Links for Keyword: Sleep

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 61 - 80 of 810

Joe Palca Mothers have been warned for years that sleeping with their newborn infant is a bad idea because it increases the risk the baby might die unexpectedly during the night. But now Israeli researchers are reporting that even sleeping in the same room can have negative consequences: not for the child, but for the mother. Researchers at Ben-Gurion University of the Negev wanted to see whether sleeping in the same room as their newborn affected mothers' or babies' sleep. The short answer: It did, and the effect wasn't good for moms. The researchers recruited 153 married couples expecting their first child to participate in the study. The new parents weren't told where or how to sleep. They were simply asked to record whether they slept in the same room as their newborn, the same bed and same room, or if the child slept in another room. To measure sleep patterns, both mom and baby wore wristbands designed to measure movement during the night, a measurement that gives a pretty accurate indication of sleep patterns for both mother and child. The researchers measured sleep patterns before the babies were born, at 3 months and at 6 months. Mothers who slept in the same room as their infants, whether in the same bed or just the same room, had poorer sleep than mothers whose babies slept elsewhere in the house: They woke up more frequently (approximately three times per night versus two), were awake approximately 20 minutes longer per night, and had shorter periods of uninterrupted sleep (approximately 136 minutes versus 166 minutes). These results held true even taking into account that many of the women in the study were breast-feeding their babies. © 2015 NPR

Related chapters from BP7e: Chapter 14: Biological Rhythms, Sleep, and Dreaming
Related chapters from MM:Chapter 10: Biological Rhythms and Sleep
Link ID: 21468 - Posted: 10.03.2015

Dark puffy eyes, a feeling of deep exhaustion, and a foul mood to match – we’ve all experienced the side effects of a lack of sleep. It’s no wonder that sleep-deprivation has been used as a method of torture. Our brains seem to lose the ability to distinguish between the innocuous and emotional in such circumstances, turning us into overreacting, exhausted wrecks. We all know that a good night’s sleep is vital for a day of clear thinking, but exactly why sleep is so important remains a mystery. Talma Hendler of Tel Aviv University in Israel is particularly interested in how lack of sleep leaves us with a short emotional fuse. “We know that sleep affects our emotional behaviour, but we don’t know how,” she says. To investigate further, Hendler and her colleagues kept 18 adults awake all night. “It took a great effort,” she says. “During the night, we repeatedly measured their sleepiness, and unsurprisingly they got more and more tired.” The volunteers were put through two rounds of tests while their brains were scanned, both the day after a good night’s sleep and after being awake for 24 hours. In one test, volunteers were asked to give the direction in which yellow dots moved on a screen. In each case, the dots were laid over a potentially distracting picture that was either positively emotional (of a kitten or a couple in love, for example), negatively emotional (such as a mutilated body or a snake) or neutral (such as a cow or spoon). © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 14: Biological Rhythms, Sleep, and Dreaming; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 10: Biological Rhythms and Sleep; Chapter 11: Emotions, Aggression, and Stress
Link ID: 21445 - Posted: 09.26.2015

By C. CLAIBORNE RAY A. Wild canines that rely on strenuous hunting to survive may sleep or rest as much as, or even more than, indolent human-created breeds that rely on a can or a bag of kibble. Domestic dogs, with their great range of body types and personalities, show a tremendous variety of sleep patterns, often including relatively brief periods of deep sleep spread out over several hours. A half-century-long study of wolves and their interaction with their prey on Isle Royale, a wilderness island in Lake Superior, found that in winter the wolves would feed for hours on a fresh kill, then sprawl out or curl up in the snow and rest or sleep about 30 percent of the time. “Wolves have plenty of reason to rest,” the study’s researchers wrote. “When wolves are active, they are really active. On a daily basis, wolves burn about 70 percent more calories compared to typical animals of similar size.” The researchers note that while hunting, wolves may burn calories at 10 to 20 times the rate they do while resting. “When food is plentiful, wolves spend a substantial amount of time simply resting, because they can,” the study said. “When food is scarce, wolves spend much time resting because they need to.” Wolves may eat only once every five to 10 days, the researchers said, losing as much as 8 to 10 percent of body weight, but regaining all the lost weight in just two days of eating and resting. © 2015 The New York Times Company

