Links for Keyword: Brain imaging

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 21 - 40 of 463

By Simon Makin A technology with the potential to blur the boundaries between biology and electronics has just leaped a major hurdle in the race to demonstrate its feasibility. A team at the University of California, Berkeley, led by neuroscientist Jose Carmena and electrical and computer engineer Michel Maharbiz, has provided the first demonstration of what the researchers call “ultrasonic neural dust” to monitor neural activity in a live animal. They recorded activity in the sciatic nerve and a leg muscle of an anesthetized rat in response to electrical stimulation applied to its foot. “My lab has always worked on the boundary between biology and man-made things,” Maharbiz says. “We build tiny gadgets to interface synthetic stuff with biological stuff.” The work was published last week in the journal Neuron. The system uses ultrasound for both wireless communication and the device’s power source, eliminating both wires and batteries. It consists of an external transceiver and what the team calls a “dust mote” about 0.8x1x3 mm size, which is implanted inside the body. The transceiver sends ultrasonic pulses to a piezoelectric crystal in the implant, which converts them into electricity to provide power. The implant records electrical signals in the rat via electrodes, and uses this signal to alter the vibration of the crystal. These vibrations are reflected back to the transceiver, allowing the signal to be recorded—a technique known as backscatter. “This is the first time someone has used ultrasound as a method of powering and communicating with extremely small implantable systems,” says one of the paper’s authors, Dongjin Seo. “This opens up a host of applications in terms of embodied telemetry: being able to put something super-tiny, super-deep in the body, which you can park next to a nerve, organ, muscle or gastrointestinal tract, and read data out wirelessly.” © 2016 Scientific American

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 22533 - Posted: 08.09.2016

By Anna Vlasits A small corner of the neuroscience world was in a frenzy. It was mid-June and a scientific paper had just been published claiming that years worth of results were riddled with errors. The study had dug into the software used to analyze one kind of brain scan, called functional MRI. The software’s approach was wrong, the researchers wrote, calling into doubt “the validity of some 40,000 fMRI studies”—in other words, all of them. The reaction was swift. Twitter lit up with panicked neuroscientists. Bloggers and reporters rained down headlines citing “seriously flawed” “glitches” and “bugs.” Other scientists thundered out essays defending their studies. Finally, one of the authors of the paper, published in Proceedings of the National Academy of Sciences, stepped into the fray. In a blog post, Thomas Nichols wrote, “There is one number I regret: 40,000.” Their finding, Nichols went on to write, only affects a portion of all fMRI papers—or, some scientists think, possibly none at all. It wasn’t nearly as bad as the hype suggested. The brief kerfuffle could just be dismissed as a tempest in a teapot, science’s self-correcting mechanisms in action. But the study, and its response, heralds a new level of self-scrutiny for fMRI studies, which have been plagued for decades by accusations of shoddy science and pop-culture pandering. fMRI, in other words, is growing up, but not without some pains along the way. A bumpy start for brain scanning © 2016 Scientific American,

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 22513 - Posted: 08.04.2016

Every year, hundreds of human brains are delivered to a network of special research centres. Why do these "brain banks" exist and what do they do? Rachael Buchanan was given rare access. A neuroscientist once told me with great insistence that brains are beautiful. His words came back to me as I watched a technician at the Bristol brain bank carefully dissect one of the facility's freshly donated specimens. The intricate folds and switchbacks of its surface and its delicate branching structures, revealed by her cuts, were entrancing. They seem only faintly to echo the complexity and power that tissue had held in life. The brain being methodically portioned up for storage was one of around 40 donations the South West Dementia Brain Bank receives each year. This bank in Bristol is one of 10 centres that make up the Medical Research Council's Brain Bank Network. Between them annually they supply hundreds of samples of research tissue to scientists in the UK and abroad. One of the thousand brains already fixed and frozen in the store rooms at Bristol is that of Angela Carlson. Written into that 3lb (1.4kg) of dissected tissue are the experiences, memories and knowledge of a very adventurous woman, for her time. She spent her teens in the land army during World War Two, followed by stints as a cook and child minder in the USA, and in what was then Persia. Twice widowed and without children, she eventually settled in Dorset to be near her niece Susan Jonas. She died there from dementia, aged 89. © 2016 BBC

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior; Chapter 1: Biological Psychology: Scope and Outlook
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System; Chapter 1: An Introduction to Brain and Behavior
Link ID: 22497 - Posted: 08.01.2016

