Links for Keyword: Robotics

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 61 - 80 of 194

By EMMA G. FITZSIMMONS CHICAGO — Martin Mireles says his mother was not happy with his tongue piercing: It didn’t fit his image as a former church youth leader. But as Mr. Mireles told her, it was for research. Paralyzed from a spinal cord injury since he was shot in the neck almost two decades ago, he was recently fitted with a magnetic stud that allows him to steer his wheelchair with his tongue. Now he is helping researchers at the Northwestern University School of Medicine here in a clinical trial of the technology, being financed with almost $1 million in federal stimulus funds. Mr. Mireles, 37, tested the equipment one recent afternoon by guiding a wheelchair through an obstacle course lined with trash cans. Mouth closed, he shifted the magnet to travel forward and backward, left and right. The study was one of about 200 projects selected from more than 20,000 applicants. “There was a ‘wow’ factor here,” said Naomi Kleitman, a program director at the National Institutes of Health and an expert on spinal cord injury research. “This is kind of a cool idea. The question is: Will it work well enough not to just be cool, but to be practical too?” A quarter-million Americans have severe spinal cord injuries, and experts estimate that there are about 10,000 new injuries each year. Millions more have some form of paralysis from an array of conditions, including stroke, multiple sclerosis and cerebral palsy. © 2011 The New York Times Company

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 15405 - Posted: 06.07.2011

by Miguel Nicolelis ANSWER quickly: what links the internet, the stock market, democratic elections, a perfect soccer play, the big bang theory, the frescoes of the Sistine Chapel and the iPad? Most people guess that the only possible link is they are all created by humans. While this is technically correct, it doesn't credit the true creator of such macro structures and exquisite tools: the human brain. As well as the almost infinite catalogue of artificial tools and beliefs that rule most of our lives, our cherished social, political, and economic systems also blossom as by-products of the incessant electrochemical storms brewed by the brain circuits formed by billions of interconnected cellular elements. These neurons make up an organic structure so majestic and mysterious that its only true rival in complexity and power is the cosmos that hosts us all. For the past 200 years or so, neuroscientists have been obsessed with understanding how the roots of all our glory and disgrace, as individuals and as a species, emerge from waves of neuronal electrical activity that propagate through a neural ocean. Just how do they morph into what is conventionally known as thinking, the main currency of our primate brains? In the early 19th century, Franz Joseph Gall in Germany and Thomas Young in Britain pioneered the modern age of neuroscience with opposing theories of how the brain worked. Gall's phrenology proposed that brain functions were localised in particular spatial territories of the human cortex, the most superficial part of the nervous system, just beneath the skull. Gall and his disciples made a living by claiming to ascertain the key personality traits of his patients by palpating the bumps on their heads. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 15350 - Posted: 05.21.2011

Helen Thomson, biomedical news editor A paralysed woman was still able to accurately control a computer cursor with her thoughts 1000 days after having a tiny electronic device implanted in her brain, say the researchers who devised the system. The achievement demonstrates the longevity of brain-machine implants. The woman, for whom the researchers use the pseudonym S3, had a brainstem stroke in the mid-1990s that caused tetraplegia - paralysis of all four limbs and the vocal cords. In 2005, researchers from Brown University in Providence, Rhode Island, the Providence VA Medical Center and Massachusetts General Hospital in Boston implanted a tiny silicon electrode array the size of a small aspirin into S3's brain to help her communicate better with the outside world. The electrode array is part of the team's BrainGate system, which includes a combination of hardware and software that directly senses the electrical signals produced by neurons in the brain which control the planning of movement. The electrode decodes these signals to allow people with paralysis to control external devices such as computers, wheelchairs and bionic limbs. In a study just published, the researchers say that in 2008 - 1000 days after implantation - S3 proved the durability of the device by performing two different "point-and-click" tasks by thinking about moving a cursor with her hand. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 15133 - Posted: 03.26.2011

