Links for Keyword: ALS-Lou Gehrig's Disease

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 122

By STEPH YIN Researchers have designed a system that lets a patient with late-stage Lou Gehrig’s disease type words using brain signals alone. The patient, Hanneke De Bruijne, a doctor of internal medicine from the Netherlands, received a diagnosis of amyotrophic lateral sclerosis, also known as A.L.S. or Lou Gehrig’s disease, in 2008. The neurons controlling her voluntary muscles were dying, and eventually she developed a condition called locked-in syndrome. In this state, she is cognitively aware, but nearly all of her voluntary muscles, except for her eyes, are paralyzed, and she has lost the ability to speak. In 2015, a group of researchers offered an option to help her communicate. Their idea was to surgically implant a brain-computer interface, a system that picks up electrical signals in her brain and relays them to software she can use to type out words. “It’s like a remote control in the brain,” said Nick Ramsey, a professor of cognitive neuroscience at the University Medical Center Utrecht in the Netherlands and one of the researchers leading the study. On Saturday, the research team reported in The New England Journal of Medicine that Ms. De Bruijne independently controlled the computer typing program seven months after surgery. Using the system, she is able to spell two or three words a minute. “This is the world’s first totally implanted brain-computer interface system that someone has used in her daily life with some success,” said Dr. Jonathan R. Wolpaw, the director of the National Center for Adaptive Neurotechnologies in Albany. © 2016 The New York Times Company

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 22859 - Posted: 11.12.2016

Richard Harris Researchers have launched an innovative medical experiment that's designed to provide quick answers while meeting the needs of patients, rather than drug companies. Traditional studies can cost hundreds of millions of dollars, and can take many years. But patients with amyotrophic lateral sclerosis, or Lou Gehrig's disease don't have the time to wait. This progressive muscle-wasting disease is usually fatal within a few years. Scientists in an active online patient community identified a potential treatment and have started to gather data from the participants virtually rather than requiring many in-person doctor's visits. How is that possible? In this case, doctors and patients alike got interested in an extraordinary ALS patient whose symptoms actually got better, which rarely occurs. He'd been taking a dietary supplement called lunasin, "and lo and behold six months later, [his] speech [was] back to normal, swallowing back to normal, doesn't use his feeding tube, [and he was] significantly stronger as measured by his therapists," said Richard Bedlack, a neurologist who runs the ALS clinic at Duke University. Of course, it could just be a coincidence that the man who got better happened to be taking these supplements. To find out, Bedlack teamed up to run a study with Paul Wicks, a neuropsychologist and vice president for innovation at a web-based patient organization called PatientsLikeMe. © 2016 npr

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 22788 - Posted: 10.26.2016

Ian Sample and Nicky Woolf When Bill Gates pulled on a red and white-striped cord to upturn a bucket of iced water positioned delicately over his head, the most immediate thought for many was not, perhaps, of motor neurone disease. But the ice bucket challenge, the charity campaign that went viral in the summer of 2014 and left scores of notable persons from Gates and Mark Zuckerberg to George W. Bush and Anna Wintour shivering and drenched, has paid off in the most spectacular way. Dismissed by some at the time as “slacktivism” - an exercise that appears to do good while achieving very little - the ice bucket challenge raised more than $115m (£88m) for motor neurone disease in a single month. Now, scientists funded with the proceeds have discovered a gene variant associated with the condition. In the near term the NEK1 gene variant, described in the journal Nature Genetics this week, will help scientists understand how the incurable disorder, known also as Amyotrophic Lateral Sclerosis (ALS) or Lou Gehrig’s disease, takes hold. Once the mechanisms are more clearly elucidated, it may steer researchers on a path towards much-needed treatments. The work may never have happened were it not for the curious appeal of the frozen water drenchings. The research grants that scientists are awarded do not get close to the €4m the study required. Instead, Project MinE, which aims to unravel the genetic basis of the disease and ultimately find a cure, was funded by the ALS Association through ice bucket challenge donations. © 2016 Guardian News and Media Limited

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 13: Memory, Learning, and Development
Link ID: 22487 - Posted: 07.28.2016