Related chapters from BP7e: Chapter 14: Biological Rhythms, Sleep, and Dreaming
Related chapters from MM:Chapter 10: Biological Rhythms and Sleep
Link ID: 21419 - Posted: 09.20.2015

By Barbara S. Moffet It’s 1 in the morning and I’ve been in bed for a few hours now. Maybe it’s the few drops of caffeine I mistakenly drank earlier in the day. Or perhaps it’s the 26 wires that are attached to my scalp, face, finger and legs and the strap pulled taut around my waist. All I know is I’m not doing what you’re supposed to do in a sleep lab, and if I don’t fall asleep soon, it’ll be time to take off my pajamas and go home. I’m here because my doctor thought it was time to find out what was causing a cluster of possibly sleep-related health issues: snoring, frequent middle-of-the-night waking and some problems with concentrating that I’ve had most of my 63 years. I also have a genetic condition, Ehler-Danlos syndrome, that can cause airways to partially close during sleep. I’ve landed at Sleep Centers of Northern Virginia in Alexandria, one of at least two dozen sleep labs in the area. According to the National Institutes of Health, some 70 million Americans are “poor sleepers,” and the ramifications of inadequate shut-eye can range from grumpiness and lack of focus to heart disease, diabetes, high blood pressure and even a diminished life expectancy. Research published this year in the journal Neurology concluded that people with sleep apnea — a disorder that causes a person to repeatedly stop breathing during the night, rousing them from sleep — developed problems with cognition about 10 years earlier than other people.

Related chapters from BP7e: Chapter 14: Biological Rhythms, Sleep, and Dreaming
Related chapters from MM:Chapter 10: Biological Rhythms and Sleep
Link ID: 21409 - Posted: 09.15.2015

John Peever, and Brian J. Murray, The function of sleep has mystified scientists for thousands of years, but modern research is providing new clues about what it does for both the mind and body. Sleep serves to reenergize the body's cells, clear waste from the brain, and support learning and memory. It even plays vital roles in regulating mood, appetite and libido. Sleeping is an integral part of our life, and as research shows, it is incredibly complex. The brain generates two distinct types of sleep—slow-wave sleep (SWS), known as deep sleep, and rapid eye movement (REM), also called dreaming sleep. Most of the sleeping we do is of the SWS variety, characterized by large, slow brain waves, relaxed muscles and slow, deep breathing, which may help the brain and body to recuperate after a long day. When we fall asleep, the brain does not merely go offline, as implied by the common phrase “out like a light.” Instead a series of highly orchestrated events puts the brain to sleep in stages. Technically sleep starts in the brain areas that produce SWS. Scientists now have concrete evidence that two groups of cells—the ventrolateral preoptic nucleus in the hypothalamus and the parafacial zone in the brain stem—are involved in prompting SWS. When these cells switch on, it triggers a loss of consciousness. After SWS, REM sleep begins. This mode is bizarre: a dreamer's brain becomes highly active while the body's muscles are paralyzed, and breathing and heart rate become erratic. The purpose of REM sleep remains a biological mystery, despite our growing understanding of its biochemistry and neurobiology. © 2015 Scientific American

Related chapters from BP7e: Chapter 14: Biological Rhythms, Sleep, and Dreaming
Related chapters from MM:Chapter 10: Biological Rhythms and Sleep
Link ID: 21408 - Posted: 09.15.2015