By Jessica Boddy Ever wonder what it looks like when brain cells chat up a storm? Researchers have found a way to watch the conversation in action without ever cracking open a skull. This glimpse into the brain’s communication system could open new doors to diagnosing and treating disorders from epilepsy to Alzheimer’s disease. Being able to see where—and how—living brain cells are working is “the holy grail in neuroscience,” says Howard Federoff, a neurologist at Georgetown University in Washington, D.C., who was not involved with the work. “This is a possible new tool that could bring us closer to that.” Neurons, which are only slightly longer than the width of a human hair, are laid out in the brain like a series of tangled highways. Signals must travel down these highways, but there’s a catch: The cells don’t actually touch. They’re separated by tiny gaps called synapses, where messages, with the assistance of electricity, jump from neuron to neuron to reach their destinations. The number of functional synapses that fire in one area—a measure known as synaptic density—tends to be a good way to figure out how healthy the brain is. Higher synaptic density means more signals are being sent successfully. If there are significant interruptions in large sections of the neuron highway, many signals may never reach their destinations, leading to disorders like Huntington disease. The only way to look at synaptic density in the brain, however, is to biopsy nonliving brain tissue. That means there’s no way for researchers to investigate how diseases like Alzheimer’s progress—something that could hold secrets to diagnosis and treatment. © 2016 American Association for the Advancement of Science

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 22472 - Posted: 07.23.2016

Carl Zimmer The brain looks like a featureless expanse of folds and bulges, but it’s actually carved up into invisible territories. Each is specialized: Some groups of neurons become active when we recognize faces, others when we read, others when we raise our hands. On Wednesday, in what many experts are calling a milestone in neuroscience, researchers published a spectacular new map of the brain, detailing nearly 100 previously unknown regions — an unprecedented glimpse into the machinery of the human mind. Scientists will rely on this guide as they attempt to understand virtually every aspect of the brain, from how it develops in children and ages over decades, to how it can be corrupted by diseases like Alzheimer’s and schizophrenia. “It’s a step towards understanding why we’re we,” said David Kleinfeld, a neuroscientist at the University of California, San Diego, who was not involved in the research. Scientists created the map with advanced scanners and computers running artificial intelligence programs that “learned” to identify the brain’s hidden regions from vast amounts of data collected from hundreds of test subjects, a far more sophisticated and broader effort than had been previously attempted. While an important advance, the new atlas is hardly the final word on the brain’s workings. It may take decades for scientists to figure out what each region is doing, and more will be discovered in coming decades. “This map you should think of as version 1.0,” said Matthew F. Glasser, a neuroscientist at Washington University School of Medicine and lead author of the new research. “There may be a version 2.0 as the data get better and more eyes look at the data. We hope the map can evolve as the science progresses.” © 2016 The New York Times Company

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 22466 - Posted: 07.21.2016

Ian Sample Science editor When the German neurologist Korbinian Brodmann first sliced and mapped the human brain more than a century ago he identified 50 distinct regions in the crinkly surface called the cerebral cortex that governs much of what makes us human. Now researchers have updated the 100-year-old map in a scientific tour de force which reveals that the human brain has at least 180 different regions that are important for language, perception, consciousness, thought, attention and sensation. The landmark achievement hands neuroscientists their most comprehensive map of the cortex so far, one that is expected to supersede Brodmann’s as the standard researchers use to talk about the various areas of the brain. Scientists at Washington University in St Louis created the map by combining highly-detailed MRI scans from 210 healthy young adults who had agreed to take part in the Human Connectome Project, a massive effort that aims to understand how neurons in the brain are connected. Most previous maps of the human brain have been created by looking at only one aspect of the tissues, such as how the cells look under a microscope, or how active areas become when a person performs a certain task. But maps made in different ways do not always look the same, which casts doubt on where one part of the brain stops and another starts. Writing in the journal Nature, Matthew Glasser and others describe how they combined scans of brain structure, function and connectivity to produce the new map, which confirmed the existence of 83 known brain regions and added 97 new ones. Some scans were taken while patients simply rested in the machine, while others were recorded as they performed maths tasks, listened to stories, or categorised objects, for example by stating whether an image was of a tool or an animal. © 2016 Guardian News and Media Limited