Beatrice Alexandra Golomb, Statins can indeed produce neurological effects. These drugs are typically prescribed to lower cholesterol and thereby reduce the risk of heart attack and stroke. Between 2003 and 2012 roughly one in four Americans aged 40 and older were taking a cholesterol-lowering medication, according to the Centers for Disease Control and Prevention. But studies show that statins can influence our sleep and behavior—and perhaps even change the course of neurodegenerative conditions, including dementia. The most common adverse effects include muscle symptoms, fatigue and cognitive problems. A smaller proportion of patients report peripheral neuropathy—burning, numbness or tingling in their extremities—poor sleep, and greater irritability and aggression. Interestingly, statins can produce very different outcomes in different patients, depending on an individual's medical history, the statin and the dose. Studies show, for instance, that statins generally reduce the risk of ischemic strokes—which arise when a blocked artery or blood clot cuts off oxygen to a brain region—but can also increase the risk of hemorrhagic strokes, or bleeding into the brain. Statins also appear to increase or decrease aggression. In 2015 my colleagues and I observed that women taking statins, on average, showed increased aggression; men typically showed less, possibly because of reduced testosterone levels. Some men in our study did experience a marked increase in aggression, which was correlated with worsening sleep. © 2016 Scientific American

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 13: Memory, Learning, and Development
Link ID: 22419 - Posted: 07.11.2016

By Nicholas Bakalar Exposure to pesticides may increase the risk for amyotrophic lateral sclerosis, also known as Lou Gehrig’s disease, a new study has found. The study, in JAMA Neurology, included 156 patients with A.L.S. and 128 controls. All participants completed questionnaires providing information on age, sex, ethnicity, education, marital status, residential history, occupational history, smoking and military service. The researchers used the information on residence and occupation to estimate long-term exposure to pesticides, and then took blood samples to determine serum levels of 122 persistent environmental pollutants. The scientists divided exposure into four time periods: ever exposed, exposed in the last 10 years, exposed 10 to 30 years ago, and exposed more than 30 years ago. Exposure to pesticides at any time was associated with a fivefold increased relative risk for A.L.S. compared to no exposure. Even exposure more than 30 years ago tripled the risk. Military service was associated with double the risk, confirming findings of previous studies. “This is an association, not causality,” cautioned the senior author, Dr. Eva L. Feldman, a professor of neurology at the University of Michigan. “We found that people with A.L.S. were five times more likely to have been exposed to pesticides, but we don’t want people to conclude that pesticides cause A.L.S.” © 2016 The New York Times Company

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity; Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Link ID: 22212 - Posted: 05.14.2016

The Chamorro people of the Pacific island of Guam know it as lytigo-bodig. For decades, they have been struck down by a mysterious illness that resembles the muscle-wasting disease amyotrophic lateral sclerosis (ALS), Parkinson’s disease and Alzheimer’s-like dementia. It now looks like we have a clue that could point to a way of slowing its development. Lytigo-bodig is a progressive disease. ALS symptoms arrive when people are in their mid-40s and early 50s. By the time they reach their 60s, they also have the shaking and lack of coordination that characterises Parkinson’s, before the cognitive problems associated with dementia also set in. “Initially they stumble a bit, but as their muscles wither, they need help with eating and going to the toilet, as well as having difficulty swallowing and breathing,” says Paul Cox of the Institute for Ethnomedicine in Wyoming. For a long time, a chemical called BMAA, found in the cycad seeds that the Chamorro grind up to make flour, has been suspected as the cause of the disease. The toxin builds up in the cyanobacteria that grow in the roots of cycad plants. It also accumulates in the tissue of seed-eating flying foxes, which the Chamorro hunt and eat. To see if they could confirm BMAA as the culprit, Cox fed fruit spiked with the toxin to vervet monkeys for 140 days. They estimated this was equivalent to the dose a typical islander might get over a lifetime. Although they didn’t show cognitive problems, the animals did develop brain abnormalities called tau tangles and deposits of amyloid plaque. The density and placement of these abnormalities were similar to those seen in the islanders. “The structure of the pathology is almost identical,” says Cox. “We were stunned.” © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity; Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Link ID: 21802 - Posted: 01.20.2016

