Links for Keyword: Sleep

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 21 - 40 of 682

by Tina Hesman Saey Sleep hoses garbage out of the brain, a study of mice finds. The trash, including pieces of proteins that cause Alzheimer’s disease, piles up while the rodents are awake. Sleep opens spigots that bathe the brain in fluids and wash away the potentially toxic buildup, researchers report in the Oct. 18 Science. The discovery may finally reveal why sleep seems mandatory for every animal. It may also shed new light on the causes of neurodegenerative disorders such as Alzheimer’s and Parkinson’s diseases. “It’s really an eye-opening and intriguing finding,” says Chiara Cirelli, a sleep researcher at the University of Wisconsin–Madison. The results have already led her and other sleep scientists to rethink some of their own findings. Although sleep requirements vary from individual to individual and across species, a complete lack of it is deadly. But no one knows why. One popular idea is that sleep severs weak connections between brain cells and strengthens more robust connections to solidify memories (SN Online: 4/2/09; SN Online: 6/23/11). But a good memory is not a biological imperative. “You don’t die from forgetting what you learned yesterday,” says Maiken Nedergaard, a neuroscientist at the University of Rochester Medical Center in New York who led the study. Researchers in Nedergaard’s lab stumbled upon sleep’s role in garbage clearance while studying a brain drainage system they described last year (SN: 9/22/12, p. 15). This service, called the glymphatic system, flushes fluid from the brain and spinal cord into the space between brain cells. Ultimately, the fluid and any debris it carries washes into the liver for disposal. © Society for Science & the Public 2000 - 2013

Related chapters from BP7e: Chapter 14: Biological Rhythms, Sleep, and Dreaming; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 10: Biological Rhythms and Sleep; Chapter 13: Memory, Learning, and Development
Link ID: 18813 - Posted: 10.19.2013

by Laura Sanders After Baby V joined our team, one of the first things people would ask is, “Are you getting any sleep?” (The answer was, and is, no.) The recurring question highlights how sorely lacking sleep is for new parents. Capitalism noticed us tired parents, too: Countless products beckon exhausted families with promises of eight, 10, even 12 hours of blissful, uninterrupted sleep. You can buy special swaddles, white noise machines, swings that sway like a moving car and books upon books that whisper contradictory secrets of how to get your baby to sleep through the night. (If you don’t have time to read them all, mother-of-twins Ava Neyer helpfully breaks down all of the advice for you.) As the owner of a stack of such books, I was intrigued by this recent review: “Behavioral sleep interventions in the first six months of life do not improve outcomes for mothers or infants: A systematic review.” Excuse me? The Sleep Sheep, the Baby Whisperer and the Sleep Lady lied to me? At the behest of the United Kingdom’s National Institute for Health Research, Australians Pamela Douglas and Peter Hill combed through the existing scientific literature on sleep interventions looking for benefits. These interventions included delaying responses to infant cues (also known by its cold-hearted name of “crying it out”), sticking to a feeding or sleeping schedule and other ways that aim to teach a baby how to fall asleep without the need to eat or be held. After analyzing 43 studies on infant sleep interventions, the team concluded that these methods weren’t beneficial for babies younger than six months, or their mothers. The studies didn’t convincingly show that interventions curb infant crying, prevent sleep or behavioral problems later or protect against maternal depression, Douglas and Hill write in the September Journal of Developmental & Behavioral Pediatrics. © Society for Science & the Public 2000 - 2013.