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 22465 - Posted: 07.21.2016

NOBODY knows how the brain works. But researchers are trying to find out. One of the most eye-catching weapons in their arsenal is functional magnetic-resonance imaging (fMRI). In this, MRI scanners normally employed for diagnosis are used to study volunteers for the purposes of research. By watching people’s brains as they carry out certain tasks, neuroscientists hope to get some idea of which bits of the brain specialise in doing what. The results look impressive. Thousands of papers have been published, from workmanlike investigations of the role of certain brain regions in, say, recalling directions or reading the emotions of others, to spectacular treatises extolling the use of fMRI to detect lies, to work out what people are dreaming about or even to deduce whether someone truly believes in God. But the technology has its critics. Many worry that dramatic conclusions are being drawn from small samples (the faff involved in fMRI makes large studies hard). Others fret about over-interpreting the tiny changes the technique picks up. A deliberately provocative paper published in 2009, for example, found apparent activity in the brain of a dead salmon. Now, researchers in Sweden have added to the doubts. As they reported in the Proceedings of the National Academies of Science, a team led by Anders Eklund at Linkoping University has found that the computer programs used by fMRI researchers to interpret what is going on in their volunteers’ brains appear to be seriously flawed. © The Economist Newspaper Limited 2016

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 22444 - Posted: 07.15.2016

The most sophisticated, widely adopted, and important tool for looking at living brain activity actually does no such thing. Called functional magnetic resonance imaging, what it really does is scan for the magnetic signatures of oxygen-rich blood. Blood indicates that the brain is doing something, but it’s not a direct measure of brain activity. Which is to say, there’s room for error. That’s why neuroscientists use special statistics to filter out noise in their fMRIs, verifying that the shaded blobs they see pulsing across their computer screens actually relate to blood flowing through the brain. If those filters don’t work, an fMRI scan is about as useful at detecting neuronal activity as your dad’s “brain sucking alien” hand trick. And a new paper suggests that might actually be the case for thousands of fMRI studies over the past 15 years. The paper, published June 29 in the Proceedings of the National Academy of Science, threw 40,000 fMRI studies done over the past 15 years into question. But many neuroscientists—including the study’s whistleblowing authors—are now saying the negative attention is overblown. Neuroscience has long struggled over just how useful fMRI data is at showing brain function. “In the early days these fMRI signals were very small, buried in a huge amount of noise,” says Elizabeth Hillman, a biomedical engineer at the Zuckerman Institute at Columbia University. A lot of this noise is literal: noise from the scanner, noise from the electrical components, noise from the person’s body as it breathes and pumps blood.

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 22413 - Posted: 07.09.2016

Andrew Orlowski Special Report If the fMRI brain-scanning fad is well and truly over, then many fashionable intellectual ideas look like collateral damage, too. What might generously be called the “British intelligentsia” – our chattering classes – fell particularly hard for the promise that “new discoveries in brain science” had revealed a new understanding of human behaviour, which shed new light on emotions, personality and decision making. But all they were looking at was statistical quirks. There was no science to speak of, the results of the experiments were effectively meaningless, and couldn’t support the (often contradictory) conclusions being touted. The fMRI machine was a very expensive way of legitimising an anecdote. This is an academic scandal that’s been waiting to explode for years, for plenty of warning signs were there. In 2005, Ed Vul, now a psychology professor at UCSD, and Hal Pashler – then and now at UCSD – were puzzled by a claim being made in a talk by a neuroscience researcher. He was explaining study that purported to report a high correlation between a test subject’s brain activity and the speed with which they left the room after the study. “It seemed unbelievable to us that activity in this specific brain area could account for so much of the variance in walking speed,” explained Vul. “Especially so, because the fMRI activity was measured some two hours before the walking happened. So either activity in this area directly controlled motor action with a delay of two hours — something we found hard to believe — or there was something fishy going on.” IT © 1998–2016

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior; Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System; Chapter 5: The Sensorimotor System
Link ID: 22410 - Posted: 07.08.2016

It's no secret that passwords aren't impenetrable. Even outside of major incidents like the celebrity nude photo hack, or when millions of passwords get released online, like what happened to Twitter recently, many of us may still be at risk of having our data compromised due to password-related security flaws. According to a June 2015 survey from mobile identity company TeleSign, two in five people were notified in the preceding year that their personal information was compromised or that they had been hacked or had their password stolen. But a new technology developed by the BioSense lab at the University of California, Berkeley could make all of that a thing of the past. Over the course of three years, the lab's co-director, John Chuang, and his graduate students have been working on a technology called passthoughts, which would use a person's brainwaves to identify them, according to CNET. The team has found that a passthought — something like a song that someone could sing in their mind — isn't easily forgotten and can achieve a 99-per-cent authentication accuracy rate. The device used to capture passthoughts resembles a telephone headset. It relies on EEG technology, detecting electrical activity in your brain via electrodes strapped to your head. And although Chuang's team say the technology has improved greatly in recent years, the awkwardness of the device might hinder it from being widely adopted. ©2016 CBC/Radio-Canada.