Three teams of scientists supported by the National Institutes of Health showed that a genetic mutation linked to some forms of amyotrophic lateral sclerosis (ALS) and frontotemporal degeneration (FTD) may destroy neurons by disrupting the movement of materials in and out of the cell’s nucleus, or command center where most of its DNA is stored. The results, published in the journals Nature and NatureNeuroscience, provide a possible strategy for treating the two diseases. “This research shines a spotlight on the role of nuclear transport in the health of neurons,” said Amelie Gubitz, Ph.D., program director at the NIH’s National Institute of Neurological Disorders and Stroke (NINDS). “The results provide new insights into how this mutation derails an essential process in neurons and opens new avenues for therapy development.” Both ALS and FTD are caused by the death of specific neurons. In ALS, this leads to movement difficulties and eventually paralysis, while in FTD, patients experience problems with language and decision making. Past research has connected a specific mutation in the C9orf72 gene to 40 percent of inherited ALS cases and 25 percent of inherited FTD cases, as well as nearly 10 percent of non-inherited cases of each disorder. The recent experiments, conducted in yeast, fruit flies, and neurons from patients, found that the mutation prevents proteins and genetic material called RNA from moving between the nucleus and the cytoplasm that surrounds it. “At the end of the day, this culminates in a defect in the flow of genetic information, which leads to problems expressing genes in the right place at the right time,” said J. Paul Taylor, M.D., Ph.D., a researcher at St. Jude’s Children’s Research Hospital in Memphis, Tennessee, and the senior author of one of the papers.

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 21524 - Posted: 10.17.2015

By Jon Cohen A virus that long ago spliced itself into the human genome may play a role in amyotrophic lateral sclerosis (ALS), the deadly muscle degenerative disease that crippled baseball great Lou Gehrig and ultimately took his life. That’s the controversial conclusion of a new study, which finds elevated levels of human endogenous retrovirus K (HERV-K) in the brains of 11 people who died from the disease. “This certainly is interesting and provocative work,” says Raymond Roos, a neurologist at the University of Chicago in Illinois who treats and studies ALS but who was not involved with the finding. Still, even the scientists behind the work caution that more research is needed to confirm the link. “I’m very careful to say HERV-K doesn’t cause the disease but may play a role in the pathophysiology,” says study leader Avindra Nath, a neuroimmunologist at the National Institute of Neurological Disorders and Stroke in Bethesda, Maryland. “The darn thing is in the chromosomes to begin with. It’s going to be very hard to prove causation.” It was another retrovirus, HIV, that led Nath to first suspect a connection between viruses and ALS. In 2006, he was helping a patient control his HIV infection with antiretroviral drugs when he noticed that the man’s ALS also improved. “That intrigued me, and I looked in the ALS literature and saw that people had reported they could see reverse transcriptase in the blood.” Reverse transcriptase, an enzyme that converts RNA to DNA, is a hallmark of retroviruses, which use it to insert copies of their genes into chromosomes of their hosts. © 2015 American Association for the Advancement of Science

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 21466 - Posted: 10.01.2015

A healthy motor neuron needs to transport its damaged components from the nerve-muscle connection all the way back to the cell body in the spinal cord. If it cannot, the defective components pile up and the cell becomes sick and dies. Researchers at the National Institutes of Health’s National Institute of Neurological Disorders and Stroke (NINDS) have learned how a mutation in the gene for superoxide dismutase 1 (SOD1), which causes ALS, leads cells to accumulate damaged materials. The study, published in the journal Neuron, suggests a potential target for treating this familial form of ALS. More than 12,000 Americans have ALS, also known as Lou Gehrig’s disease, and roughly 5-10 percent of them inherited a genetic mutation from a parent. These cases of familial ALS are often caused by mutations in the gene that codes for SOD1, an important enzyme located in the neuron’s mitochondria, the cell’s energy-producing structures. This mutation causes the death of motor neurons that control the patient’s muscles, resulting in progressive paralysis. “About 90 percent of the energy in the brain is generated by mitochondria,” said Zu-Hang Sheng, Ph.D., an NINDS scientist and the study’s senior author. “If the mitochondria aren’t healthy, they produce energy less efficiently; they can also release harmful chemicals called reactive oxygen species that cause cell death. As a consequence, mitochondrial damage can cause neurodegeneration.” In healthy neurons, storage containers called late endosomes collect damaged mitochondria and various destructive chemicals. A motor protein called dynein then transports the endosomes to structures called lysosomes, which use the chemicals to break down the endosomes. Dr. Sheng’s team discovered that this crucial process is faulty in nerve cells with SOD1 mutations because mutant SOD1 interferes with a critical molecule called snapin that hooks the endosome to the dynein motor protein.

