Links for Keyword: Intelligence

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 21 - 40 of 238

by Debora MacKenzie YOUR eye colour is a product of your DNA, but what about your IQ? The biggest-ever search for genes that affect intelligence, and the first to give reproducible results, has found 10 variations in DNA that seem to influence intelligence – but not by much. Studies of families show intelligence is 40 to 50 per cent inherited, and otherwise depends on environment. Since mass-analysis of DNA variations became possible, a number of studies have sought the genes involved in this inheritance, and some papers have claimed strong associations between particular genes and IQ. Yet results have varied widely and none have been replicated. "Many of the published findings of the last decade are wrong," says John Hewitt of the University of Colorado in Boulder, who was not involved in the new study. So if intelligence is inherited, where are the genes hiding? The research may have hit problems because each gene linked with IQ has only a tiny effect on overall intelligence. This means you need data on a large number of people to reliably distinguish such effects from measurement error. Most studies have involved between 100 and 2000 subjects. Now, some 200 researchers have assembled 54 sets of data on more than 126,000 people who have had their genomes analysed for 2.5 million common, small mutations called SNPs. Information was also available for how long they spent in education and the level they reached. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 1: Biological Psychology: Scope and Outlook
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 1: An Introduction to Brain and Behavior
Link ID: 18242 - Posted: 06.06.2013

People with higher IQs are slow to detect large background movements because their brains filter out non-essential information, say US researchers. Instead, they are good at detecting small moving objects. The findings come in a study of 53 people given a simple, visual test in Current Biology. The results could help scientists understand what makes a brain more efficient and more intelligent. In the study, individuals watched short video clips of black and white bars moving across a computer screen. Some clips were small and filled only the centre of the screen, while others filled the whole screen. The participants' sole task was to identify in which direction the bars were drifting - to the right or to the left. Participants also took a standardised intelligence test. The results showed that people with higher IQ scores were faster at noticing the movement of the bars when observing the smallest image - but they were slower at detecting movement in the larger images. Michael Melnick of the University of Rochester, who was part of the research team said the results were very clear. "From previous research, we expected that all participants would be worse at detecting the movement of large images, but high IQ individuals were much, much worse. The authors explain that in most scenarios, background movement is less important than small moving objects in the foreground, for example driving a car, walking down a hall or moving your eyes across the room. BBC © 2013

Related chapters from BP7e: Chapter 18: Attention and Higher Cognition; Chapter 1: Biological Psychology: Scope and Outlook
Related chapters from MM:Chapter 14: Attention and Consciousness; Chapter 1: An Introduction to Brain and Behavior
Link ID: 18189 - Posted: 05.25.2013

Jeremy Laurance Iodine deficiency is widespread amongst pregnant women in the UK and may be harming the cognitive development of their children, scientists have found. The first large study of the problem in the UK has revealed that two-thirds of expectant mothers had a mild to moderate deficiency in the mineral, which was associated with significantly lower IQ and reading ability in their children at the ages of eight and nine. Iodine is essential for growth and development of the brain, and pregnant women need 50 per cent more. Researchers said women should ensure they are getting enough from their diet – milk, yogurt and fish are the best sources – and that any pregnancy supplement they take contains iodine. But they warned that kelp and seaweed supplements should be avoided as they contain variable levels of iodine and could lead to overdose. Severe iodine deficiency is known to cause brain damage and is the biggest cause of mental deficiency in the developing world. But mild to moderate iodine deficiency has been little studied – until now. Researchers from the Universities of Surrey and Bristol examined records of 1,000 mothers who were part of the Children of the 90s study which has followed the development of children born to 14,000 mothers in Avon since 1990-91. They found that 67 per cent of the mothers had levels of iodine below that recommended by the World Health Organisation. Their children were divided into groups according to how well they performed on IQ and reading tests at eight and nine. The results showed those whose mothers had low iodine levels were 60 per cent more likely to be in the bottom group. © independent.co.uk

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 1: Biological Psychology: Scope and Outlook
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 1: An Introduction to Brain and Behavior
Link ID: 18183 - Posted: 05.22.2013