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 22401 - Posted: 07.06.2016

By Matthew Hutson Last week, Nature, the world’s most prestigious science journal, published a beautiful picture of a brain on its cover. The computer-generated image, taken from a paper in the issue, showed the organ’s outer layer almost completely covered with sprinkles of colorful words. The paper presents a “semantic map” revealing which parts of the brain’s cortex—meaning its outer layer, the one responsible for higher thought—respond to various spoken words. The study has generated widespread interest, receiving coverage from newspapers and websites around the world. The paper was also accompanied by an online interactive model that allowed users to explore exactly how words are mapped in our brains. The combination yielded a popular frenzy, one prompting the question: Why are millions of people suddenly so interested in the neuroanatomical distribution of linguistic representations? Have they run out of cat videos? The answer, I think, is largely the same as the answer to why “This Is Your Brain on X” (where X = food, politics, sex, podcasts, whatever) is a staple of news headlines, often residing above an fMRI image of a brain lit up in fascinating, mysterious patterns: People have a fundamental misunderstanding of the field of neuroscience and what it can tell us. But before explaining why people shouldn’t be excited about this research, let’s look at what the research tells us and why we should be excited. Different parts of the brain process different elements of thought, and some regions of the cortex are organized into “maps” such that the distance between different locations corresponds to the physical and/or conceptual distance between what it represents.

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior; Chapter 19: Language and Hemispheric Asymmetry
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System; Chapter 15: Brain Asymmetry, Spatial Cognition, and Language
Link ID: 22186 - Posted: 05.07.2016

By Julia Shaw In the last couple of years memory science has really upped its game. I generally write about social processes that can change our memories, but right now I can’t help but get excited that memory science is getting an incredible new toy to play with. A toy that I believe will revolutionise how we talk about, and deal with, memory. This not-so-new sounding, but totally-newly-applied, neuroscience toy is ultrasound. Ultrasound is also called sonography and is essentially a type of ‘medical sonar’. It has revolutionized medicine since the 1940s, giving us the ability to look into the body in a completely safe way (without leaving icky radiation behind, like xrays). Beyond predicting whether your baby shower will be blue or pink, lesser known applications of ultrasound include the ability to essentially burn and destroy cells inside your body. As such, it has been successfully used to do surgery without making any cuts into the human body. This is a technique that has been used to remove cancerous cells while not affecting any of the surrounding tissue, and without any of the side-effects associated with other kinds of cancer treatment. This is referred to by scientist Yoav Medan as focused ultrasound. If you are unfamiliar with this, you need to watch this TED talk. Non-invasive procedures like this are the future of surgery. Non-invasive procedures are also the future of neuroscience. It is at this point that we find ourselves at the application of this astonishing science to memory research. © 2016 Scientific American

Related chapters from BP7e: Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 13: Memory, Learning, and Development
Link ID: 22170 - Posted: 05.03.2016

By Simon Makin Everyone's brain is different. Until recently neuroscience has tended to gloss this over by averaging results from many brain scans in trying to elicit general truths about how the organ works. But in a major development within the field researchers have begun documenting how brain activity differs between individuals. Such differences had been largely thought of as transient and uninteresting but studies are starting to show that they are innate properties of people's brains, and that knowing them better might ultimately help treat neurological disorders. The latest study, published April 8 in Science, found that the brain activity of individuals who were just biding their time in a brain scanner contained enough information to predict how their brains would function during a range of ordinary activities. The researchers used these at-rest signatures to predict which regions would light up—which groups of brain cells would switch on—during gambling, reading and other tasks they were asked to perform in the scanner. The technique might be used one day to assess whether certain areas of the brains of people who are paralyzed or in a comatose state are still functional, the authors say. The study capitalizes on a relatively new method of brain imaging that looks at what is going on when a person essentially does nothing. The technique stems from the mid-1990s work of biomedical engineer Bharat Biswal, now at New Jersey Institute of Technology. Biswal noticed that scans he had taken while participants were resting in a functional magnetic resonance imaging (fMRI) scanner displayed orderly, low-frequency oscillations. He had been looking for ways to remove background noise from fMRI signals but quickly realized these oscillations were not noise. His work paved the way for a new approach known as resting-state fMRI. © 2016 Scientific American