By Rachel Ehrenberg Nerve cell tendrils readily thread their way through tiny semiconductor tubes, researchers find, forming a crisscrossed network like vines twining towards the sun. The discovery that offshoots from nascent mouse nerve cells explore the specially designed tubes could lead to tricks for studying nervous system diseases or testing the effects of potential drugs. Such a system may even bring researchers closer to brain-computer interfaces that seamlessly integrate artificial limbs or other prosthetic devices. “This is quite innovative and interesting,” says nanomaterials expert Nicholas Kotov of the University of Michigan in Ann Arbor. “There is a great need for interfaces between electronic and neuronal tissues.” To lay the groundwork for a nerve-electronic hybrid, graduate student Minrui Yu of the University of Wisconsin–Madison and his colleagues created tubes of layered silicon and germanium, materials that could insulate electric signals sent by a nerve cell. The tubes were various sizes and shapes and big enough for a nerve cell’s extensions to crawl through but too small for the cell’s main body to get inside. When the team seeded areas outside the tubes with mouse nerve cells the cells went exploring, sending their threadlike projections into the tubes and even following the curves of helical tunnels, the researchers report in an upcoming ACS Nano. © Society for Science & the Public 2000 - 2011

Related chapters from BP7e: Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 15115 - Posted: 03.19.2011

Analysis by Amy Dusto For people with spinal injuries or other conditions that impair use of the arms or vocal cords -- or for the curious who just think it's cool -- the intendiX spells words based on brain waves. A skullcap along with a computer interface, the system is in development by Austrian company Guger Technologies. It was demonstrated at CeBIT, an annual worldwide digital industry event, held this year in Hanover, Germany, from March 1 to 5. To pick up brain activity, the skullcap is covered in electroencephalographic (EEG) electrodes. Unfortunately, this early model requires that the user put gel between his and her head and the EEG electrodes to function properly (though a dry version is forthcoming). The wearer stares at a computer screen, which flashes highlights over different rows in a matrix of letters and symbols set up like a keyboard on the screen. Simply by paying attention to the desired letter for a few seconds, the program can determine what the user intended to pick. According to Guger Technologies, most people become competent thought-communicators after 10 minutes of training on the system and are able to spell out five to 10 characters a minute. Designed for use by the severely handicapped in the home or with caregivers, intendiX can do more than just write out a text message. The user can also make it read the message out loud in digitized prose, print the text, or send it in email or via another electronic messaging system -- intendiX is Bluetooth-ready. The only ability needed to use the system, besides a few seconds of concentration, is eyesight. © 2011 Discovery Communications, LLC.

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 15090 - Posted: 03.10.2011

by Sara Reardon WASHINGTON, D.C.—Former army sergeant Glen Lehman lost his arm in Iraq. But he can still pick up small objects with fine motor control, thanks to a bionic appendage wired to his remaining nerves. “Just by believing I’m moving my phantom limb," he said, "the arm is in tune with my thoughts." Lehman showed off his new arm here yesterday at the annual meeting of the American Association for the Advancement of Science (which publishes ScienceNOW). His demonstration was part of a session on breaking down the barriers between mind and machine. In addition to creating better prosthetics for amputees, scientists talked about developing communication devices for locked-in patients and even creating virtual reality avatars that might someday allow people to transfer their entire consciousness into a machine. But first back to Lehman's arm. Previous arm prosthetics have relied on the remaining muscles of the arm to guess at what the amputee wants to do, which panelist Todd Kuiken of Northwestern University in Evanston, Illinois, described as a “Morse code game.” The technique his group is developing, by contrast, uses the arm’s nerves, which appear to remain intact even 10 years after an amputation. Using this method, his advanced prosthetics can restore fine motor control down to the fingers. © 2010 American Association for the Advancement of Science.