By Dina Fine Maron Almost a decade after manufacturers stopped using certain chemical flame retardants in furniture foam and carpet padding, many of the compounds still lurk in homes. New work to be presented today reaffirms that the chemicals may also still be hurting young children who were exposed before they were born. Researchers investigating the health impacts of prenatal exposure to flame retardants collected blood samples from 309 pregnant women early in their second trimester. Spikes in the levels of one class of flame retardant, polybrominated diphenyl ethers (PBDEs) correlated with behavior and cognition difficulties during early childhood. The researchers tracked children through the first five years of their lives, looking at a battery of tests for IQ and behavior. They found that children of mothers who had high PBDE levels during their second trimester showed cognition deficits when the children were five years old as well as higher rates of hyperactivity at ages two to five. If the mother’s blood had a 10-fold increase in PBDEs, the average five-year-old had about a four-point IQ deficit. “A four-point IQ difference in an individual child may not be perceivable in…ordinary life. However, in a population, if many children are affected, the social and economic impact can be huge due to the shift of IQ distribution and productivity,” says lead author Aimin Chen, an assistant professor of environmental health at the University of Cincinnati College of Medicine. The findings, based on women and children from Cincinnati, will be presented May 6 at the annual meeting of the Pediatric Academic Societies in Washington, D.C. The unpublished results have been submitted to a peer-reviewed journal, but the paper has not yet been accepted. © 2013 Scientific American

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Link ID: 18124 - Posted: 05.07.2013

By Susan Milius Zola the crow is about to face a test that has baffled animals from canaries to dogs. She’s a wild New Caledonian crow, and for the first time, she’s seeing a tidbit of meat dangling on a long string tied to a stick. She perches on the stick, bends down, grabs the string with her beak and pulls. But the string is too long. The meat still hangs out of reach. In similar tests, dogs, pigeons and many other species routinely falter. Some nibble at the string or keep tugging and dropping the same segment. Some pull at a string that’s not connected to food just as readily as a string that is. Eventually many get the hang of reeling in the tidbit, but they seem to learn by trial and error. Zola, however, does not fumble. On her first attempt, she anchors the first length of string by stepping on it and immediately bends down again for the next segment. With several more pulls and steps, Zola reels in the treat. Watching the crow, says Russell Gray, one of the researchers behind the string-pulling experiment, “people say, ‘Wow, it had a flash of insight.’ ” At first glance it seems Zola mentally worked through the problem as a human might, devising a solution in an aha moment. But Gray, of the University of Auckland in New Zealand, has had enough of such supposed animal geniuses. Asking whether the crow solves problems in the same way a human would isn’t a useful question, he says. He warns of a roller coaster that scientists and animal lovers alike can get stuck on: first getting excited and romanticizing a clever animal’s accomplishments, then crashing into disappointment when some killjoy comes up with a mundane explanation that’s not humanlike at all. © Society for Science & the Public 2000 - 2013

Related chapters from BP7e: Chapter 18: Attention and Higher Cognition; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 14: Attention and Consciousness
Link ID: 18051 - Posted: 04.20.2013

by Jennifer Viegas Polly may want a cracker, but when a parrot wants a better deal, it will trade a so-so nut for an even better snack, a new study has found. The discovery, published in the journal Biology Letters, demonstrates that birds can do business in their own way, wheeling and dealing with nuts. It also shows that they can exhibit remarkable self restraint, even performing better than some children. In studies from the 1970s, kids were presented with a marshmallow and were told that they could either eat it now, or wait and receive a second one if they could hold out for a time delay of some minutes. Kids that were able to wait have been more successful now as adults than the other kids (who gulped down the first marshmallow). The ability to strategically wait therefore is very important in the course of human development. Now we can say that it’s important to bird development too. For the new study, Alice Auersperg of the University of Vienna’s Department of Cognitive Biology and colleagues presented an Indonesian cockatoo species, the Goffin’s cockatoo, with food snack options. The best of that bunch, from the bird’s perspective, were pecan nuts. Mirroring the kid-marshmallow experiment, the researchers next offered the birds an even better deal. If the birds did not eat the pecan, they could trade it for a cashew. (Who knew that cockatoos loved cashews so much? Apparently they are the yummiest nut of all, for at least this particular avian species.) © 2013 Discovery Communications, LLC