Patricia Neighmond Are you getting enough sleep, or not enough? If your answer to either of these questions is "yes," you may be at risk of heart disease. Just the right amount of good-quality sleep is key to good heart health, according to researchers at the Center for Cohort Studies at Kangbuk Samsung Hospital and Sungkyunkwan University School of Medicine in Seoul, South Korea. Poor sleep habits may put you at higher risk for early signs of heart disease, even at a relatively young age. The researchers studied more than 47,000 young and middle-aged men and women, average age around 41, who answered questions about how long and how well they slept. Then they had tests to measure their cardiovascular health. Early coronary lesions were detected by measuring the amount of calcium in the arteries of the heart. Stiffness of arteries was measured by the speed of blood coursing through the arteries in the upper arm and ankle. Calcium buildup and arterial stiffness are two important warning signs of oncoming heart disease. Findings showed that adults who slept less than five hours a night had 50 percent more calcium in their coronary arteries than those who slept seven hours. Those who slept nine hours or more a night had even worse outcomes, with 70 percent more coronary calcium compared to those who slept seven hours. © 2015 NPR

Related chapters from BP7e: Chapter 14: Biological Rhythms, Sleep, and Dreaming
Related chapters from MM:Chapter 10: Biological Rhythms and Sleep
Link ID: 21406 - Posted: 09.14.2015

Ian Sample Science editor People who get too little sleep are more likely to catch a cold, according to US scientists who suspect that a good night’s sleep is crucial for the body’s immune defences. Those who slept six hours a night or less were four times more likely to catch a cold when they were exposed to the virus than people who spent more than seven hours a night asleep, their study found. The findings, reported in the journal Sleep, build on previous studies that suggest that the sleep-deprived are more susceptible to infectious diseases and recover more slowly when they do fall ill. “It goes beyond feeling groggy or irritable,” said Aric Prather, a health psychologist at the University of California in San Francisco. “Not getting enough sleep affects your physical health.” The scientists recruited 94 men and 70 women, with an average age of 30, for the study and subjected them to two months of health screening, interviews and questionnaires to establish their baseline stress levels, temperament and usage of alcohol and tobacco. The volunteers then spent a week wearing a wrist-mounted sleep sensor that tracked the duration and quality of their sleep each night. To see how well they fought off infections, the participants were taken to a hotel and given nasal drops containing the cold virus. Doctors monitored them closely for a week after, collecting mucus samples to work out if and when the virus took hold. © 2015 Guardian News and Media Limited

Related chapters from BP7e: Chapter 14: Biological Rhythms, Sleep, and Dreaming; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 10: Biological Rhythms and Sleep; Chapter 11: Emotions, Aggression, and Stress
Link ID: 21371 - Posted: 09.01.2015

By Jessica Schmerler In the modern age of technology it is not uncommon to come home after a long day at work or school and blow off steam by reading an e-book or watching television. Lately, however, scientists have been cautioning against using light-emitting devices before bed. Why? The light from our devices is “short-wavelength-enriched,” meaning it has a higher concentration of blue light than natural light—and blue light affects levels of the sleep-inducing hormone melatonin more than any other wavelength. Changes in sleep patterns can in turn shift the body’s natural clock, known as its circadian rhythm. Recent studies have shown that shifts in this clock can have devastating health effects because it controls not only our wakefulness but also individual clocks that dictate function in the body’s organs. In other words, stressors that affect our circadian clocks, such as blue-light exposure, can have much more serious consequences than originally thought. How did you become interested in the effects of light on sleep? Brainard: I was interested in the effects of light on animals as a teenager. I never planned to be a scientist—I wanted to be a writer! So I learned more about the topic out of pure curiosity. When I began my career as a journalist, I interviewed researchers on the topic who encouraged me to pursue a career in science. So I returned to school to get my doctorate and studied the effects of different wavelengths and intensities of light on rodents. I have exclusively studied the effects of light on humans for the past 30 years. © 2015 Scientific American

Related chapters from BP7e: Chapter 14: Biological Rhythms, Sleep, and Dreaming; Chapter 10: Vision: From Eye to Brain
Related chapters from MM:Chapter 10: Biological Rhythms and Sleep; Chapter 7: Vision: From Eye to Brain
Link ID: 21337 - Posted: 08.26.2015