Related chapters from BP7e: Chapter 18: Attention and Higher Cognition; Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 14: Attention and Consciousness; Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 22105 - Posted: 04.14.2016

Helen Shen Clamping an electrode to the brain cell of a living animal to record its electrical chatter is a task that demands finesse and patience. Known as ‘whole-cell patch-clamping’, it is reputedly the “finest art in neuroscience”, says neurobiologist Edward Boyden, and one that only a few dozen laboratories around the world specialize in. But researchers are trying to demystify this art by turning it into a streamlined, automated technique that any laboratory could attempt, using robotics and downloadable source code. “Patch-clamping provides a unique view into neural circuits, and it’s a very exciting technique but is really underused,” says neuroscientist Karel Svoboda at the Howard Hughes Medical Institute’s Janelia Research Campus in Ashburn, Virginia. “That’s why automation is a really, really exciting direction.” On 3 March, Boyden, at the Massachusetts Institute of Technology in Cambridge, and his colleagues published detailed instructions on how to assemble and operate an automated system for whole-cell patch-clamping1, a concept that they first described in 20122. The guide represents the latest fruits of Boyden’s partnership with the laboratory of Craig Forest, a mechanical engineer at the Georgia Institute of Technology in Atlanta who specializes in robotic automation for research. © 2016 Nature Publishing Group

Related chapters from BP7e: Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 22066 - Posted: 04.04.2016

Quirin Schiermeier & Alison Abbott The ability to study brain processes in real time is one of the goals of the Human Brain Project's newly-released computing tools. Europe’s major brain-research project has unveiled a set of prototype computing tools and called on the global neuroscience community to start using them. The move marks the end of the 30-month ramp-up phase of the Human Brain Project (HBP), and the start of its operational phase. The release of the computing platforms — which include brain-simulation tools, visualization software and a pair of remotely accessible supercomputers to study brain processes in real time — could help to allay concerns about the €1-billion (US$1.1-billion) project’s benefits to the wider scientific community. “The new platforms open countless new possibilities to analyse the human brain,” said Katrin Amunts, a neuroscientist at the Jülich Research Centre in Germany and a member of the project’s board of directors, at a press conference on 30 March. “We are proud to offer the global brain community a chance to participate.” But it is not clear how the platforms — some freely accessible, others available only on the success of a peer-reviewed application — will resonate with brain researchers outside the project. “At this point, no one can say whether or not the research platforms will be a success,” says Andreas Herz, chair of computational neuroscience at the Ludwig Maximilian University of Munich in Germany. © 2016 Nature Publishing Group

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 22061 - Posted: 04.01.2016

By Matthew Hutson Earlier this month, a computer program called AlphaGo defeated a (human) world champion of the board game Go, years before most experts expected computers to rival the best flesh-and-bone players. But then last week, Microsoft was forced to silence its millennial-imitating chatbot Tay for blithely parroting Nazi propaganda and misogynistic attacks after just one day online, her failure a testimony to the often underestimated role of human sensibility in intelligent behavior. Why are we so compelled to pit human against machine, and why are we so bad at predicting the outcome? As the number of jobs susceptible to automation rises, and as Stephen Hawking, Elon Musk, and Bill Gates warn that artificial intelligence poses an existential threat to humanity, it’s natural to wonder how humans measure up to our future robot overlords. But even those tracking technology’s progress in taking on human skills have a hard time setting an accurate date for the uprising. That’s in part because one prediction strategy popular among both scientists and journalists—benchmarking the human brain with digital metrics such as bits, hertz, and million instructions per section, or MIPS—is severely misguided. And doing so could warp our expectations of what technology can do for us and to us. Since their development, digital computers have become a standard metaphor for the mind and brain. The comparison makes sense, in that brains and computers both transform input into output. Most human brains, like computers, can also manipulate abstract symbols. (Think arithmetic or language processing.) But like any metaphor, this one has limitations.