Related chapters from BP7e: Chapter 6: Evolution of the Brain and Behavior; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 14: Attention and Consciousness
Link ID: 17897 - Posted: 03.13.2013

By Samuel McNerney How much does environment influence intelligence? Several years ago University of Virginia Professor Eric Turkheimer demonstrated that growing up in an impoverished and chaotic household suppresses I.Q. – without nurture, innate advantages vanish. What about genes? They matter too. After decades of research most psychologists agree that somewhere between 50% and 80% of intelligence is genetic. After all, numerous studies demonstrate that identical twins raised apart have remarkably similar I.Q.’s. A 2008 paper out of the University of Michigan turned all of this on its head. The researchers led by Susanne M. Jaeggi and Martin Buschkuehl, now at the University of Maryland, found that participants who engaged in short sessions of “cognitive training” that targeted working memory with a simple but difficult game known as the n-back task boosted a core feature of general intelligence called fluid intelligence. Crystalized intelligence improves with age and experience. Fluid intelligence, in contrast, is the capacity to make insights, solve new problems and perceive new patterns to new situations independent of previous knowledge. For decades researchers believed that fluid intelligence was immutable during adulthood because it was largely determined by genetics. The implication of the 2008 study suggested otherwise: with some cognitive training people could improve fluid intelligence and, therefore, become smarter. This brings me to a brand new paper recently published in the journal Neuroscience by DRDC Toronto researcher and Adjunct Assistant Professor of Psychology at the University of Toronto-Scarborough, Oshin Vartanian. In the study, Vartanian and his team asked if working memory training improved performance on a test of divergent thinking known as the Alternate Uses Task. Psychological research demonstrates that divergent thinking “loads” on working memory, meaning that when people engage a divergent thinking task their working memory capacity is accessed accordingly. © 2013 Scientific American,

Related chapters from BP7e: Chapter 1: Biological Psychology: Scope and Outlook; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 1: An Introduction to Brain and Behavior; Chapter 13: Memory, Learning, and Development
Link ID: 17771 - Posted: 02.06.2013

By Gareth Cook Just about every dog owner is convinced their dog is a genius. For a long time, scientists did not take their pronouncements particularly seriously, but new research suggests that canines are indeed quite bright, and in some ways unique. Brian Hare, an associate professor in the Department of Evolutionary Anthropology and the Center for Cognitive Neuroscience at Duke University, is one of the leading figures in the quest to understand what dogs know. The founder of the Duke Canine Cognition Center, Hare has now written a book, “The Genius of Dogs,” with his wife, the journalist Vanessa Woods. Hare answered questions from Mind Matters editor Gareth Cook. Cook: What is the biggest misconception people have about the dog mind? Hare: That there are “smart” dogs and “dumb” dogs. There’s still this throwback to a uni-dimensional version of intelligence, as though there is only one type of intelligence that you either have more or less of. In reality there are different types of intelligence. Different dogs are good at different things. Unfortunately, the very clever strategies some dogs are using are not apparent without playing a cognitive game. This means people can often underestimate the intelligence of their best friend. The pug drooling on your shoe may not look like the brightest bulb in the box, but she comes from a long line of successful dogs and is a member of the most successful mammal species on the planet besides us. Rest assured – she is a genius. © 2013 Scientific American

Related chapters from BP7e: Chapter 1: Biological Psychology: Scope and Outlook; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 1: An Introduction to Brain and Behavior
Link ID: 17770 - Posted: 02.06.2013

by Virginia Morell The male Eurasian jay is an accommodating fellow. When his mate has been feasting steadily on mealworm larvae, he realizes that she'd now prefer to dine on wax moth larvae, which he feeds her himself. The finding adds to a small but growing number of studies that show that some animals have something like the human ability to understand what others are thinking. "It's great for a first test of this ability in birds," says Thomas Bugnyar, a cognitive biologist at the University of Vienna in Austria who was not involved in the work. Scientists still debate about whether even our closest ape relatives can attribute an unseen, mental desire to another; some continue to argue that this is a peculiarly human talent. "But some of us think that some aspects of this ability should be found here and there in different species," Bugnyar says, "and so it is good to have this jay study to compare" with the other studies on primates, humans, and human children. Male Eurasian jays feed their mates during courtship displays, says Ljerka Ostojić, a comparative psychologist and postdoc at the University of Cambridge in the United Kingdom who led the study. Because of that behavior, Ostojić and her colleagues thought that the jays might be good subjects for testing whether these birds understand their mates' desires. The group's previous research had shown that Eurasian jays and scrub jays can plan for the future. "It is commonly thought that any action animals take is determined solely by whatever they want at that moment," Ostojić says, "but the jays also plan for needs in the future." © 2010 American Association for the Advancement of Science