Jon Hamilton More than 50 million adults in the U.S. have a disorder such as insomnia, restless leg syndrome or sleep apnea, according to an Institute of Medicine report. And it's now clear that a lack of sleep "not only increases the risk of errors and accidents, it also has adverse effects on the body and brain," according to Charles Czeisler, chief of the division of sleep and circadian disorders at Brigham and Women's hospital in Boston. Research in the past couple of decades has shown that a lack of sleep increases a person's risk for cardiovascular disease, diabetes, infections, and maybe even Alzheimer's disease. Yet most sleep disorders go untreated. Michael Arnott, of Cambridge, Massachusetts, says he used to have terrible trouble staying awake on long drives. Sleep specialists discovered he has obstructive sleep apnea, though not for the most common reasons — he isn't overweight, and doesn't smoke or take sedatives. "I would get groggy and feel like I've got to keep talking, open the window," Arnott says. His wife, Mary White, says being a passenger on those drives could be scary. "All of a sudden there'd be a change in the speed and I'd look over, and his eyes would be starting to close," she remembers. White thought her husband might have sleep apnea, which interferes with breathing. But Arnott was in denial. He figured he was free of most risk factors for apnea. He wasn't overweight, he didn't smoke or take sedatives, and he has always stayed in great shape. So his wife took the initiative. "I asked him to see a doctor and he wouldn't," she says. In 2012, though, White persuaded him to take part in a sleep research study that paid for his participation, and took place at a sleep lab in Boston –not too far from the couple's home in Cambridge. © 2015 NPR

Related chapters from BP7e: Chapter 14: Biological Rhythms, Sleep, and Dreaming
Related chapters from MM:Chapter 10: Biological Rhythms and Sleep
Link ID: 21330 - Posted: 08.24.2015

Mo Costandi The human brain can be compared to something like a big, bustling city. It has workers, the neurons and glial cells which co-operate with each other to process information; it has offices, the clusters of cells that work together to achieve specific tasks; it has highways, the fibre bundles that transfer information across long distances; and it has centralised hubs, the densely interconnected nodes that integrate information from its distributed networks. Like any big city, the brain also produces large amounts of waste products, which have to be cleared away so that they do not clog up its delicate moving parts. Until very recently, though, we knew very little about how this happens. The brain’s waste disposal system has now been identified. We now know that it operates while we sleep at night, just like the waste collectors in most big cities, and the latest research suggests that certain sleeping positions might make it more efficient. Waste from the rest of the body is cleared away by the lymphatic system, which makes and transports a fluid called lymph. The lymphatic system is an important component of the immune system. Lymph contains white blood cells that can kill microbes and mop up their remains and other cellular debris. It is carried in branching vessels to every organ and body part, and passes through them, via the spaces between their cells, picking up waste materials. It is then drained, filtered, and recirculated. The brain was thought to lack lymphatic vessels altogether, and so its waste disposal system proved to be far more elusive. Several years ago, however, Maiken Nedergaard of the University of Rochester Medical Center and colleagues identified a system of hydraulic “pipes” running alongside blood vessels in the mouse brain. Using in vivo two-photon imaging to trace the movements of fluorescent markers, they showed that these vessels carry cerebrospinal fluid around the brain, and that the fluid enters inter-cellular spaces in the brain tissue, picking up waste on its way. © 2015 Guardian News and Media Limited

Related chapters from BP7e: Chapter 14: Biological Rhythms, Sleep, and Dreaming
Related chapters from MM:Chapter 10: Biological Rhythms and Sleep
Link ID: 21327 - Posted: 08.22.2015