Related chapters from BP7e: Chapter 14: Biological Rhythms, Sleep, and Dreaming; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 10: Biological Rhythms and Sleep; Chapter 13: Memory, Learning, and Development
Link ID: 18778 - Posted: 10.12.2013

by Andy Coghlan Swifts are said to spend most of their lives airborne, but no one has ever proved this. Now, a study suggests there's some truth to it: alpine swifts spend more than six consecutive months aloft, not even resting after migrating to north Africa following their breeding season in Europe. "Up to now, such long-lasting locomotive activity had been reported only for animals living in the sea," says Felix Liechti of the Swiss Ornithological Institute in Sempach. Liechti and his colleagues attached 1.5-gram data loggers to three alpine swifts (Tachymarptis melba) at a Swiss breeding site, and recaptured the birds the following year. The loggers recorded the birds' acceleration and geographic location. The measurements suggest that for 200 days, all three swifts remained airborne while migrating to and wintering in Africa. Liechti says researchers have previously asserted but never proved that newborn common swifts spend three years aloft before landing for breeding. "Amazing, truly amazing," says Carsten Egevang of the Greenland Institute of Natural Resources in Nuuk of Liechti's findings. "We knew that swifts stay on the wing for long periods, but 200 days is very impressive." The birds survive on airborne plankton, and almost certainly sleep on the wing too, Liechti says. "It has been assumed that the birds 'sleep' only for seconds, or use only one half of the brain while the other half is resting," he says. © Copyright Reed Business Information Ltd

Related chapters from BP7e: Chapter 14: Biological Rhythms, Sleep, and Dreaming
Related chapters from MM:Chapter 10: Biological Rhythms and Sleep
Link ID: 18767 - Posted: 10.09.2013

Answer by Paul King, computational neuroscientist: The emerging view in neuroscience is that dreams are related to memory consolidation happening in the brain during sleep. This may include reorganizing and recoding memories in relation to emotional drives as well as transferring memories between brain regions. During the day, episodic memories (memories for events) are stored in the hippocampus, a region of the brain specialized for long-term memory that learns particularly quickly. At night, memories from this region appear to be transferred to the cerebral cortex, the region specialized for information processing, cognition, and knowledge. Studies in animals have found that during sleep, the neural activity of the hippocampus "replays" the events of the day. This replay happens faster than real-time, and sometimes happens in reverse. The activity replay is correlated with neural activity patterns in both the visual cortex (responsible for visual experience) and the prefrontal cortex (responsible for strategy, goals, and planning). The memory replay occurs during REM sleep and dreaming. Philosopher Daniel Dennett proposes the Dream Weaving party game: One person, the Dream Guesser is asked to leave the room, and while away, someone will share a dream with the group. When the Dream Guesser returns, their job will be to ask yes/no questions of random people in the group to attempt to reconstruct the plot of the dream. © 2013 The Slate Group, LLC.

Related chapters from BP7e: Chapter 14: Biological Rhythms, Sleep, and Dreaming
Related chapters from MM:Chapter 10: Biological Rhythms and Sleep
Link ID: 18744 - Posted: 10.05.2013

Few features of child-rearing occupy as much parental brain space as sleep, and with it the timeless question: Is my child getting enough? Despite the craving among many parents for more sleep in their offspring (and, by extension, themselves), the purpose that sleep serves in young kids remains something of a mystery—especially when it comes to daytime naps. Do they help children retain information, as overnight sleep has been found to do in adults? A study published today in the Proceedings of the National Academy of Sciences provides the first evidence that daytime sleep is critical for effective learning in young children. Psychologist Rebecca Spencer of the University of Massachusetts (UMass), Amherst, had more than a passing interest in the subject: Her daughters were 3 and 5 when she began chasing answers to these questions. She also wondered about growing enthusiasm for universal public preschool, where teachers don’t necessarily place much emphasis on naps. “There is a lot of science” about the best curriculum for preschool classrooms, “but nothing to protect the nap,” Spencer says. Still, data to support a nap’s usefulness were scarce: Studies in adults have found that sleep helps consolidate memories and learning, but whether the same is true of brief naps in the preschool set was unknown. So Spencer approached the first preschool she could think of that might help her find out: her daughters’. She later added other local preschools to her sample, for a total of 40 children ranging from nearly 3 to less than 6 years old. The goal of Spencer, her graduate student Laura Kurdziel, and undergraduate Kasey Duclos of Commonwealth Honors College at UMass, was to compare each child against him or herself: How well did a child learn when she napped, and what happened when she didn’t? © 2012 American Association for the Advancement of Science