Related chapters from BP7e: Chapter 1: Biological Psychology: Scope and Outlook; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 1: An Introduction to Brain and Behavior
Link ID: 17766 - Posted: 02.05.2013

by Michael Balter Are crows mind readers? Recent studies have suggested that the birds hide food because they think others will steal it -- a complex intuition that has been seen in only a select few creatures. Some critics have suggested that the birds might simply be stressed out, but new research reveals that crows may be gifted after all. Cracks first began forming in the crow mind-reading hypothesis last year. One member of a research team from the University of Groningen in the Netherlands spent 7 months in bird cognition expert Nicola Clayton's University of Cambridge lab in the United Kingdom studying Western scrub jays, a member of the crow family that is often used for these studies. The Groningen team then developed a computer model in which "virtual jays" cached food under various conditions. In PLOS ONE, they argued that the model showed the jays' might be moving their food—or recaching it—not because they were reading the minds of their competitors, but simply because of the stress of having another bird present (especially a more dominant one) and of losing food to thieves. The result contradicted previous work by Clayton's group suggesting that crows might have a humanlike awareness of other creatures' mental states—a cognitive ability known as theory of mind that has been claimed in dogs, chimps, and even rats. In the new study, Clayton and her Cambridge graduate student James Thom decided to test the stress hypothesis. First, they replicated earlier work on scrub jays by letting the birds hide peanuts in trays of ground corn cobs—either unobserved or with another bird watching—and later giving them a chance to rebury them. As in previous studies, the jays recached a much higher proportion of the peanuts if another bird could see them: nearly twice as much as in private, the team reports online today in PLOS ONE. © 2010 American Association for the Advancement of Science

Related chapters from BP7e: Chapter 6: Evolution of the Brain and Behavior; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress
Link ID: 17673 - Posted: 01.12.2013

Sandrine Ceurstemont, editor, New Scientist TV Improving your mathematical skills could now be as easy as playing a Kinect video game in a hat. In preliminary tests of the system, developed by Roi Cohen Kadosh and colleagues from the University of Oxford, participants were better with numbers after just two days of training. In this video, our technology features editor Sally Adee gives the game a go while testing a new cap that wirelessly delivers electrical brain stimulation. The device is controlled by a computer, which controls things like the duration of the zapping. Although it can stimulate various brain regions, in this case it sends current to the right parietal cortex. "The parietal region is involved in numerical understanding," says Cohen Kadosh. "So amplifying the function of this region should lead to a better performance." So far, the team has shown that brain stimulation while doing computer-based mathematics exercises helped maintain better mathematical skills in adults even six months later. But Cohen Kadosh thinks that the Kinect game is much more promising as a training tool because it's fun and engaging. By requiring a player to represent a fraction by moving their body to position it on a line, the gameplay also integrates three key components linked to mathematical ability: numerical understanding, the ability to perceive the spatial relationship of visual representations and embodiment. Cohen Kadosh believes this enhances the training. © Copyright Reed Business Information Ltd

Related chapters from BP7e: Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals; Chapter 13: Memory, Learning, and Development
Link ID: 17500 - Posted: 11.17.2012