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 21294 - Posted: 08.13.2015

Scientists at Mayo Clinic, Jacksonville, Florida created a novel mouse that exhibits the symptoms and neurodegeneration associated with the most common genetic forms of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS, Lou Gehrig’s disease), both of which are caused by a mutation in the a gene called C9ORF72. The study was partially funded by the National Institutes of Health and published in the journal Science. More than 30,000 Americans live with ALS, which destroys nerves that control essential movements, including speaking, walking, breathing and swallowing. After Alzheimer’s disease, FTD is the most common form of early onset dementia. It is characterized by changes in personality, behavior and language due to loss of neurons in the brain’s frontal and temporal lobes. Patients with mutations in the chromosome 9 open reading frame 72 (C9ORF72) gene have all or some symptoms associated with both disorders. “Our mouse model exhibits the pathologies and symptoms of ALS and FTD seen in patients with theC9ORF72 mutation,” said the study’s lead author, Leonard Petrucelli, Ph.D., chair and Ralph and Ruth Abrams Professor of the Department of Neuroscience at Mayo Clinic, and a senior author of the study. “These mice could greatly improve our understanding of ALS and FTD and hasten the development of effective treatments.” To create the model, Ms. Jeannie Chew, a Mayo Graduate School student and member of Dr. Petrucelli’s team, injected the brains of newborn mice with a disease-causing version of the C9ORF72 gene. As the mice aged, they became hyperactive, anxious, and antisocial, in addition to having problems with movement that mirrored patient symptoms.

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 13: Memory, Learning, and Development
Link ID: 20964 - Posted: 05.21.2015

By Brady Dennis In recent months, Pasadena-based Genervon has galvanized many patients with ALS by repeatedly touting the results of 12-week, 12-person trial involving the company's drug, GM604. The company asserted its early results were “statistically significant,” “very robust” and “dramatic.” It also has said it "submitted an accelerated approval application" to the FDA which, if approved, "would allow immediate access" to patients with ALS, also known as Lou Gehrig's disease. But the Wall Street Journal reported Monday that Genervon said in an email that it is “at the point of communicating with FDA about whether [the agency] would accept our formal application” for accelerated approval. In other words, the company has not yet submitted a New Drug Application, a step needed to officially set the FDA approval process in motion. The company's acknowledgement that it has not filed an NDA appears to contradict earlier press releases and statements made by the firm's owners, Winston and Dorothy Ko -- or at least to have sown confusion about the actual status of GM604. In one February press release, for example, the company said that in a meeting with the FDA, "three times during the one-hour meeting we requested that the FDA grant GM604 accelerated approval." Asking, however, is not the same as filing the necessary paperwork and the accompanying data required for the FDA to accept it as sufficient. The difference might seem to be a matter of semantics. But the real-world consequence is that, if Genervon has no application pending at the FDA, there is no imminent decision for the FDA to make about approving GM604.

