarchy among song-sharing populations by allowing the dominant bird to pick the playlist and patterns. But how and why whales pass song fragments across hundreds of miles, and to thousands of animals, is far more mysterious. The biggest question is why whales sing at all. “The thing that always gets me out of bed in the morning is the function of the song,” Dr. Noad said. “I find humpback song fascinating from the point of view of how it’s evolved.” The leading hypothesis is that male humpbacks — only the males sing — are trying to attract females. But they may also switch tunes when another male is nearby, apparently to assess a rival’s size and fitness, said Dr. Noad, who was the senior author of one of four new papers on whale songs. © 2019 The New York Times Company

Related chapters from BN: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases; Chapter 19: Language and Lateralization
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 15: Language and Lateralization
Link ID: 25850 - Posted: 01.09.2019

Katie Brown When polite people talk, they take turns speaking and adjust the timing of their responses on the fly. So do wild macaques, a team of Japanese ethologists reports. Analysis of 20-minute vocal exchanges involving 15 adult female Japanese macaques (Macaca fuscata) revealed that the monkeys altered their conversational pauses depending on how quickly others answered, the researchers report in a study in an upcoming issue of Current Zoology. It’s unclear whether the monkeys were actually talking in any way analogous to how humans converse. While macaques have the vocal equipment to form humanlike words, their brains are unable to transform that vocal potential into human talk (SN Online: 12/19/16). The primates instead communicate in grunts, coos and other similar sounds. But the length of pauses between those grunts and coos closely match the length of pauses in human chats, says coauthor Noriko Katsu of the University of Tokyo. The researchers analyzed 64 vocal exchanges, called bouts, between at least two monkeys that were recorded between April and October 2012 at the Iwatayama Monkey Park in Kyoto, Japan. The team found that the median length of time between the end of one monkey’s calls and the beginning of another’s was 250 milliseconds — similar to the average 200 milliseconds in conversational pause time between humans. That makes the macaques’ gaps between turns in chattering one of the shortest call-and-response pauses yet measured in nonhuman primates. |© Society for Science & the Public 2000 - 2018.

Related chapters from BN: Chapter 19: Language and Lateralization; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 15: Language and Lateralization
Link ID: 25829 - Posted: 01.01.2019

By Elizabeth Pennisi Anyone who has tried to whisper sweet nothings into their lover’s ear while standing on a noisy street corner can understand the plight of the túngara frog. A tiny amphibian about the size of a U.S. quarter, the male Physalaemus pustulosus has had to make its call more complex to woo mates when they move from the forest to the city. Now, researchers have found that female túngara frogs from both the country and the city prefer these mouthy city slickers. Biologists have long studied túngara frog courtship, demonstrating that visual signals and calls by themselves are unattractive to females but together are a winning combination, and that a female’s decision to mate depends on the context. Now, researchers have recorded the calls of male frogs living in cities, small towns, and forests across Panama. As they played the calls back, they counted the females, frog-eating bats, and frog-biting insects lured in by each call. Then they transplanted forest-dwelling frogs to the city and city dwellers to the forest to see how females there reacted to their calls. Finally, in the lab, they tested female preference for each call. Males living in cities and towns called more frequently and had more complex calls—with louder “chucks” interspersed in the whine—than forest frogs, the team reports today in Nature Ecology & Evolution. When they were moved into the country, they simplified their calls; but when their country cousins were brought to the big city, they couldn’t make the switch, and kept singing simply. When the researchers played back the calls to females, the females preferred more complex calls, even if the female herself was from the country, they reported. © 2018 American Association for the Advancement of Science

Related chapters from BN: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases; Chapter 19: Language and Lateralization
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 15: Language and Lateralization
Link ID: 25769 - Posted: 12.11.2018