by Virginia Morell Figaro may not be as talented an inventor as Leonardo da Vinci, but among Goffin's cockatoos, he's a prodigy. In their natural habitat—the forests of Indonesia these cockatoos have never been seen making or using tools. But researchers report today—that Figaro, a member of a captive colony of the birds in Austria, invents and uses stick tools of his own design. Although toolmaking and use is not uncommon in animals, this type of spontaneous innovation and individual creativity is "exceedingly rare" among nonhuman animals, the scientists note, and opens up many questions about the cognitive skills required. Understanding these processes, they say, may help unlock many of the questions about the evolution of intelligence. Many species of birds, such as woodpecker finches of the Galapagos Islands, ravens, crows, and herons, are natural toolmakers and users. New Caledonian crows are especially talented, shaping bits of wood and stiff palm leaves into spears and hooks to forage for grubs. One captive New Caledonian crow displayed an inventiveness similar to Figaro's by fashioning hooks (a shape she had not previously seen) out of wire. And captive Northern blue jays, which are not tool-users in the wild, have shredded newspaper to use as rakes for retrieving food pellets. Such talents haven't been seen before in cockatoos—and although tool use is seen in many species, innovative tool manufacture is rare. But even if Figaro is a standalone talent among his species, says Frans de Waal, a primatologist at Emory University in Atlanta, the discovery of such skills in even one individual shows that "general intelligence can lead to innovative behavior." Inventiveness is thus not tied to some type of mental specialization, such as being a natural tool-user, as has been argued previously, he explains. © 2010 American Association for the Advancement of Science.

Related chapters from BP7e: Chapter 18: Attention and Higher Cognition; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 14: Attention and Consciousness
Link ID: 17459 - Posted: 11.06.2012

by Virginia Morell Alex, an African grey parrot who died 5 years ago and was known for his ability to use English words, also understood a great deal about numbers. In a new study in this month's Cognition, scientists show that Alex correctly inferred the relationship between cardinal and ordinal numbers, an ability that has not previously been found in any species other than humans. After learning the cardinal numbers—or exact values—of one to six, Alex was taught the ordinal values (the position of a number in a list) of seven and eight—that is, he learned that six is less than seven, and seven is less than eight. He was never taught the cardinal values of seven and eight—but when tested on this, he passed with flying colors, apparently inferring, for instance, that the sound "seven" meant six plus one. In the video above of one of these experiments, comparative psychologist Irene Pepperberg of Harvard University asks Alex to pick out the set of colored blocks that equal the number seven. Play the video to hear his answer. © 2010 American Association for the Advancement of Science.

Related chapters from BP7e: Chapter 1: Biological Psychology: Scope and Outlook; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 1: An Introduction to Brain and Behavior
Link ID: 17458 - Posted: 11.06.2012

By MARGALIT FOX Arthur R. Jensen, an educational psychologist who ignited an international firestorm with a 1969 article suggesting that the gap in intelligence-test scores between black and white students might be rooted in genetic differences between the races, died on Oct. 22 at his home in Kelseyville, Calif. He was 89. His death was confirmed by the University of California, Berkeley, where he was an emeritus professor in the Graduate School of Education. Professor Jensen was deeply interested in differential psychology, a field whose central question — What makes people behave and think differently from one another? — strikes at the heart of the age-old nature-nurture debate. Because of his empirical work in the field on the quantification of general intelligence (a subject that had long invited a more diffuse, impressionistic approach), he was regarded by many colleagues as one of the most important psychologists of his day. But a wider public remembered him almost exclusively for his 1969 article “How Much Can We Boost I.Q. and Achievement?” Published in The Harvard Educational Review, a scholarly journal, the article quickly became — and remains even now — one of the most controversial in psychology. In the article, Professor Jensen posited two types of learning ability. Level I, associative ability, entailed the rote retention of facts. Level II, conceptual ability, involved abstract thinking and problem-solving. This type, he argued, was roughly equivalent to general intelligence, denoted in psychology by the letter “g.” © 2012 The New York Times Company

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 13: Memory, Learning, and Development
Link ID: 17445 - Posted: 11.03.2012