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 15029 - Posted: 02.21.2011

By KATHERINE BOUTON Imagine, Michael Chorost proposes, that four police officers on a drug raid are connected mentally in a way that allows them to sense what their colleagues are seeing and feeling. Tony Vittorio, the captain, is in the center room of the three-room drug den. He can sense that his partner Wilson, in the room on his left, is not feeling danger or arousal and thus has encountered no one. But suddenly Vittorio feels a distant thump on his chest. Sarsen, in the room on the right, has been hit with something, possibly a bullet fired from a gun with a silencer. Vittorio glimpses a flickering image of a metallic barrel pointed at Sarsen, who is projecting overwhelming shock and alarm. By deducing how far Sarsen might have gone into the room and where the gunman is likely to be standing, Vittorio fires shots into the wall that will, at the very least, distract the gunman and allow Sarsen to shoot back. Sarsen is saved; the gunman is dead. That scene, from his new book, “World Wide Mind,” is an example of what Mr. Chorost sees as “the coming integration of humanity, machines, and the Internet.” The prediction is conceptually feasible, he tells us, something that technology does not yet permit but that breaks no known physical laws. © 2011 The New York Times Company

Related chapters from BP7e: Chapter 9: Hearing, Vestibular Perception, Taste, and Smell; Chapter 10: Vision: From Eye to Brain
Related chapters from MM:Chapter 6: Hearing, Balance, Taste, and Smell; Chapter 7: Vision: From Eye to Brain
Link ID: 15004 - Posted: 02.15.2011

By Emily Singer Most of the robotic arms now in use by some amputees are of limited practicality; they have only two to three degrees of freedom, allowing the user to make a single movement at a time. And they are controlled with conscious effort, meaning the user can do little else while moving the limb. A new generation of much more sophisticated and lifelike prosthetic arms, sponsored by the Department of Defense's Defense Advanced Research Projects Agency (DARPA), may be available within the next five to 10 years. Two different prototypes that move with the dexterity of a natural limb and can theoretically be controlled just as intuitively--with electrical signals recorded directly from the brain--are now beginning human tests. Initial results of one of these studies--the first tests of a paralyzed human controlling a robotic arm with multiple degrees of freedom--will be presented at the Society for Neuroscience conference in November. The new designs have about 20 degrees of independent motion, a significant leap over existing prostheses, and they can be operated via a variety of interfaces. One device, developed by DEKA Research and Development, can be consciously controlled using a system of levers in a shoe. © 2010 MIT Technology Review

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 14639 - Posted: 11.08.2010

by Debora MacKenzie Groups in Germany and the US have been testing electronic implants aimed at restoring vision to people with retinal dystrophy. The condition is hereditary or age-related, and causes degeneration of the photoreceptors – light-sensitive cells in the retina – leading to blindness. It affects 15 million people worldwide. Eberthart Zrenner and colleagues at the University of Tübingen in Germany have developed a microchip carrying 1500 photosensitive diodes that slides into the retina where the photoreceptors would normally be. The diodes respond to light, and when connected to an outside power source through a wire into the eye, can stimulate the nearby nerves that normally pass signals to the brain, mimicking healthy photoreceptors. The team reports that their first three volunteers could all locate bright objects. One could recognise normal objects and read large words. Nerves in the eye normally adapt to visual input and stop transmitting signals after a short time. Tiny movements of the eye overcome this by constantly projecting the image back and forth between neighbouring nerve cells so that each has time to recover and resume transmitting signals. Because the implant is inside the eye, this mechanism worked normally in the trials. Another device being tested sends images from a head-mounted camera to ocular nerves, but as the image forms outside the eye the tiny movements cannot maintain it and patients must rapidly shake their head instead. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 10: Vision: From Eye to Brain
Related chapters from MM:Chapter 7: Vision: From Eye to Brain
Link ID: 14627 - Posted: 11.04.2010

by David Hambling Imagine a bionic arm that plugs directly into the nervous system, so that the brain can control its motion, and the owner can feel pressure and heat through their robotic hand. This prospect has come a step closer with the development of photonic sensors that could improve connections between nerves and prosthetic limbs. Existing neural interfaces are electronic, using metal components that may be rejected by the body. Now Marc Christensen at Southern Methodist University in Dallas, Texas, and colleagues are building sensors to pick up nerve signals using light instead. They employ optical fibres and polymers that are less likely than metal to trigger an immune response, and which will not corrode. The sensors are currently in the prototype stage and too big to put in the body, but smaller versions should work in biological tissue, according to the team. The sensors are based on spherical shells of a polymer that changes shape in an electric field. The shells are coupled with an optical fibre, which sends a beam of light travelling around inside them. The way that the light travels around the inside of the sphere is called a "whispering gallery mode", named after the Whispering Gallery in St Paul's Cathedral, London, where sound travels further than usual because it reflects along a concave wall. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 14565 - Posted: 10.19.2010