By Virginia Morell Like any fad, the songs of humpback whales don’t stick around for long. Every few years, males swap their chorus of squeaks and groans for a brand new one. Now, scientists have figured out how these “cultural revolutions” take place. All male humpbacks in a population sing the same song, and they appear to learn new ones somewhat like people do. Males in the eastern Australian population of humpbacks, for example, pick up a new song every few years from the western Australian population at shared feeding grounds or while migrating. Over the next few years, the songs spread to all South Pacific populations. To understand how the whales learn the novel ballads, scientists analyzed eastern Australian whale songs over 13 consecutive years. Using spectrograms of 412 song cycles from 95 singers, the scientists scored each tune’s complexity for the number of sounds and themes, and studied the subtle variations individual males can add to stand out. Complexity increased as the songs evolved (as heard in the video below), the team reports today in the Proceedings of the Royal Society B. But after a song revolution, the ballads became shorter with fewer sounds and themes. The revolutionary songs may be less complex than the old ones because the whales can only learn a certain amount of new material at a time, the scientists conclude. That could mean that although humpback whales are still the crooners of the sea, their learning skills are a bit limited. © 2018 American Association for the Advancement of Scienc

Related chapters from BN: Chapter 19: Language and Lateralization; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 15: Language and Lateralization
Link ID: 25705 - Posted: 11.21.2018

By Elizabeth Pennisi The melodious call of many birds comes from a mysterious organ buried deep within their chests: a one-of-a-kind voice box called a syrinx. Now, scientists have concluded that this voice box evolved only once, and that it represents a rare example of a true evolutionary novelty. “It’s something that comes out of nothing,” says Denis Dubuole, a geneticist at the University of Geneva in Switzerland who was not involved with the work. “There is nothing that looks like a syrinx in any related animal groups in vertebrates. This is very bizarre.” Reptiles, amphibians, and mammals all have a larynx, a voice box at the top of the throat that protects the airways. Folds of tissue there—the vocal cords—can also vibrate to enable humans to talk, pigs to grunt, and lions to roar. Birds have larynxes, too. But the organ they use to sing their tunes is lower down—where the windpipe splits to go into the two lungs. The syrinx, named in 1872 after a Greek nymph who was transformed into panpipes, has a similar structure: Both are tubes supported by cartilage with folds of tissue. The oldest known syrinx belongs to a bird fossil some 67 million years old; that’s about the same time all modern bird groups became established. To figure out where the bizarre organ came from, Julia Clarke, a paleontologist at the University of Texas in Austin, who made the syrinx discovery in 2013, assembled a team of developmental biologists, evolutionary biologists, and other researchers. © 2018 American Association for the Advancement of Science.

Related chapters from BN: Chapter 6: Evolution of the Brain and Behavior; Chapter 19: Language and Lateralization
Related chapters from MM:Chapter 15: Language and Lateralization
Link ID: 25535 - Posted: 10.06.2018

Shawna Williams Deciphering the communications of electric fish in their native streams is not for the faint of heart. “Once in a while, there is a thunderstorm ten kilometers away, then at some point the water level of those streams rises by one meter in one hour or so,” says Jan Benda, a computational neuroscientist at the University of Tübingen in Germany. “Then we are in big trouble with our equipment.” Even in the absence of extreme weather, given the normal heat and humidity levels at his team’s research sites in Panama and Columbia, “things break and then you sit there in the field and try to solder a wire back to something late at night,” he says, laughing. “You’re dreaming about your nice lab where everything is so easy.” To reach the study site with their equipment, researchers traveled by boat, and then on foot. Benda was driven from his comfortable lab a few years ago by a gaping hole in the body of scientific knowledge: weakly electric fish, which use electricity to communicate but not to stun prey, are popular subjects for neuroscientists who want to know how vertebrate brains process sensory information, but few if any researchers had ever eavesdropped on the animals zap-chatting in nature. Gaining this type of insight into the behavior of a species studied for decades in the lab is “a massively important undertaking,” says Malcolm MacIver, a neuroscientist and engineer researching animal behavior at Northwestern University in Illinois. © 1986 - 2018 The Scientist

Related chapters from BN: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases; Chapter 8: General Principles of Sensory Processing, Touch, and Pain
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 5: The Sensorimotor System
Link ID: 25401 - Posted: 08.31.2018