By DAN HURLEY IN the back room of a suburban storefront previously occupied by a yoga studio, Nick Vecchiarello, a 16-year-old from Glen Ridge, N.J., sits at a desk across from Kathryn Duch, a recent college graduate who wears a black shirt emblazoned with the words “Brain Trainer.” Spread out on the desk are a dozen playing cards showing symbols of varying colors, shapes and sizes. Nick stares down, searching for three cards whose symbols match. “Do you see it?” Ms. Duch asks encouragingly. “Oh, man,” mutters Nick, his eyes shifting among the cards, looking for patterns. Across the room, Nathan Veloric, 23, studies a list of numbers, looking for any two in a row that add up to nine. With tight-lipped determination, he scrawls a circle around one pair as his trainer holds a stopwatch to time him. Halfway through the 50 seconds allotted to complete the exercise, a ruckus comes from the center of the room. “Nathan’s here!” shouts Vanessa Maia, another trainer. Approaching him with a teasing grin, she claps her hands like an annoying little sister. “Distraction!” she shouts. “Distraction!” There is purpose behind the silliness. Ms. Maia is challenging the trainees to stay focused on their tasks in the face of whatever distractions may be out there, whether Twitter feeds, the latest Tumblr posting or old-fashioned classroom commotion. On this Wednesday evening at the Upper Montclair, N.J., outlet of LearningRx, a chain of 83 “brain training” franchises across the United States, the goal is to improve cognitive skills. LearningRx is one of a growing number of such commercial services — some online, others offered by psychologists. Unlike traditional tutoring services that seek to help students master a subject, brain training purports to enhance comprehension and the ability to analyze and mentally manipulate concepts, images, sounds and instructions. In a word, it seeks to make students smarter. © 2012 The New York Times Company

Related chapters from BP7e: Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 17444 - Posted: 11.03.2012

Clint Witchalls James R. Flynn is Professor Emeritus at the University of Otago, New Zealand. Flynn researches intelligence and is best known for the discovery that, over the past century, IQs have been rising at a rate of about 3 points per decade (the Flynn-effect). In advance of his new book on the subject, Clint Witchalls asked him about this and some of Professor Flynn's more recent research findings: Clint Witchalls: How has our way of thinking and of solving problems changed over the past century? James R. Flynn: Today we take it for granted that using logic on the abstract is an ability we want to cultivate and we are interested in the hypothetical. People from 1900 were not scientifically oriented but utilitarian and they used logic, but to use it on the hypothetical or on abstractions was foreign to them. Alexander Luria [a Soviet psychologist] went to talk to headmen in villages in rural Russia and he said to them: "Where there is always snow, bears are white. At the North Pole there is always snow, what colour are the bears there?" And they said: "I've only seen brown bears." And he said: "What do my words convey?" And they said: "Such a thing as not to be settled by words but by testimony." They didn't settle questions of fact by logic, they settled them by experience. Your research found that we have gained 30 points on IQ tests in a century. What is the reason? The ultimate cause of why IQs are rising is the industrial revolution. The proximate cause is how our minds differ from people in 1900 when in the test room. And the intermediate causes, of course, are more cognitively demanding work roles, more cognitively demanding leisure, more formal schooling, and smaller families. © independent.co.uk

Related chapters from BP7e: Chapter 1: Biological Psychology: Scope and Outlook; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 1: An Introduction to Brain and Behavior; Chapter 13: Memory, Learning, and Development
Link ID: 17307 - Posted: 09.27.2012

by Virginia Morell Imagine hearing a distant roll of thunder and wondering what caused it. Even asking that question is a sign that you, like all humans, can perform a type of sophisticated thinking known as "causal reasoning"—inferring that mechanisms you can't see may be responsible for something. But humans aren't alone in this ability: New Caledonian crows can also reason about hidden mechanisms, or "causal agents," a team of scientists report today in the Proceedings of the National Academy of Sciences. It's the first time that this cognitive ability has been experimentally demonstrated in a species other than humans, and the method may help scientists understand how this type of reasoning evolved, the researchers say. Causal reasoning is "one of the most powerful human abilities," says Alison Gopnik, a psychologist at the University of California, Berkeley, who was not involved in the study. "It's at the root of our understanding of the world and one another." Indeed, it is the key mental ability for many things humans do, including inventing, making, and using tools. We develop this ability early in life: A 2007 study in Developmental Psychology reported that human infants as young as 7 months old understand that when a beanbag is tossed from behind a screen, something or someone must have thrown it. The infants infer that a "causal agent" must be involved in the motion of the flying beanbag. But why should this ability be limited to humans? "It seems like it would make good sense for crows and many other animals to be able to distinguish between the wind rustling tree limbs and an unseen animal crashing through the canopy," says Alex Taylor, an evolutionary psychologist at the University of Auckland in New Zealand and the lead author of the new study. Because New Caledonian crows are also inventive and skillful tool-users, Taylor and his colleagues thought the birds might have causal reasoning skills similar to those of humans. © 2010 American Association for the Advancement of Science