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 20833 - Posted: 04.22.2015

By Amy Ellis Nutt and Brady Dennis For people with amyotrophic lateral sclerosis, which attacks the body’s motor neurons and renders a person unable to move, swallow or breathe, the search for an effective treatment has been a crushing disappointment. The only drug available for the disease, approved two decades ago, typically extends life just a few months. Then in the fall, a small California biotech company named Genervon began extolling the benefits of GM604, its new ALS drug. In an early-stage trial with 12 patients, the results were “statistically significant,” “very robust” and “dramatic,” the company said in news releases. Such enthusiastic pronouncements are unusual for such a small trial. In February, Genervon took an even bolder step: It applied to the Food and Drug Administration for “accelerated approval,” which allows promising treatments for serious or life-threatening diseases to bypass costly, large-scale efficacy trials and go directly to market. ALS patients responded by pleading with the FDA, in emotional videos and e-mails, to grant broad access to the experimental drug. Online forums lit up, and a Change.org petition calling for rapid approval attracted more than a half-million signatures. “Why would anyone oppose it?” asked ALS patient David Huntley in a letter read aloud in the past week at a rally on Capitol Hill. Huntley, a former triathlete, can no longer speak or travel, so his wife, Linda Clark, flew from San Diego to speak for him.

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 20752 - Posted: 04.04.2015

By Kate Baggaley Mutations on a gene necessary for keeping cells clean can cause Lou Gehrig’s disease, scientists report online March 24 in Nature Neuroscience. The gene is one of many that have been connected to the condition. In amyotrophic lateral sclerosis, also known as Lou Gehrig’s disease, nerve cells that control voluntary movement die, leading to paralysis. Scientists have previously identified mutations in 29 genes that are linked with ALS, but these genes account for less than one-third of all cases. To track down more genes, a team of European researchers looked at the protein-coding DNA of 252 ALS patients with a family history of the disease, as well as of 827 healthy people. The team discovered eight mutations on a gene called TBK1 that were associated with ALS. TBK1 normally codes for a protein that controls inflammation and cleans out damaged proteins from cells. “We do not know which of these two principle functions of TBK1 is the more relevant one” to ALS, says coauthor Jochen Weishaupt, a neurologist at Ulm University in Germany. In cells with one of the eight TBK1 mutations, the protein either is missing or lacks components that it needs to interact with other proteins, the researchers found. TBK1 mutations may explain 2 percent of ALS cases that run in families, which make up about 10 percent of all incidences of the disease, Weishaupt says. © Society for Science & the Public 2000 - 2015

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 20716 - Posted: 03.25.2015

By Gary Stix Everyone knows that ALS is a very bad disease, an awareness underscored by the recent Ice Bucket Challenge. The death of neurons that results in paralysis can be caused by specific genetic mutations. But in most cases, single genes are not the culprit. So researchers have looked for other risk factors that might play a role. Studies have tagged cigarette smoking as a definite danger. Alcohol, another plausible suspect, has yielded equivocal results in previous investigations. To get a better read on ethanol (some earlier studies were small), researchers from Sweden’s Lund University looked at giant medical registries from that country, compiled at various times between 1973 and 2010. They found that individuals who were classified as problem drinkers were a little more than half as likely to be diagnosed with ALS as those who didn’t have “alcohol use disorder.” More than 420,000 problem drinkers were registered during the period surveyed—and there were 7965 patients who received an ALS diagnosis. The study, just reported in The European Journal of Neurology, controlled for gender, education and place of birth, among other factors. But it was unable to tell why drinking might help. It did lead, though, to a number of intriguing speculations. The researchers cited studies in rats, done by other groups, that indicated that ingestion of alcohol decreased the number of brain cells called astrocytes that bore high levels of a certain protein linked to the pathology of ALS. © 2015 Scientific American

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity; Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Link ID: 20562 - Posted: 02.07.2015

By Angelina Fanous After the height of the Ice Bucket Challenge last fall, I found myself at a dinner party where the conversation turned to A.L.S. — amyotrophic lateral sclerosis — the disease for which millions were dousing themselves to raise awareness and money. “Would you rather have A.L.S., Alzheimer’s, or Parkinson’s?” someone asked. All those diseases are devastating, but A.L.S. is unique in that it usually kills within two to three years of diagnosis. It was just a game to my friends, all of whom are in their 20s. Everyone chose A.L.S., agreeing that it would be the fastest and therefore easiest death. But I stayed silent. I hadn’t yet told my friends that I had been diagnosed with A.L.S. in July — two months after my 29th birthday. Had I been healthy, I might have answered A.L.S., too. But since my diagnosis, all I have wanted is more time. When I first noticed I couldn’t type with my left hand, the doctors narrowed down it down to two options: a treatable autoimmune disease or A.L.S. They initially began treating me for the autoimmune disease. About once a month, we shut down my immune system so it would stop attacking my central nervous system. But with no immune system I made regular visits to the E.R. “At least it’s not A.L.S.,” I consoled myself. When the treatment didn’t work and the weakness spread to my left leg and right hand, A.L.S. was the only remaining possibility. Still, I did that socially acceptable but also borderline insane thing where I sought second, third and fourth opinions. I voluntarily subjected myself to excruciating medical tests. I got shocked with electricity, had my spinal fluid drained, and underwent a surgery to remove a piece of my muscles and nerves, all in the hopes of finding a different diagnosis. All of the tests confirmed the diagnosis of A.L.S. © 2015 The New York Times Company