Noise from oil and gas pumps can be a real mood-killer for a male sparrow trying to attract a mate, but a team of biologists in southern Alberta has discovered that songbirds are finding ways to cope. Their research involves high fidelity speakers, powerful microphones and many early morning hours spent on a patch of prairie near the small city of Brooks. They blast recordings of various types of oil and gas pumps through the speakers and then track and record the birds' response. The acoustic experiments are producing intriguing results. One songbird species, the Savannah sparrow, appears to be adapting its love songs with a high degree of complexity. "They're doing whatever they can to make the sound go further," said Nicola Koper, a conservation biologist from the University of Manitoba's Natural Resources Institute who is involved in the research. After all, the birds have flown all the way up from the southern U.S. on important business: to breed and raise their young. Fastest declining avian group in Canada The mixed grass prairies in southern Alberta serve as a bug buffet and a nursery for grassland birds, but their territory has shrunk. "We've converted so much of our grassland habitat to cropland, that grassland birds are declining more rapidly than birds of any other ecosystem across North America, including in Canada," said Koper. ©2018 CBC/Radio-Canada

Related chapters from BN: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases; Chapter 19: Language and Lateralization
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 15: Language and Lateralization
Link ID: 25233 - Posted: 07.21.2018

by Lindsey Bever Koko, a beloved gorilla who learned to communicate with humans and then stole their hearts, has died. The Gorilla Foundation said the 46-year-old celebrity ape — a western lowland gorilla — died in her sleep earlier this week at the organization’s preserve in Northern California. The Gorilla Foundation, a nonprofit that works to study and protect great apes, said in a statement that Koko will be most remembered “as the primary ambassador for her endangered species.” “Koko touched the lives of millions as an ambassador for all gorillas and an icon for interspecies communication and empathy,” the statement said. “She was beloved and will be deeply missed.” The gorilla was born at the San Francisco Zoo on Independence Day in 1971, according to the Gorilla Foundation, and named Hanabi-ko, which means “fireworks child” in Japanese, though she was mainly known by her nickname, Koko. It was in San Francisco where the newborn gorilla met a budding psychologist, Francine “Penny” Patterson. By the next year, Patterson had started teaching the animal an adapted version of American Sign Language, which she dubbed “Gorilla Sign Language,” or GSL. Video footage from that time shows Patterson playing games with the young gorilla and trying to teach her a new way to communicate. © 1996-2018 The Washington Post

Related chapters from BN: Chapter 19: Language and Lateralization
Related chapters from MM:Chapter 15: Language and Lateralization
Link ID: 25124 - Posted: 06.22.2018

By Victoria Davis Some people can trace their traditions back decades; the swamp sparrow has passed its songs down for more than 1500 years. The findings, published today in Nature Communications, suggest humans are not alone in keeping practices alive for long periods of time. To conduct the study, researchers recorded a collection of songs from 615 adult male swamp sparrows from six densely populated areas across the northeastern United States. They dissected each bird’s song repertoire, identifying only 160 different syllable types within all the recorded sample. Most swamp swallows sang the same tunes, using the same common syllables, but there were a few rare types in each population, just as there are variations in human oral histories over time. Using a statistical method of calculation called approximate Bayesian computation and models that measure the diversity of syllable types present in each population, the scientists were able to calculate how the songs of each male would have changed over time. They also found that all but two of the most common syllables used during their sampling in 2009 were also the most common during an earlier study of the species when recordings were made in the 1970s. Overall, the analysis indicated that the average age of the oldest tune dated back about 1537 years. © 2018 American Association for the Advancement of Science

Related chapters from BN: Chapter 19: Language and Lateralization; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 15: Language and Lateralization; Chapter 13: Memory and Learning
Link ID: 25112 - Posted: 06.21.2018

By JoAnna Klein You’d think that narwhals couldn’t be more enchanting. These elusive, ice-dodging, deep-diving whales have 10-foot snaggletoothed tusks, and they see with sound. But then there’s the narwhal of east Greenland. It’s kind of the narwhal of narwhals. “Because they’re so hard to access, we honestly hardly knew anything,” said Susanna Blackwell, who studies the effects of human sounds on marine mammals for Greenridge Sciences. “It’s an animal that’s been hidden from civilization for an awful long time.” Their genes are only slightly different than their western cousins. And since glaciers separated them some 10,000 years ago, this smaller population of about 6,000 narwhals, has lived relatively free from human contact amid sharp cliffs and mile-wide glaciers that break into huge, bobbing icebergs. But as the ocean warms, ice caps melt and summers get longer in the Arctic, the once inaccessible habitat of east Greenland narwhals is opening up to scientists — as well as cruise ships and prospectors interested in minerals or offshore drilling. And because toothed whales like narwhals use sounds to orient themselves, Dr. Blackwell worries this potential activity will disturb the narwhal’s acoustic way of life. So she and a team attached acoustic sensors to narwhals to monitor their behavior while human sounds are still scarce. What they found, published Wednesday in a paper in the journal PLOS One, will be used as a baseline behavior for an upcoming study to test how narwhals respond to air gun blasts similar to the ones used by oil surveyors, and may help protect them in the future. Narwhals live only in the Arctic, where it’s dark much of the time, diving thousands of feet to hunt, where it’s dark all of the time. Scientists knew they used acoustics to echolocate and communicate from studies done on narwhals in west Greenland or Canada, but they didn’t know much about the sounds of individual narwhals, especially the east Greenland population. © 2018 The New York Times Company