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 17273 - Posted: 09.18.2012

By Susan Milius Black bears, which live relatively solitary lives as adults, show an ability to learn concepts, a new study finds. Dave Allen Photography/Shutterstock American black bears that take computerized tests by pawing, nose-bumping or licking a touch screen may rival great apes when it comes to learning concepts. Using three zoo bear siblings as classroom subjects, comparative cognitive psychologist Jennifer Vonk of Oakland University in Rochester, Mich., and her colleagues presented pairs of pictures to the bears on a rugged computer screen and gave them food treats for pawing the image from a certain category. To demonstrate learning a concept, bears had to figure out what kind of picture would earn a treat and then pick that kind of image from a new set. One challenge, picking the portrait of a black bear instead of an image of a person, could be mastered by relying on a mix of visual clues such as furriness or snout shape. But picking out all the animals from non-animals — cars or landscapes, for example — required finding more abstract connections among pictures that didn’t look much at all alike. At least one of the three bears showed some capacity at each of the five levels tested, Vonk and colleagues report in an upcoming Animal Behaviour. Bear behavior has been “very underappreciated,” says comparative ethologist Gordon Burghardt of the University of Tennessee at Knoxville. “They’re very smart and they have large brains.” They also live relatively solitary lives, which make them an important contrast to the mostly social animals tested for complex mental capacities to date. © Society for Science & the Public 2000 - 2012

Related chapters from BP7e: Chapter 18: Attention and Higher Cognition; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 14: Attention and Consciousness
Link ID: 17195 - Posted: 08.25.2012

ROBINS appear to have an eye for numbers, at least when it comes to choosing the biggest meal. "Discriminating between two large groups of objects that are close in number would be pretty exceptional for any animal or human, but that's exactly what the robins did," says Alexis Garland at Victoria University of Wellington in New Zealand. Garland let 36 wild North Island robins choose one of two wells after seeing different numbers of mealworms dropped en masse into each. Most picked the fuller well as long as the ratio was below 0.75 - correctly selecting, say, 64 over 32 worms. The mechanism at work here is called ratio-based representation and involves guessing which large group of items has the bigger bulk. The robins did even better when the worms were dropped into the wells one by one and covered so that the masses could not be compared: they managed a ratio of 0.88, albeit with a smaller number of worms. For the largest trial at this ratio - 14 versus 16 worms - most robins chose correctly (Animal Cognition, DOI: 10.1007/s10071-012-0537-3). Other animals tested like this have only managed to track about four items. Robins hide multiple food items in several places so it may be advantageous to distinguish more from less quickly, says Garland. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 18: Attention and Higher Cognition; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 14: Attention and Consciousness
Link ID: 17144 - Posted: 08.11.2012

By Stephanie Pappas Senior Writer Parrots can draw conclusions about where to find a food reward not only from clues as to its location, but also from the absence of clues — an ability previously only seen in humans and other apes. In a new study, researchers tested African Grey parrots on their reasoning abilities by shaking empty boxes and boxes filled with food so that the parrots could hear the snacks rattling around. To pick the box that would win them a treat, the parrots had to figure out that the sound indicated food and that a lack of sound from one box probably meant food in the other. It's a challenge that even human children can't reason through until about age 3. "It suggests that Grey parrots have some understanding of causality and that they can use this to reason about the world," study scientist Christian Schloegl, a researcher at the University of Vienna, told LiveScience. African Grey parrots are known to be clever, as are many other birds. In earlier studies with Grey parrots, researchers have shown them two opaque boxes, one full of food and one empty. When the parrots are shown that one box has no food in it, they almost always pick the second box in search of a treat. This could be because the parrots infer that if one box is empty, the other is likely full, Schloegl said. But researchers couldn't rule out that they were simply avoiding the empty box for some unknown reason. © 2012 NBCNews.com

Related chapters from BP7e: Chapter 6: Evolution of the Brain and Behavior; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 0: ; Chapter 14: Attention and Consciousness
Link ID: 17142 - Posted: 08.08.2012