Related chapters from BP7e: Chapter 14: Biological Rhythms, Sleep, and Dreaming; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 10: Biological Rhythms and Sleep; Chapter 13: Memory, Learning, and Development
Link ID: 18696 - Posted: 09.24.2013

By Laura Sanders A nap can ease the burden of a painful memory. While fast asleep, people learned that a previously scary situation was no longer threatening, scientists report September 22 in Nature Neuroscience. The results are the latest to show that sleep is a special state in which many sorts of learning can happen. And the particular sort of learning in the new study blunted a fear memory, a goal of treatments for disorders such as phobias and post-traumatic stress disorder. “It’s a remarkable finding,” says sleep neuroscientist Edward Pace-Schott of Harvard Medical School and Massachusetts General Hospital. Researchers led by Katherina Hauner of Northwestern University’s Feinberg School of Medicine first taught 15 (awake) volunteers to fear the combination of a face and odor. Participants saw a picture of a certain man’s face and at the same time smelled a distinctive scent, such as lemon. This face-odor combo was paired with a nasty shock, so that the volunteers quickly learned to expect something bad when they saw that particular face and smelled the associated odor. Then the volunteers tucked in for a nap in the laboratory. When the participants hit the deepest stage of sleep, called slow-wave sleep, Hauner and her colleagues redelivered the smell that had earlier come with a shock. During the nap, some participants had learned that the smell was safe. The volunteers sweated less (a measure of fear) when the face-odor combination appeared after the nap, the scientists found. When the odor wasn’t presented during sleep, volunteers’ responses to the associated face were unchanged. © Society for Science & the Public 2000 - 2013

Related chapters from BP7e: Chapter 14: Biological Rhythms, Sleep, and Dreaming; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 10: Biological Rhythms and Sleep; Chapter 13: Memory, Learning, and Development
Link ID: 18689 - Posted: 09.23.2013

By Melissa Healy It's a question that has long fascinated and flummoxed those who study human behavior: From whence comes the impulse to dream? Are dreams generated from the brain's "top" -- the high-flying cortical structures that allow us to reason, perceive, act and remember? Or do they come from the brain's "bottom" -- the unheralded brainstem, which quietly oversees such basic bodily functions as respiration, heart rate, salivation and temperature control? At stake is what to make of the funny, sexual, scary and just plain bizarre mental scenarios that play themselves out in our heads while we sleep. Are our subconsious fantasies coming up for a breath of air, as Sigmund Freud believed? Is our brain consolidating lessons learned and pitching out unneeded data, as neuroscientists suggest? Or are dreams no more meaningful than a spontaneous run of erratic heartbeats, a hot flash, or the frisson we feel at the sight of an attractive passer-by? A study published this week in the journal Brain suggests that the impulse to dream may be little more than a tickle sent up from the brainstem to the brain's sensory cortex. The full dream experience -- the complex scenarios, the feelings of fear, delight or longing -- may require the further input of the brain's higher-order cortical areas, the new research suggests. But even people with grievous injury to the brain's prime motivational machinery are capable of dreams, the study found.

Related chapters from BP7e: Chapter 14: Biological Rhythms, Sleep, and Dreaming
Related chapters from MM:Chapter 10: Biological Rhythms and Sleep
Link ID: 18642 - Posted: 09.14.2013