Your body may be still, but as you dream, your eyes can flicker manically. The rapid eye movement stage of sleep is when we have our most vivid dreams – but do our flickering eyes actually “see” anything? It is a question psychologists have been asking since REM sleep was first described in the 1950s, says Yuval Nir at Tel Aviv University in Israel. “The idea was that we scan an imaginary scene,” says Nir. “It’s an intuitive idea, but it has been very difficult to provide evidence for it.” Until now, much of the evidence has been anecdotal, says Nir. “People who were woken up when their eyes were moving from left to right would say they were dreaming about tennis, for example,” he says. More evidence comes from a previous study that monitored the sleep of people who have a disorder that means they often physically act out their dreams. Their eye movements matched their actions around 80 per cent of the time – a man dreaming about smoking, for example, appeared to look at a dream ashtray as he put out a cigarette. But most of the REM sleep these people had was not accompanied by body movements, making it hard to know for sure. And other researchers have argued that the eye flickers can’t be linked to “seeing” anything because rapid eye movements happen in both fetuses and people who are blind – neither group would have experience of vision and so wouldn’t be expected to move their eyes to follow an object, for example. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 14: Biological Rhythms, Sleep, and Dreaming
Related chapters from MM:Chapter 10: Biological Rhythms and Sleep
Link ID: 21290 - Posted: 08.12.2015

By Jane E. Brody Barrett Treadway, now 3½, has never been the best of sleepers, but her sleep grew increasingly worse in the last year and a half. She gets up several times a night, often climbs into her parents’ bed and creates havoc with their nights. “We’ve known for a long time that she snores, but until a mother-daughter trip in May when we shared a bed, I didn’t realize that this was not simply snoring,” her mother, Laura, told me. “She repeatedly stopped breathing, then started again with a loud snort that often woke her up and kept me up all night.” Barrett has sleep apnea, a condition most often diagnosed in adults and usually associated with obesity. But neither of those attributes describes Barrett, who is young and lithe, although the condition is somewhat more common in overweight children. In most cases, the problem results when, during sleep, the child’s airway is temporarily obstructed by enlarged tonsils or adenoids or both — lymphoid tissues in the back of the throat — hence the name obstructive sleep apnea. When breathing stops for 10 or more seconds, the rising blood level of carbon dioxide prompts the brain to take over and restart breathing, typically accompanied by a loud snore or snort. Rarely, a child may have what is called central sleep apnea, in which the brain temporarily fails to signal the muscles that control breathing. Experts say that between 1 percent and 3 percent of children have sleep apnea that, if untreated, can disrupt far more than a family’s restful nights. Affected children simply do not get enough restorative sleep to assure normal development. If not corrected, the condition can result in hyperactivity and attention problems in school that are often mistaken for attention deficit hyperactivity disorder (A.D.H.D.) and sometimes mistreated with a stimulant that only makes matters worse. © 2015 The New York Times Company

Related chapters from BP7e: Chapter 14: Biological Rhythms, Sleep, and Dreaming; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 10: Biological Rhythms and Sleep; Chapter 13: Memory, Learning, and Development
Link ID: 21224 - Posted: 07.27.2015

By Karen Weintraub Can I ever re-pay my sleep debt? (I estimate it at 15 years of poor sleep.) It is unclear whether you can make up a long-term sleep debt, because most studies have looked at the effects of sleep loss and recovery only over a few nights or weeks, said Dr. Matt T. Bianchi, the chief of the division of sleep medicine at Massachusetts General Hospital and an assistant professor of neurology at Harvard Medical School. Simulated driving performance and reaction times are affected by just one sleepless night, research has shown. There’s no doubt that sleeping just four hours a night catches up to people within a few nights, leading to impairments of attention, learning and memory and worse performance in school and at work. And making up for lost sleep over the weekend doesn’t work. Five brief nights quickly add up to a shortfall of 20 hours, but people don’t sleep more than five to 10 extra hours to compensate, Dr. Bianchi said. “The interpretation has been you can’t pay off your sleep debt, you just carry it with you,” though it’s also possible that people don’t sleep an extra 20 hours because they don’t need it, Dr. Bianchi said. He cited research by Jim Horne of Loughborough University in Britain showing that a timely nap of less than 20 minutes can equate to an extra hour of nighttime sleep. Different people need somewhat different amounts of sleep, but anything less than six hours a night is definitely not enough, said Dr. Charles Czeisler, a professor of sleep medicine at Harvard. In one sleep study, people were brought into a lab and required to stay in bed for 14 hours a day. They slept 10 to 12 hours a night at first, Dr. Czeisler said. Then they gradually slept less over the next few weeks until they stabilized at about 8.4 hours per night. © 2015 The New York Times Company