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System; Chapter 13: Memory, Learning, and Development
Link ID: 22052 - Posted: 03.31.2016

By Emily Underwood This tangle of wiry filaments is not a bird’s nest or a root system. Instead, it’s the largest map to date of the connections between brain cells—in this case, about 200 from a mouse’s visual cortex. To map the roughly 1300 connections, or synapses, between the cells, researchers used an electron microscope to take millions of nanoscopic pictures from a speck of tissue not much bigger than a dust mite, carved into nearly 3700 slices. Then, teams of “annotators” traced the spindly projections of the synapses, digitally stitching stacked slices together to form the 3D map. The completed map reveals some interesting clues about how the mouse brain is wired: Neurons that respond to similar visual stimuli, such as vertical or horizontal bars, are more likely to be connected to one another than to neurons that carry out different functions, the scientists report online today in Nature. (In the image above, some neurons are color-coded according to their sensitivity to various line orientations.) Ultimately, by speeding up and automating the process of mapping such networks in both mouse and human brain tissue, researchers hope to learn how the brain’s structure enables us to sense, remember, think, and feel. © 2016 American Association for the Advancement of Science

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 22041 - Posted: 03.29.2016

Mo Costandi Researchers in the United States have developed a new method for controlling the brain circuits associated with complex animal behaviours, using genetic engineering to create a magnetised protein that activates specific groups of nerve cells from a distance. Understanding how the brain generates behaviour is one of the ultimate goals of neuroscience – and one of its most difficult questions. In recent years, researchers have developed a number of methods that enable them to remotely control specified groups of neurons and to probe the workings of neuronal circuits. The most powerful of these is a method called optogenetics, which enables researchers to switch populations of related neurons on or off on a millisecond-by-millisecond timescale with pulses of laser light. Another recently developed method, called chemogenetics, uses engineered proteins that are activated by designer drugs and can be targeted to specific cell types. Although powerful, both of these methods have drawbacks. Optogenetics is invasive, requiring insertion of optical fibres that deliver the light pulses into the brain and, furthermore, the extent to which the light penetrates the dense brain tissue is severely limited. Chemogenetic approaches overcome both of these limitations, but typically induce biochemical reactions that take several seconds to activate nerve cells. The new technique, developed in Ali Güler’s lab at the University of Virginia in Charlottesville, and described in an advance online publication in the journal Nature Neuroscience, is not only non-invasive, but can also activate neurons rapidly and reversibly. © 2016 Guardian News and Media Limited

Related chapters from BP7e: Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 22034 - Posted: 03.26.2016

By Simon Makin Brain implants have been around for decades—stimulating motor areas to alleviate Parkinson's disease symptoms, for example—but until now they have all suffered from the same limitation: because brains move slightly during physical activity and as we breathe and our heart beats, rigid implants rub and damage tissue. This means that eventually, because of both movement and scar-tissue formation, they lose contact with the cells they were monitoring. Now a group of researchers, led by chemist Charles Lieber of Harvard University, has overcome these problems using a fine, flexible mesh. In 2012 the team showed that cells could be grown around such a mesh, but that left the problem of how to get one inside a living brain. The solution the scientists devised was to draw the mesh—measuring a few millimeters wide—into a syringe, so it would roll up like a scroll inside the 100-micron-wide needle, and inject it through a hole in the skull. In a study published in Nature Nanotechnology last year, the team injected meshes studded with 16 electrodes into two brain regions in mice. The mesh is composed of extremely thin, nanoscale polymer threads, sparsely distributed so that 95 percent of it is empty space. It has a level of flexibility similar to brain tissue. “You're starting to make this nonliving system look like the biological system you're trying to probe,” Lieber explains. “That's been the goal of my group's work, to blur the distinction between electronics as we know it and the computer inside our heads.” © 2016 Scientific American

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 21950 - Posted: 03.03.2016

Laura Sanders In a multivirus competition, a newcomer came out on top for its ability to transport genetic cargo to a mouse’s brain cells. The engineered virus AAV-PHP.B was best at delivering a gene that instructed Purkinje cells, the dots in the micrograph above, to take on a whitish glow. Unaffected surrounding cells in the mouse cerebellum look blue. Cargo carried by viruses like AAV-PHP.B could one day replace faulty genes in the brains of people. AAV-PHP.B beat out other viruses including a similar one called AAV9, which is already used to get genes into the brains of mice. Genes delivered by AAV-PHP.B also showed up in the spinal cord, retina and elsewhere in the body, Benjamin Deverman of Caltech and colleagues report in the February Nature Biotechnology. Similar competitions could uncover viruses with the ability to deliver genes to specific types of cells, the researchers write. Selective viruses that can also get into the brain would enable deeper studies of the brain and might improve gene therapy techniques in people. © Society for Science & the Public 2000 - 2016

Related chapters from BP7e: Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 2: Cells and Structures: The Anatomy of the Nervous System; Chapter 13: Memory, Learning, and Development
Link ID: 21923 - Posted: 02.23.2016