Related chapters from BN: Chapter 19: Language and Lateralization; Chapter 9: Hearing, Balance, Taste, and Smell
Related chapters from MM:Chapter 15: Language and Lateralization; Chapter 6: Hearing, Balance, Taste, and Smell
Link ID: 25090 - Posted: 06.14.2018

By Matt Warren Not getting eaten is at the top of the to-do list for most members of the animal kingdom. Now, a new study suggests several species of dolphins can tell when they’re in danger of becoming a killer whale’s dinner—simply by eavesdropping on their calls. Risso’s dolphins and short-finned pilot whales are frequently devoured when they live alongside mammal-eating orcas. To find out whether the dolphins can work out when they are in danger, researchers played recordings of killer whale calls underwater to 10 pilot whales off the coast of North Carolina and four Risso’s dolphins swimming near Southern California. The animals didn’t respond to many of the killer whale sounds, but a subset of the calls provoked a strong reaction in both species: Risso’s dolphins rapidly fled, ending up more than 10 kilometers away from where the sounds were played. Pilot whales, on the other hand, called to each other and formed a tight group before diving directly toward the sound, the researchers report today in the Journal of Experimental Biology. The calls that provoked the responses all contained multiple irregular features, such as harsh and noisy sounds or two distinct frequencies at once. The researchers hypothesize that these kinds of calls could be used by groups of killer whales to communicate during hunting—a clear sign for any potential prey in the area to take action. © 2018 American Association for the Advancement of Science

Related chapters from BN: Chapter 19: Language and Lateralization; Chapter 9: Hearing, Balance, Taste, and Smell
Related chapters from MM:Chapter 15: Language and Lateralization; Chapter 6: Hearing, Balance, Taste, and Smell
Link ID: 25082 - Posted: 06.13.2018

Helen Thompson In the pitch-black waters beneath the Arctic ice, bowhead whales get funky. A small population of endangered bowheads belt an unusually varied repertoire of songs, which grows more diverse during mating season. Hunted to near extinction in the 1600s, these fire truck–sized mammals now number in the 300s in the frigid waters around the Svalbard archipelago in Norway. Underwater audio recorders captured the whales singing 184 acoustically distinct songs from October to April in 2010 through 2014. On the bowhead charts, a song's popularity is fleeting. Most recorded songs were heard for less than 100 hours total, although one song registered over 730 hours total. Some songs appeared in more than one month, but none repeated annually. December and January, likely the height of breeding season, saw a wider array of new bowhead songs than other months, researchers report in the April Biology Letters. Hearing a more distinct mixtape may play a role in enticing a female to mate. A hot cetacean band The Spitzbergen bowhead whale songbook contains a wide variety of tunes, and some stick around on the charts longer than others. Here each bubble corresponds to one of the 184 songs recorded by researchers from 2010 to 2014. The size of the bubble corresponds to the number of hours it was sung. Click on any of the dark green bubbles to hear that whale’s song. Groups of humpback whales don't change their tunes much in a given year, compared with bowheads. Only a few songbird species boast similar diversity. © Society for Science & the Public 2000 - 2018.

Related chapters from BN: Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases; Chapter 9: Hearing, Balance, Taste, and Smell
Related chapters from MM:Chapter 8: Hormones and Sex; Chapter 6: Hearing, Balance, Taste, and Smell
Link ID: 24927 - Posted: 05.01.2018