Related chapters from BP7e: Chapter 14: Biological Rhythms, Sleep, and Dreaming
Related chapters from MM:Chapter 10: Biological Rhythms and Sleep
Link ID: 21223 - Posted: 07.27.2015

By Christie Wilcox Venomous cone snails have been a gift to biomedical researchers. Over the past 50 years, scientists have isolated compounds from these predatory marine animals that do everything from stop pain to protect cells during a heart attack. Now, researchers have isolated a cone snail compound that does something unexpected: It puts mice to sleep. All of these compounds belong to a group of ion channels modifiers known as conotoxins. In the wild, the snails use these toxins for capturing prey, and typically when researchers inject them into mice, the rodents either have no response or become paralyzed. In the new study, published this month in Toxicon, researchers isolated and sequenced 14 novel peptide toxins from the venom of the cobweb cone, Conus araneosus (pictured above with its dissected venom gland). When they injected five of them into mice, one put the rodents to sleep for several hours, whereas the others had no effect. The team says the discovery expands the range of therapeutic uses for conotoxins, and could lead to drugs to treat sleep disorders. © 2015 American Association for the Advancement of Science

Related chapters from BP7e: Chapter 14: Biological Rhythms, Sleep, and Dreaming; Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Related chapters from MM:Chapter 10: Biological Rhythms and Sleep; Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Link ID: 21215 - Posted: 07.25.2015

By Karen Weintraub Can I ever re-pay my sleep debt? (I estimate it at 15 years of poor sleep.) It is unclear whether you can make up a long-term sleep debt, because most studies have looked at the effects of sleep loss and recovery only over a few nights or weeks, said Dr. Matt T. Bianchi, the chief of the division of sleep medicine at Massachusetts General Hospital and an assistant professor of neurology at Harvard Medical School. Simulated driving performance and reaction times are affected by just one sleepless night, research has shown. There’s no doubt that sleeping just four hours a night catches up to people within a few nights, leading to impairments of attention, learning and memory and worse performance in school and at work. And making up for lost sleep over the weekend doesn’t work. Five brief nights quickly add up to a shortfall of 20 hours, but people don’t sleep more than five to 10 extra hours to compensate, Dr. Bianchi said. “The interpretation has been you can’t pay off your sleep debt, you just carry it with you,” though it’s also possible that people don’t sleep an extra 20 hours because they don’t need it, Dr. Bianchi said. He cited research by Jim Horne of Loughborough University in Britain showing that a timely nap of less than 20 minutes can equate to an extra hour of nighttime sleep. Different people need somewhat different amounts of sleep, but anything less than six hours a night is definitely not enough, said Dr. Charles Czeisler, a professor of sleep medicine at Harvard. © 2015 The New York Times Company

Related chapters from BP7e: Chapter 14: Biological Rhythms, Sleep, and Dreaming
Related chapters from MM:Chapter 10: Biological Rhythms and Sleep
Link ID: 21214 - Posted: 07.25.2015