Katharine Sanderson Artificial electronic skins that can detect the gentlest of touches have been developed by two independent US research groups. The skins could eventually be used in prosthetics, or in touch-sensitive robotic devices. Both systems detect pressure changes of less than a kilopascal, the same as everyday pressures felt by our fingers when typing or picking up a pen. This sensitivity is better than previous systems, which detected pressures of tens of kilopascals or more, or only detected static pressures so that once an object was sat on the skin, the device could not sense that it was still there. The devices, both reported in Nature Materials today, work in different ways1,2. Chemist Zhenan Bao at Stanford University, California, and her colleagues used the elastic polymer polydimethylsiloxane (PDMS)1. Bao took a piece of PDMS measuring six centimetres square with pyramid-shaped chunks cut out of it at regular intervals. When the PDMS is squashed, the pyramid-shaped holes that were previously filled with air become filled with PDMS, changing the device's capacitance, or its ability to hold an electric charge. An optical image of a fully fabricated e-skin device with nanowire active matrix circuitry. each dark square represents a single pixel.The use of pressure-sensitive rubber makes this artifical skin flexible.Ali Javey and Kuniharu Takei To make it easier to detect the changes in capacitance, Bao stuck the PDMS capacitor onto an organic transistor, which can read out the differences as a change in current. The team used a grid of transistors to track pressure changes at different points across the material. © 2010 Nature Publishing Group,

Related chapters from BP7e: Chapter 8: General Principles of Sensory Processing, Touch, and Pain
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 14448 - Posted: 09.13.2010

By Alyssa Danigelis The thoughts are there, but there is no way to express them. For "locked in" patients, many with Lou Gehrig's disease, the only way to communicate tends to be through blinking in code. But now, words can be read directly from patients' minds by attaching microelectrode grids to the surface of the brain and learning which signals mean which words, a development that will ultimately help such patients talk again. "They're perfectly aware. They just can't get signals out of their brain to control their facial expressions. "They're the patients we'd like to help first," said University of Utah's Bradley Greger, an assistant professor of bioengineering who, with neurosurgery professor Paul House, M.D., published the study in the October issue of the Journal of Neural Engineering. Some severely-epileptic patients have the seizure-stricken parts of the brain removed. This standard procedure requires cutting the skull open and putting large, button-sized electrodes on the brain to determine just what needs removal. The electrodes are then taken off the brain. The University of Utah team worked with an epileptic patient who let them crowd together much smaller devices, called micro-electrocorticography, onto his brain prior to surgery. © 2010 Discovery Communications, LLC.

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 14442 - Posted: 09.11.2010

By CLAUDIA DREIFUS About four years ago, John Donoghue’s son, Jacob, then 18, took his father aside and declared, “Dad, I now understand what you do — you’re ‘The Matrix’!” Dr. Donoghue, 61, is a professor of engineering and neuroscience at Brown University, studying how human brain signals could combine with modern electronics to help paralyzed people gain greater control over their environments. He’s designed a machine, the BrainGate, that uses thought to move objects. We spoke for two hours in his Brown University offices in Providence, R.I., and then again by telephone. An edited version of the two conversations follows: Q. WHAT EXACTLY IS BRAINGATE? A. It’s a way for people who’ve been paralyzed by strokes, spinal cord injuries or A.L.S. to connect their brains to the outside world. The system uses a tiny sensor that’s been implanted into the part of a person’s brain that generates movement commands. This sensor picks up brain signals, transmits them to a plug attached to the person’s scalp. The signals then go to a computer which is programmed to translate them into simple actions. Q. WHY MOVE THE SIGNALS OUT OF THE BODY? A. Because for many paralyzed people, there’s been a break between their brain and the rest of their nervous system. Their brains may be fully functional, but their thoughts don’t go anywhere. What BrainGate does is bypass the broken connection. Free of the body, the signal is directed to machines that will turn thoughts into action. Copyright 2010 The New York Times Company