Scientists believe they have discovered a new reason why we need to sleep - it replenishes a type of brain cell. Sleep ramps up the production of cells that go on to make an insulating material known as myelin which protects our brain's circuitry. The findings, so far in mice, could lead to insights about sleep's role in brain repair and growth as well as the disease MS, says the Wisconsin team. The work is in the Journal of Neuroscience. Dr Chiara Cirelli and colleagues from the University of Wisconsin found that the production rate of the myelin making cells, immature oligodendrocytes, doubled as mice slept. The increase was most marked during the type of sleep that is associated with dreaming - REM or rapid eye movement sleep - and was driven by genes. In contrast, the genes involved in cell death and stress responses were turned on when the mice were forced to stay awake. Precisely why we need to sleep has baffled scientists for centuries. It's obvious that we need to sleep to feel rested and for our mind to function well - but the biological processes that go on as we slumber have only started to be uncovered relatively recently. Dr Cirelli said: "For a long time, sleep researchers focused on how the activity of nerve cells differs when animals are awake versus when they are asleep. "Now it is clear that the way other supporting cells in the nervous system operate also changes significantly depending on whether the animal is asleep or awake." The researchers say their findings suggest that sleep loss might aggravate some symptoms of multiple sclerosis (MS), a disease that damages myelin. BBC © 2013

Related chapters from BP7e: Chapter 14: Biological Rhythms, Sleep, and Dreaming; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 10: Biological Rhythms and Sleep; Chapter 13: Memory, Learning, and Development
Link ID: 18607 - Posted: 09.04.2013

Brain scans of people who say they have insomnia have shown differences in brain function compared with people who get a full night's sleep. Researchers at the University of California, San Diego, said the poor sleepers struggled to focus part of their brain in memory tests. Other experts said that the brain's wiring may actually be affecting perceptions of sleep quality. The findings were published in the journal Sleep. People with insomnia struggle to sleep at night, but it also has consequences during the day such as delayed reaction times and memory. The study compared 25 people who said they had insomnia with 25 who described themselves as good sleepers. MRI brain scans were carried out while they performed increasingly challenging memory tests. One of the researchers, Prof Sean Drummond, said: "We found that insomnia subjects did not properly turn on brain regions critical to a working memory task and did not turn off 'mind-wandering' brain regions irrelevant to the task. "This data helps us understand that people with insomnia not only have trouble sleeping at night, but their brains are not functioning as efficiently during the day." BBC © 2013

Related chapters from BP7e: Chapter 14: Biological Rhythms, Sleep, and Dreaming; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 10: Biological Rhythms and Sleep; Chapter 14: Attention and Consciousness
Link ID: 18589 - Posted: 08.31.2013

By MIKE STOBBE / AP Medical Writer ATLANTA (AP) — Can’t get enough shuteye? Nearly 9 million U.S. adults resort to prescription sleeping pills — and most are white, female, educated or 50 or older, according to the first government study of its kind. But that’s only part of the picture. Experts believe there are millions more who try options like over-the-counter medicines or chamomile tea, or simply suffer through sleepless nights. ‘‘Not everyone is running out to get a prescription drug,’’ said Russell Rosenberg, an Atlanta-based sleep researcher. The Centers for Disease Control and Prevention study was based on interviews with about 17,000 adults from 2005 through 2010. Study participants were even asked to bring in any medicines they were taking. Overall, 4 percent of adults said they'd taken a prescription sleeping pill or sedative in the previous month. The study did not say whether use is increasing. But a CDC researcher calculated that use rose from 3.3 percent in 2003-2006 to 4.3 percent in 2007-2010. That echoes U.S. market research — as well as studies in some other countries — that indicate an increase in insomnia in recent decades. ‘‘Sleep disorders overall are more prevalent than what they were,’’ said Dr. Ana Krieger, medical director of New York’s Weill Cornell Center for Sleep Medicine. © 2013 NY Times Co.