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 20556 - Posted: 02.05.2015

|William Mullen, Tribune reporter Researchers at Northwestern University say they have discovered a common cause behind the mysterious and deadly affliction of amyotrophic lateral sclerosis, or Lou Gehrig's disease, that could open the door to an effective treatment. Dr. Teepu Siddique, a neuroscientist with Northwestern's Feinberg School of Medicine whose pioneering work on ALS over more than a quarter-century fueled the research team's work, said the key to the breakthrough is the discovery of an underlying disease process for all types of ALS. The discovery provides an opening to finding treatments for ALS and could also pay dividends by showing the way to treatments for other, more common neurodegenerative diseases such as Alzheimer's, dementia and Parkinson's, Siddique said. The Northwestern team identified the breakdown of cellular recycling systems in the neurons of the spinal cord and brain of ALS patients that results in the nervous system slowly losing its ability to carry brain signals to the body's muscular system. Without those signals, patients gradually are deprived of the ability to move, talk, swallow and breathe. "This is the first time we could connect (ALS) to a clear-cut biomedical mechanism," Siddique said. "It has really made the direction we have to take very clear and sharp. We can now test for drugs that would regulate this protein pathway or optimize it, so it functions as it should in a normal state."

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 20459 - Posted: 01.08.2015

|By Lindsey Konkel For 28 years, Bill Gilmore lived in a New Hampshire beach town, where he surfed and kayaked. “I’ve been in water my whole life,” he said. “Before the ocean, it was lakes. I’ve been a water rat since I was four.” Now Gilmore can no longer swim, fish or surf, let alone button a shirt or lift a fork to his mouth. Earlier this year, he was diagnosed with amyotrophic lateral sclerosis (ALS), or Lou Gehrig’s disease. In New England, medical researchers are now uncovering clues that appear to link some cases of the lethal neurological disease to people’s proximity to lakes and coastal waters. About five years ago, doctors at a New Hampshire hospital noticed a pattern in their ALS patients—many of them, like Gilmore, lived near water. Since then, researchers at Dartmouth-Hitchcock Medical Center have identified several ALS hot spots in lake and coastal communities in New England, and they suspect that toxic blooms of blue-green algae—which are becoming more common worldwide—may play a role. Now scientists are investigating whether breathing a neurotoxin produced by the algae may raise the risk of the disease. They have a long way to go, however: While the toxin does seem to kill nerve cells, no research, even in animals, has confirmed the link to ALS. As with all ALS patients, no one knows what caused Bill Gilmore’s disease. He was a big, strong guy—a carpenter by profession. One morning in 2011, his arms felt weak. “I couldn’t pick up my tools. I thought I had injured myself,” said Gilmore, 59, who lived half his life in Hampton and now lives in Rochester, N.H. © 2014 Scientific American