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 14319 - Posted: 08.03.2010

by Laurie Rich, Jane Bosveld, Andrew Grant, Amy Barth The brain is a castle on a hill. Encased in bone and protected by a special layer of cells, it is shielded from infections and injuries—but also from many pharmaceuticals and even from the body’s own immune defenses. As a result, brain problems are tough to diagnose and to treat. To meet this challenge, researchers are exploring unconventional therapies, from electrodes to laser-light stimulation to mind-bending drugs. Some of these radical experiments may never pan out. But, as frequently happens in medicine, a few of today’s improbable approaches may evolve into tomorrow’s miraculous cures. 1. Man Meets Machine In a sense, cyborgs already walk among us: Nearly 200,000 deaf or near-deaf people have cochlear implants, electronic sound-processing machines that stimulate the auditory nerve and link into the brain. But even by the fanciful science fiction definition, the age of cyborgs is just around the corner. In the last decade, researchers have become increasingly skilled at detecting and interpreting brain signals. Technologies that allow people to use their thoughts to control machines—computers, speaking devices, or prosthetic limbs—are already being tested and could soon be available for widespread applications.

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity; Chapter 9: Hearing, Vestibular Perception, Taste, and Smell
Related chapters from MM:Chapter 5: The Sensorimotor System; Chapter 6: Hearing, Balance, Taste, and Smell
Link ID: 14223 - Posted: 07.03.2010

By SANDRA BLAKESLEE On Thursday, the 12-pound, 32-inch monkey made a 200-pound, 5-foot humanoid robot walk on a treadmill using only her brain activity. She was in North Carolina, and the robot was in Japan. It was the first time that brain signals had been used to make a robot walk, said Dr. Miguel A. L. Nicolelis, a neuroscientist at Duke University whose laboratory designed and carried out the experiment. In 2003, Dr. Nicolelis’s team proved that monkeys could use their thoughts alone to control a robotic arm for reaching and grasping. These experiments, Dr. Nicolelis said, are the first steps toward a brain machine interface that might permit paralyzed people to walk by directing devices with their thoughts. Electrodes in the person’s brain would send signals to a device worn on the hip, like a cell phone or pager, that would relay those signals to a pair of braces, a kind of external skeleton, worn on the legs. “When that person thinks about walking,” he said, “walking happens.” Richard A. Andersen, an expert on such systems at the California Institute of Technology in Pasadena who was not involved in the experiment, said that it was “an important advance to achieve locomotion with a brain machine interface.” Copyright 2008 The New York Times Company

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 11210 - Posted: 06.24.2010

Atlanta —Working from their university labs in two different corners of the world, U.S. and Australian researchers have created what they call a new class of creative beings, “the semi-living artist” – a picture-drawing robot in Perth, Australia whose movements are controlled by the brain signals of cultured rat cells in Atlanta. Gripping three colored markers positioned above a white canvas, the robotic drawing arm operates based on the neural activity of a few thousand rat neurons placed in a special petri dish that keeps the cells alive. The dish, a Multi-Electrode Array (MEA), is instrumented with 60 two-way electrodes for communication between the neurons and external electronics. The neural signals are recorded and sent to a computer that translates neural activity into robotic movement. ©2003 Georgia Institute of Technology

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 4011 - Posted: 06.24.2010

By Jennifer Viegas, Discovery News — Genetically engineered fruit flies have been made to jump, beat their wings and fly on human command, according to a new study published in the journal Cell. The flies are the first creatures that humans have remotely controlled. Someday, a related nerve stimulation process may restore nerve circuits in people with neurological diseases or injuries, such as the spinal cord trauma of the late actor and activist Christopher Reeve. Manipulation of behavior in insects and animals, even humans, has been possible for the past 50 years or so. Most of the studies, however, involved invasive electrical stimulation of specific parts of the brain. Surgeon Wilder Penfield, for example, electrically stimulated the cortexes of neurosurgery patients, who later said that the electricity affected their thinking and memory. Monkeys undergoing brain stimulation also have been tricked into thinking that something was vibrating their hands. "Attempts to manipulate behavior in an active and predictive way have been a focus of the laboratory for several years," explained Gero Miesenböck, who co-authored the Cell paper with Susana Lima, and is an associate professor of cell biology at the Yale University School of Medicine. Copyright © 2005 Discovery Communications Inc.