Related chapters from BP7e: Chapter 14: Biological Rhythms, Sleep, and Dreaming; Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Related chapters from MM:Chapter 10: Biological Rhythms and Sleep; Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Link ID: 18588 - Posted: 08.31.2013

By GRETCHEN REYNOLDS As a clinical psychologist and sleep researcher at the Feinberg School of Medicine at Northwestern University, Kelly Glazer Baron frequently heard complaints from aggrieved patients about exercise. They would work out, they told her, sometimes to the point of exhaustion, but they would not sleep better that night. Dr. Baron was surprised and perplexed. A fan of exercise for treating sleep problems, but also a scientist, she decided to examine more closely the day-to-day relationship between sweat and sleep. What she and her colleagues found, according to a study published last week in The Journal of Clinical Sleep Medicine, is that the influence of daily exercise on sleep habits is more convoluted than many of us might expect and that, in the short term, sleep might have more of an impact on exercise than exercise has on sleep. To reach that conclusion, Dr. Baron and her colleagues turned to data from a study of exercise and sleep originally published in 2010. For that experiment, researchers had gathered a small group of women (and one man) who had received diagnoses of insomnia. The volunteers were mostly in their 60s, and all were sedentary. Then the researchers randomly assigned their volunteers either to remain inactive or to begin a moderate endurance exercise program, consisting of three or four 30-minute exercise sessions a week, generally on a stationary bicycle or treadmill, that were performed in the afternoon. This exercise program continued for 16 weeks. At the end of that time, the volunteers in the exercise group were sleeping much more soundly than they had been at the start of the study. They slept, on average, about 45 minutes to an hour longer on most nights, waking up less often and reporting more vigor and less sleepiness. Copyright 2013 The New York Times Company

Related chapters from BP7e: Chapter 14: Biological Rhythms, Sleep, and Dreaming; Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 10: Biological Rhythms and Sleep; Chapter 5: The Sensorimotor System
Link ID: 18575 - Posted: 08.28.2013

By Eleanor Bradford BBC Scotland Health Correspondent More than half of all teenagers may be sleep deprived, according to experts. A combination of natural hormone changes and greater use of screen-based technology means many are not getting enough sleep. Research has suggested teenagers need nine hours' sleep to function properly. "Sleep is fundamentally important but despite this it's been largely ignored as part of our biology," said Russell Foster, Professor of Circadian Neuroscience at Oxford University. "Within the context of teenagers, here we have a classic example where sleep could enhance enormously the quality of life and, indeed, the educational performance of our young people. "Yet they're given no instruction about the importance of sleep and sleep is a victim to the many other demands that are being made of them." At One Level Up, an internet cafe and gaming centre in Glasgow, I found a group of young people who are used to very late nights. "There's things called 'grinds' which we have on Saturdays which are an all-nighter until 10 in the morning," said 17-year-old Jack Barclay. "We go home, sleep till 8pm at night and then do the exact same thing again. I like staying up." Fourteen-year-old Rachel admitted occasionally falling asleep in class because she stayed up late at night playing computer games. "If it's a game that will save easily I'll go to bed when my mum says, 'OK you should probably get some rest', but if it's a game where you have to go to a certain point to save I'll be like, 'five more minutes!' and then an hour later 'five more minutes!', and it does mess up your sleeping pattern. BBC © 2013

Related chapters from BP7e: Chapter 14: Biological Rhythms, Sleep, and Dreaming
Related chapters from MM:Chapter 10: Biological Rhythms and Sleep
Link ID: 18566 - Posted: 08.27.2013

By Geoffrey Mohan If you can’t quite get that nine-note treble opening to "Fur Elise," just sleep on it. The brain will rehearse, reorganize and nail the sequential motor tasks that help you play piano or type on a keyboard. How that consolidation of memory happens has remained largely a mystery, despite telling evidence that the brain’s motor cortex appears to be quite busy during sleep. Now, a team led by Brown University neuroscientists believes it has found the source of the sleeping piano lesson, and it’s not where many expected it to be. Neuroscience has been fixated since its founding on why the brain “needs” that peculiar mix of dormancy and random activity known as sleep. And it equally wondered why we emerge from it better able to do things. Slowly, evidence accrued that we were “learning” during sleep -- consolidating memory in ways that would make waking tasks more successful. It seemed deepest sleep, not the familiar rapid-eye-movement type, had the most effect on our brain’s abilty to reorganize and prepare to perform better in waking hours. “It has been very difficult to measure brain activation during sleep,” said Brown University neuroscientist Masako Tamaki, lead author of the study published online Tuesday in the Journal of Neuroscience. “So it was unclear what brain region was involved.”