by Bethany Brookshire For some of us, a weekly case of the Mondays isn’t just because of traffic, work pileups or our soulless office space. It’s because we had to get up early, and sleeping in on the weekend was so incredibly glorious. Besides, because we slept in on Sunday, we didn’t get to the gym until the afternoon, we cooked a late dinner for a friend and then we couldn’t fall asleep at all and so stayed up playing around on the Internet. OK, maybe that’s just me. But you get the general idea. Our obligations — work, family and friends — often don’t line up with when our bodies want to sleep. Scientists call this phenomenon social jetlag. And it may make for more than just miserable Mondays. Social jetlag may also be associated with wider waistlines. As we learn more about how our body clocks work, it might help to think about how our own schedules can shift. Some of us love late nights and can’t help glaring at those who hop out of bed for a 5 a.m. workout (again, maybe that’s just me). But in fact our chronotypes aren’t a result of willpower. Instead they fall in a natural curve. About two-thirds of people are neutral, but a few fall at each end of the spectrum, rising extra early, or staying up until the wee hours. But even those in the middle are still getting up a little bit too early and staying up a little bit too late. We try to make up for it on days off, sleeping in or falling asleep early for a few extra hours of rest. But the result of that shift in sleep schedule? Jetlag. “It’s the equivalent of taking a flight one direction every Friday and going back every Sunday,” says Michael Parsons, a behavioral geneticist at the Medical Research Council Harwell in England. © Society for Science & the Public 2000 - 2015

Related chapters from BP7e: Chapter 14: Biological Rhythms, Sleep, and Dreaming; Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 10: Biological Rhythms and Sleep; Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 21197 - Posted: 07.21.2015

By James Gallagher Health editor, BBC News website Irregular sleeping patterns have been "unequivocally" shown to lead to cancer in tests on mice, a study suggests. The report, in Current Biology, lends weight to concerns about the damaging impact of shift work on health. The researchers said women with a family risk of breast cancer should never work shifts, but cautioned that further tests in people were needed. The data also indicated the animals were 20% heavier despite eating the same amount of food. Studies in people have often suggested a higher risk of diseases such as breast cancer in shift workers and flight attendants. One argument is disrupting the body's internal rhythm - or body clock - increases the risk of disease. However, the link is uncertain because the type of person who works shifts may also be more likely to develop cancer due to factors such as social class, activity levels or the amount of vitamin D they get. Mice prone to developing breast cancer had their body clock delayed by 12 hours every week for a year. Normally they had tumours after 50 weeks - but with regular disruption to their sleeping patterns, the tumours appeared eight weeks earlier. The report said: "This is the first study that unequivocally shows a link between chronic light-dark inversions and breast cancer development." Interpreting the consequences for humans is fraught with difficulty, but the researchers guesstimated the equivalent effect could be an extra 10kg (1st 8lb) of body weight or for at-risk women getting cancer about five years earlier. "If you had a situation where a family is at risk for breast cancer, I would certainly advise those people not to work as a flight attendant or to do shift work," one of the researchers, Gijsbetus van der Horst, from the Erasmus University Medical Centre, in the Netherlands, said. © 2015 BBC.

Related chapters from BP7e: Chapter 14: Biological Rhythms, Sleep, and Dreaming; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 10: Biological Rhythms and Sleep; Chapter 11: Emotions, Aggression, and Stress
Link ID: 21196 - Posted: 07.21.2015

Austin Frakt It’s a Catch-22 that even those with a common cold experience: Illness disrupts sleep. Poor sleep makes the symptoms of the illness worse. What’s true for a cold also holds for more serious conditions that co-occur with insomnia. Depression, post-traumatic stress disorder, alcohol dependence, fibromyalgia, cancer and chronic pain often give rise to insomnia, just as sleeplessness exacerbates the symptoms of these diseases. Historically, insomnia was considered a symptom of other diseases. Today it is considered an illness in its own right and recognized as an amplifier of other mental and physical ailments. When a person is chronically tired, pain can be more painful, depression deeper, anxiety heightened. What should doctors address first, insomnia or the co-occurring condition? How about both at the same time? A new study suggests that a therapy that improves sleep also reduces symptoms of other illnesses that often disrupt it. The study published in JAMA Internal Medicine examined the effect of cognitive behavioral therapy for insomnia in patients with serious mental and physical conditions. As its name suggests, C.B.T.-I. is a treatment that works through the mind. As I wrote about a few weeks ago, the therapy treats insomnia without medications, combining good sleep hygiene techniques with more consistent wake times, relaxation techniques and positive sleep attitudes and thoughts. Several clinical trials have shown that C.B.T.-I. provides as good or better relief of symptoms of insomnia than prescription drugs, with improvements in sleep that are more durable. C.B.T.-I. can usually be delivered relatively inexpensively through an online course costing about $40. Compared with those who didn’t receive C.B.T.-I., patients who did increased the time asleep in bed by about 12 percentage points, fell asleep about 25 minutes faster and decreased the amount of time awake in the middle of the night by about 45 minutes, according to Jade Wu, lead study author and a Boston University doctoral student in psychology. © 2015 The New York Times Company