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 20415 - Posted: 12.13.2014

By Kelly Servick Using data from old clinical trials, two groups of researchers have found a better way to predict how amyotrophic lateral sclerosis (ALS) progresses in different patients. The winning algorithms—designed by non-ALS experts—outperformed the judgments of a group of ALS clinicians given the same data. The advances could make it easier to test whether new drugs can slow the fatal neurodegenerative disease. The new work was inspired by the so-called ALS Prediction Prize, a joint effort by the ALS-focused nonprofit Prize4Life and Dialogue for Reverse Engineering Assessments and Methods, a computational biology project whose sponsors include IBM, Columbia University, and the New York Academy of Sciences. Announced in 2012, the $50,000 award was designed to bring in experts from outside the ALS field to tackle the notoriously unpredictable illness. Liuxia Wang, a data analyst at the marketing company Sentrana in Washington, D.C., was used to helping companies make business decisions based on big data sets, such as information about consumer choices, but says she “didn’t know too much about this life science thing” until she got an unusual query from a client. One of the senior managers she worked with revealed that her son had just been diagnosed with ALS and wondered if Sentrana’s analytics could apply to patient data, too. When Wang set out to investigate, she found the ALS Prediction Prize. The next step, she said, was to learn something about ALS. The disease destroys the neurons that control muscle movement, causing gradual paralysis and eventually killing about half of patients within 3 years of diagnosis. But the speed of its progression varies widely. About 10% of patients live a decade or more after being diagnosed. That makes it hard for doctors to answer patients’ questions about the future, and it’s a big problem for testing new ALS treatments. © 2014 American Association for the Advancement of Science.

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 20278 - Posted: 11.04.2014

|By Amy Yee Pouring a bucket of ice water over one’s head may seem like a distant summer memory. But although the “ice bucket challenge” craze has died down, public awareness of amyotrophic lateral sclerosis (ALS), commonly known as Lou Gehrig’s disease, has never been stronger. The viral video campaign raised $115 million from more than 3 million donors for the ALS Association. In one month, from July 29 to August 29, donors raised $100.9 million, compared with $2.8 million during the same period the previous year. In early October, the ALS Association began spending that money. It approved $21.7 million of funding for six programs and initiatives by groups that include the academic-industry partnership ALS Accelerated Therapeutics, the New York Genome Center, three California labs that form the Neuro Collaborative, and Project MinE, which will map the genomes of 15,000 people with ALS (about 10 percent of ALS patients have a family member with the disease). The grants focus on developing gene therapies for common ALS genes and exploring approaches to counter two major contributors to the disease, the inflammation of nervous tissue and misfolded proteins in brain cells that control movement. These efforts may not only someday lead to new treatments, but may also point to the cause of ALS. At the level of basic research, scientists do not have a dominant theory from which to work, notes Tom Jessell, a neuroscientist and co-director of Columbia University’s new Zuckerman Mind Brain Behavior Institute. Jessell is also the chair of the research advisory board of Project ALS, a nonprofit that identifies and funds ALS research. © 2014 Scientific American

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 20213 - Posted: 10.18.2014

By Roni Caryn Rabin When I was in college, my father David started walking with an odd, barely perceptible limp. He was in his mid-40s, a gregarious physician, teacher and researcher who was always upbeat. He told his four kids that he had a “back problem” — a deliberately vague cover story that I, for one, was willing to believe. I had never heard of the real culprit — amyotrophic lateral sclerosis, or A.L.S. In fact, no one had. A.L.S. was a disease in the shadows. During my father’s life, it didn’t even have its own advocacy organization. This was the early ’80s, long before support groups and the Internet and a colored ribbon for every cause. And it was way before ice bucket challenges. My parents continued to use their code — “back problem” — to talk about the disease. They used it to protect my younger sisters, who were about to start high school, but I think they were also protecting themselves. My mother was also a physician, and they both knew exactly what lay ahead. Saying “A.L.S.” out loud was too threatening. But soon there was no getting around it. My father’s legs were getting weaker, his muscles were wasting, and he started relying on a cane to get around. I was 19, and my mother and I were out running errands one afternoon when she pulled the car over to the curb and stopped. She told me the truth. This was no slipped disc. She laid it all out for me in black and white: A.L.S. is a progressive, degenerative neurological disease that causes paralysis in the entire body. It’s fatal. There is no cure. It sounded like something from a horror movie. Over the next five years, as my father’s health deteriorated, he remained remarkably determined. He ate a high-protein diet and swam laps every day in an attempt to maintain his muscle and fend off the atrophy caused by the disease. He kept on swimming laps in our next-door neighbor’s pool, even when he had to use a walker — and later a wheelchair — to get there. © 2014 The New York Times Company

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 20120 - Posted: 09.27.2014