Related chapters from BP7e: Chapter 14: Biological Rhythms, Sleep, and Dreaming; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 10: Biological Rhythms and Sleep; Chapter 13: Memory, Learning, and Development
Link ID: 18545 - Posted: 08.22.2013

by Douglas Main, LiveScience Staff Writer Rock-a-bye owlet, in the treetop … Baby owls and baby mammals, including humans, sleep in an analogous manner, spending a similar amount of time in an awakelike phase called REM (rapid-eye movement), in which dreams are thought to occur, at least during adulthood, new research suggests. In both owls and humans, REM sleep decreases with increasing age. Baby humans spend about 50 percent of their snooze time in this REM phase, whereas that figure decreases to less than 25 percent in adults, according to a statement from the Max Planck Institute for Ornithology. (Applying the REM term to owls, whose eyes are fixed in their heads, may seem a stretch, but researchers use the phrase anyway.) In the new study, published in July in the journal Frontiers in Zoology, the researchers attached electroencephalograms (EEGs) and movement data loggers to 66 young barn owls to record how much time the animals spent in REM sleep and how much they moved while snoozing. They later removed the EEGs, which measure brain waves, and found that the birds mated normally and didn't appear to have suffered any negative effects from the devices, the statement noted. (7 Ways Animals Act Like Humans) "During this sleep phase, the owlets' EEG showed awakelike activity, their eyes remained closed, and their heads nodded slowly," said University of Lausanne researcher Madeleine Scriba in the statement. © 2013 Discovery Communications, LLC.

Related chapters from BP7e: Chapter 14: Biological Rhythms, Sleep, and Dreaming; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 10: Biological Rhythms and Sleep; Chapter 13: Memory, Learning, and Development
Link ID: 18534 - Posted: 08.20.2013

By Scicurious It’s something we feel we’ve always known: if you can’t sleep, you need to exercise more. Wear yourself out, make yourself good and tired, you’ll sleep like a baby! So when I started having trouble sleeping, I just figured I needed to work out more. Of course, it kind of figures that often, you have trouble sleeping because of life stress, which often means you’re really busy, which in turn means it probably puts MORE stress in your life just trying to find the time to work out. But that’s just details. So sometimes, when I catch myself constantly waking up in a panic over several days, I’ll fit in some hard exercise. Maybe I’ll go for a long run, or try a really hard new class or something. By the time I go to bed I am WIPED. Physically and mentally. My body is so exhausted that the feeling of lying down is one of total bliss. …so why can’t I SLEEP?!?! Turns out I was suffering under expectations that were a little too high for reality. First off, we’re not wrong. Exercise DOES improve sleep. It does. But not necessarily immediately. And perhaps, instead, we should ask a different question. Instead of asking how exercise impacts sleep, perhaps we should ask how sleep impacts exercise. The authors of this study were looking at exercise and sleep, especially in the elderly. We all sleep less as we get older, but chronic insomnia is a different beast entirely. When we don’t get enough sleep, we get snappish, have trouble concentrating, suffer from daytime sleepiness, and are more susceptible to things like getting sick, or getting in to accidents. © 2013 Scientific American

Related chapters from BP7e: Chapter 14: Biological Rhythms, Sleep, and Dreaming
Related chapters from MM:Chapter 10: Biological Rhythms and Sleep
Link ID: 18533 - Posted: 08.20.2013