Related chapters from BP7e: Chapter 14: Biological Rhythms, Sleep, and Dreaming
Related chapters from MM:Chapter 10: Biological Rhythms and Sleep
Link ID: 21181 - Posted: 07.18.2015

By Tori Rodriguez Many studies have examined the effects of sufficient versus insufficient sleep on mental health. A new study, published in February in the Journal of Youth and Adolescence, takes a more nuanced look, attempting to determine just how much each hour less per night really costs—where teenagers are concerned. The researchers surveyed an ethnically diverse sample of 27,939 suburban high school students in Virginia. Although teenagers need about nine hours of sleep a night on average, according to the National Institutes of Health, only 3 percent of students reported getting that amount, and 20 percent of participants indicated that they got five hours or less. The average amount reported was 6.5 hours every weekday night. After controlling for background variables such as family status and income, the researchers determined that each hour of lost sleep was associated with a 38 percent increase in the odds of feeling sad and hopeless, a 42 percent increase in considering suicide, a 58 percent increase in suicide attempts and a 23 percent increase in substance abuse. These correlational findings do not prove that lack of sleep is causing these problems. Certainly the reverse can be true: depression and anxiety can cause insomnia. “But the majority of the research evidence supports the causal direction being lack of sleep leading to problems rather than the other way around,” says study co-author Adam Winsler, a psychology professor at George Mason University. © 2015 Scientific American

Related chapters from BP7e: Chapter 14: Biological Rhythms, Sleep, and Dreaming; Chapter 16: Psychopathology: Biological Basis of Behavior Disorders
Related chapters from MM:Chapter 10: Biological Rhythms and Sleep; Chapter 12: Psychopathology: The Biology of Behavioral Disorders
Link ID: 21174 - Posted: 07.16.2015

By Maria Konnikova This is the third piece in a three-part series on sleep. Read part one, on falling asleep, and part two, on sleeping and dreaming. Did you get enough sleep last night? Are you feeling fully awake, like your brightest, smartest, and most capable self? This, unfortunately, is a pipe dream for the majority of Americans. “Most of us are operating at suboptimal levels basically always,” the Harvard neurologist and sleep medicine physician Josna Adusumilli told me. Fifty to seventy million Americans, Adusumilli says, have chronic sleep disorders. In a series of conversations with sleep scientists this May, facilitated by a Harvard Medical School Media Fellowship, I learned that the consequences of lack of sleep are severe. While we all suffer from sleep inertia (a general grogginess and lack of mental clarity), the stickiness of that inertia depends largely on the quantity and quality of the sleep that precedes it. If you’re fully rested, sleep inertia dissipates relatively quickly. But, when you’re not, it can last far into the day, with unpleasant and even risky results. Many of us have been experiencing the repercussions of inadequate sleep since childhood. Judith Owens, the director of the Center for Pediatric Sleep Disorders at Boston Children’s Hospital, has been studying the effects of school start times on the well-being of school-age kids—and her conclusions are not encouraging. Most adults are fine with about eight hours of sleep, but toddlers need around thirteen hours, including a daytime nap. Teens need around nine and a half hours; what’s more, they tend to be night owls, whose ideal circadian rhythm has them going to bed and waking up late. As schools have pushed their start times earlier and earlier—a trend that first started in the sixties, Owens says—the health effects on students have been severe.

Related chapters from BP7e: Chapter 14: Biological Rhythms, Sleep, and Dreaming
Related chapters from MM:Chapter 10: Biological Rhythms and Sleep
Link ID: 21165 - Posted: 07.14.2015