Related chapters from BP7e: Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 5: The Sensorimotor System
Link ID: 7211 - Posted: 06.24.2010

By Larry Greenemeier Having proved in 2004 that plugging a sensor into the human brain's motor cortex could turn the thoughts of paralysis victims into action, a team of Brown University scientists now has the green light from the U.S. Food and Drug Administration (FDA) and the Massachusetts General Hospital (MGH) institutional review board to expand its efforts developing technology that reconnects the brain to lifeless limbs. Brown's BrainGate Neural Interface System—conceived in 2000 with the help of a $4.25-million U.S. Defense Department grant—includes a baby aspirin–size brain sensor containing 100 electrodes, each thinner than a human hair, that connects to the surface of the motor cortex (the part of the brain that enables voluntary movement), registers electrical signals from nearby neurons, and transmits them through gold wires to a set of computers, processors and monitors. (ScientificAmerican.com in 2006 wrote about one patient's experience using BrainGate during its first phase of trials.) The researchers designed BrainGate to assist those suffering from spinal cord injuries, muscular dystrophy, brain stem stroke, amyotrophic lateral sclerosis (ALS, or Lou Gehrig's Disease), and other motor neuron diseases. During the initial testing five years ago, patients suffering from paralysis demonstrated their ability to use brain signals sent from their motor cortex to control external devices such as computer screen cursors and robotic arms just by thinking about them. "The signals may have been disconnected from the (participant's) limb, but they were still there," says Leigh Hochberg, a Brown associate professor of engineering and a vascular and critical care neurologist at MGH who is helping lead the research. © 1996-2009 Scientific American Inc

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 12945 - Posted: 06.24.2010

Ewen Callaway Look Mum, no hands! Two monkeys have managed to use brain power to control a robotic arm to feed themselves. The feat marks the first time a brain-controlled prosthetic limb has been wielded to perform a practical task. Previous demonstrations in monkeys and humans have tapped into the brain to control computer cursors and virtual worlds, and even to clench a robot hand. But complicated physical activities like eating are "a completely different ball game", says Andrew Schwarz, a neurological engineer at the University of Pittsburgh, who led the new research. Tests with humans are being prepared in numerous labs, but experts caution that brain-controlled robotic limbs are far from freeing paraplegics from their wheelchairs or giving amputees their limbs back. Wired for actionMost people who become paralysed or lose limbs retain the mental dexterity to perform physical actions. And by tapping into a region of the brain responsible for movement – the motor cortex – researchers can decode a person's intentions and translate them into action with a prosthetic. This had been done mostly with monkeys and in virtual worlds or with simple movements, such as reaching out a hand. But two years ago, an American team hacked into the brain of a patient with no control over his arms to direct a computer cursor and a simple robotic arm. © Copyright Reed Business Information Ltd

Related chapters from BP7e: Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 5: The Sensorimotor System
Link ID: 11673 - Posted: 06.24.2010

Celeste Biever A virtual child controlled by artificially intelligent software has passed a cognitive test regarded as a major milestone in human development. It could lead to smarter computer games able to predict human players' state of mind. Children typically master the "false belief test" at age 4 or 5. It tests their ability to realise that the beliefs of others can differ from their own, and from reality. The creators of the new character – which they called Eddie – say passing the test shows it can reason about the beliefs of others, using a rudimentary "theory of mind". "Today's [video game] characters have no genuine autonomy or mental picture of who you are," researcher Selmer Bringsjord of Rensselaer Polytechnic Institute in Troy, New York, told New Scientist. He aims to change that with future games and virtual worlds populated by genuinely intelligent computer characters able to predict and understand players actions and motives. Bringsjord's colleague Andrew Shilliday adds that their work will have applications outside of gaming. For example, search engines able to reason about the beliefs of a user might allow them to better understand their search queries. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 11423 - Posted: 06.24.2010