By Brady Dennis, Insomniacs of the world: If you think taking a long run today will make you sleep better tonight, think again. While exercise has long been a prescription for insomnia, new research suggests that exercise doesn’t immediately translate into a better night’s sleep — unless you stick with it for months. A study published Thursday in the Journal of Clinical Sleep Medicine found that aerobic exercise can lead to more rest at night for people who suffer from existing sleep problems, but only if they maintain an exercise regimen for roughly four months. “Exercise isn’t a quick fix. . . . It takes some time and effort,” the study’s lead author, Kelly Glazer Baron, a clinical psychologist and director of the behavioral sleep program at Northwestern University’s Feinberg School of Medicine, said in an interview. “It’s a long-term relationship.” Studies have long suggested that aerobic exercise can contribute to better sleeping habits. But much of the research on the daily effects of exercise on sleep was conducted with healthy sleepers. Tuesday’s study, by contrast, looked at the long-term effects of exercise in people already suffering from sleep disorders. © 1996-2013 The Washington Post

Related chapters from BP7e: Chapter 14: Biological Rhythms, Sleep, and Dreaming
Related chapters from MM:Chapter 10: Biological Rhythms and Sleep
Link ID: 18526 - Posted: 08.19.2013

By KATIE THOMAS The first test for a new sleep drug is — unsurprisingly — how safely it puts people to sleep. Now comes a second test: how safely it lets people wake up. The Food and Drug Administration is taking heightened interest in the issue, as new evidence suggests what many people have long suspected: the effects of common prescription sleep aids like Ambien can persist well into the next day. Of particular concern is whether people who take the drugs before bed can drive safely the next morning. Consumer advocates have warned for years about possible links between sleep drugs and car accidents. In one prominent example, Kerry Kennedy, the former wife of Gov. Andrew M. Cuomo, was arrested last year after tests showed she had taken a sleep aid before swerving her car into a tractor-trailer. The F.D.A.’s actions are part of a robust national conversation about how to cope with the throngs of drivers who take to roads every day under the influence of prescription drugs. Law enforcement authorities have struggled with how to prosecute those who are impaired, especially when they have a prescription. A government survey in 2007 found that nearly 5 percent of daytime drivers tested positive for prescription or over-the-counter medications. Doctors wrote close to 60 million prescriptions for sleep aids in the United States last year, according to the research firm IMS Health, but experts say testing how these drugs affect driving is not easy. Nonetheless, the F.D.A. has been unusually active. Last month, it rejected an application by Merck to approve a new sleep drug, suvorexant, in part because tests showed that some people had trouble driving the next day. In May, the agency warned patients taking common allergy drugs like Benadryl against driving, noting that the sedating effects can sometimes last into the following day. In January, citing similar concerns, the F.D.A. took the unusual step of requiring that all manufacturers of zolpidem, the generic name of Ambien, cut in half the dosage for women. © 2013 The New York Times Company

Related chapters from BP7e: Chapter 14: Biological Rhythms, Sleep, and Dreaming; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 10: Biological Rhythms and Sleep; Chapter 14: Attention and Consciousness
Link ID: 18508 - Posted: 08.14.2013

By ANAHAD O'CONNOR Losing sleep tends to make people eat more and gain weight, and now a new study suggests that one reason may be the impact that sleep deprivation has on the brain. The research showed that depriving people of sleep for one night created pronounced changes in the way their brains responded to high-calorie junk foods. On days when the subjects had not had proper sleep, fattening foods like potato chips and sweets stimulated stronger responses in a part of the brain that helps govern the motivation to eat. But at the same time, the subjects experienced a sharp reduction in activity in the frontal cortex, a higher-level part of the brain where consequences are weighed and rational decisions are made. The findings suggested that one unfortunate result of sleep loss is this “double hit” in brain activity, said Matthew P. Walker, an author of the study and a professor of psychology and neuroscience at the University of California, Berkeley. A sleepy brain appears to not only respond more strongly to junk food, but also has less ability to rein that impulse in. Some experts have theorized that in a sleep-deprived state, people eat more food simply to make up for all the calories they expend as they burn the midnight oil. But the new study showed that the changes in brain activity were evident even when the subjects were fed extra food and not experiencing any increased sensations in hunger. “Their hunger was no different when they were sleep deprived and when they had a normal night of sleep,” Dr. Walker said. “That’s important because it suggests that the changes we’re seeing are caused by sleep deprivation itself, rather than simply being perhaps more metabolically impaired when you’re sleep deprived.” Copyright 2013 The New York Times Company

Related chapters from BP7e: Chapter 14: Biological Rhythms, Sleep, and Dreaming; Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 10: Biological Rhythms and Sleep; Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 18471 - Posted: 08.07.2013

Sleepless night, the moon is bright. People sleep less soundly when there's a full moon, researchers discovered when they analyzed data from a past sleep study. If you were tossing and turning and howling at your pillow this week, you’re not necessarily a lunatic, at least in the strictest sense of the word. The recent full moon might be to blame for your poor sleep. In the days close to a full moon, people take longer to doze off, sleep less deeply, and sleep for a shorter time, even if the moon isn’t shining in their window, a new study has found. “A lot of people are going to say, ‘Yeah, I knew this already. I never sleep well during a full moon.’ But this is the first data that really confirms it,” says biologist Christian Cajochen of the University of Basel in Switzerland, lead author of the new work. “There had been numerous studies before, but many were very inconclusive.” Anecdotal evidence has long suggested that people’s sleep patterns, moods, and even aggression is linked to moon cycles. But past studies of potential lunar effects have been tainted by statistical weaknesses, biases, or inconsistent methods, Cajochen says. Between 2000 and 2003, he and his colleagues had collected detailed data on the sleep patterns of 33 healthy volunteers for an unrelated study on the effects of aging on sleep. Using electroencephalograms (EEG) that measure brain activity, they recorded how deep and how long each participant’s nightly sleep was in a controlled, laboratory setting. Years after the initial experiment, the scientists were drinking in a pub—during a full moon—and came up with the idea of going back to the data to test for correlations with moon cycles. © 2012 American Association for the Advancement of Science.

Related chapters from BP7e: Chapter 14: Biological Rhythms, Sleep, and Dreaming; Chapter 10: Vision: From Eye to Brain
Related chapters from MM:Chapter 10: Biological Rhythms and Sleep; Chapter 7: Vision: From Eye to Brain
Link ID: 18415 - Posted: 07.27.2013

By Scicurious We all know we should get more sleep, we’re just not very good at it. In fact, we’re so BAD at it that 28.3% of us (as of 2007, anyway) got less than 6 hours of sleep per night. Really, are we surprised? After all, there are kids that wake up in the night, stress that keeps us awake, always more things to do, multiple jobs, and only so many hours in the day. But that lack of sleep can have some not so great effects on our bodies. It decreases things like cognitive performance, increases anxiety, and…it’s not good for our waistlines. Sleep loss is associated with higher caloric intake, when you can’t sleep you eat. But does this increased caloric intake translate to weight gain? The biggest positive point of this study on sleep restriction was how LARGE it was. When doing human studies that are not large scale surveys (which usually involve phone calls or mail in or online and therefore are less expensive) it costs a LOT of money to bring some people in to the lab to do nothing but hang out and sleep for a week, especially if you are watching for things like food intake (and controlling what they eat). I’m very pleased that they got these numbers, 225 people! The authors took these 225 people, and brought them into the lab. They got two baseline nights (to see how much they naturally slept), 5 sleep restriction nights, and then another 2 recovery nights. But unfortunately, they did not balance the control and sleep restriction, where they were restricted down to FOUR HOURS a night of sleep (ick). They only had 27 controls out of all of these (people allowed to sleep fully all the nights of the study), the rest were sleep restriction. I have to wonder why they did it this way. While the two original nights and the two recovery nights could in theory serve as a partial control, I don’t think that those would work. After all, if most people are slightly sleep restricted, the original two nights will be recovery as well, and both sets of recovery nights may not be representative of optimal sleep. © 2013 Scientific American

Related chapters from BP7e: Chapter 14: Biological Rhythms, Sleep, and Dreaming; Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 10: Biological Rhythms and Sleep; Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 18402 - Posted: 07.23.2013