Links for Keyword: Autism

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 21 - 40 of 566

by Laura Sanders Ever-increasing numbers of autism diagnoses have parents worried about a skyrocketing epidemic, and this week’s news may only drive alarm higher. Perhaps it shouldn’t. In 2010, 1 in 68 (or 14.7 per 1,000) 8-year-olds had an autism spectrum disorder, the Centers for Disease Control and Prevention now estimates. That number is a substantial increase from 2008, which had an estimate of 1 in 88 (or 11.3 per 1,000). But the numbers might not reflect a spike in actual cases. Instead, the rise might be driven, at least in part, by an increase in diagnoses. The estimates are drawn from a collection of organizations that provide services to children with autism, including doctors, schools and social service agencies. As awareness builds and more people look for signs of autism, these numbers will keep going up. Regional spottiness suggests that better autism detection is feeding the increase. The autism rate in Alabama is just one in 175, while the rate in New Jersey is one in 45, the CDC reports. It would be surprising, and scientifically really important, if children in Alabama were truly much more protected from the disorder. Instead, differences in diagnosis rates are probably at play. If these alarmingly high numbers are driven by professionals and parents better spotting autism, that’s nothing to be alarmed at. On the contrary: This is good news. The earlier therapies begin, the better kids with autism do. That’s the idea behind CDC’s “Learn the Signs: Act Early” program to educate people about signs that something might be amiss with a child. So our best move is to find the kids who need help, and find them when they’re young. Most kids, including the ones in the new CDC survey, aren’t diagnosed with autism until about age 4 1/2. But whatever goes wrong happens long before then. © Society for Science & the Public 2000 - 2013.

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 19424 - Posted: 03.29.2014

By Greg Miller Nobody knows what causes autism, a condition that varies so widely in severity that some people on the spectrum achieve enviable fame and success while others require lifelong assistance due to severe problems with communication, cognition, and behavior. Scientists have found countless clues, but so far they don’t quite add up. The genetics is complicated. The neuroscience is conflicted. Now, a new study adds an intriguing, unexpected, and sure-to-be controversial finding to the mix: It suggests the brains of children with autism contain small patches where the normally ordered arrangement of neurons in the cerebral cortex is disrupted. “We’ve found locations where there appears to be a failure of normal development,” said Eric Courchesne, a neuroscientist at the University of California, San Diego and an author of the study, which appears today in the New England Journal of Medicine. “It’s been really difficult to identify a lesion or anything in the brain that’s specific and diagnostic of autism,” said Thomas Insel, director of the National Institute of Mental Health, one of several agencies that funded the project. The new study is notable because it applies sophisticated molecular labeling methods to postmortem tissue from people with autism who died as children, which is incredibly hard to come by, Insel says. “If it’s real, if it’s replicated and it’s a consistent finding, it’s more evidence that autism starts prenatally and only manifests itself when kids start to have trouble with language or social behavior around age two or three,” Insel said. “These kinds of changes in cellular architecture would happen during brain development, probably around the first part of the second trimester.” © 2014 Condé Nast

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 19416 - Posted: 03.27.2014

By Jennifer Richler A few days ago, an old friend sent me a panicked email. She had just finished reading Ron Suskind’s beautiful essay in the New York Times Magazine about raising a son with autism: “Reaching My Autistic Son Through Disney.” Suskind describes how, at almost 3 years of age, his son Owen “disappeared.” The child was once “engaged, chatty, full of typical speech,” but then he stopped talking, lost eye contact, even struggled to use a sippy cup. Owen was eventually diagnosed with a regressive form of autism, which Suskind says affects about a third of children with the disorder. “Unlike the kids born with it,” he continues, “this group seems typical until somewhere between 18 and 36 months—then they vanish.” That was the line that alarmed my friend, whose son is nearing his third birthday. “What is this ‘regressive autism?’ ” she asked me, the resident autism expert in her peer group. (I conducted research on autism and regression in autism before becoming a freelance writer.) “I thought we were out of the woods!” I’m sure many parents of young children who read the piece had the same reaction, and it’s completely understandable. It’s also unwarranted. The claim that many kids with autism develop typically for almost three years and then experience a near-complete loss of language, social skills, and motor ability—a claim I’ve read many times before—simply isn’t true. It’s time to set the record straight. © 2014 The Slate Group LLC.

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 19409 - Posted: 03.26.2014

Claudia Dreifus The biochemist Ricardo E. Dolmetsch has pioneered a major shift in autism research, largely putting aside behavioral questions to focus on cell biology and biochemistry. Dr. Dolmetsch, 45, has done most of his work at Stanford. Since our interviews — a condensed and edited version of which follows — he has taken a leave to join Novartis, where his mission is to organize an international team to develop autism therapies. “Pharmaceutical companies have financial and organizational resources permitting you to do things you might not be able to do as an academic,” he said. “I really want to find a drug.” Q. Did you start out your professional life studying the biochemistry of autism? A. No. In graduate school and as a postdoc, I’d done basic research on the ion channels on the membranes of cells. By my mid-20s, I had my name on some high-profile papers. Then, around 2006, my son who was then 4 was diagnosed with autism. We had suspected it. He didn’t talk much, was hyperactive, very moody. He assembled huge towers based on the color spectrum. He did all sorts of things that were very unusual. Given the signs, why did you wait that long to seek a diagnosis? I’m from Latin America [Cali, Colombia], and my Latin thing was, “This is the way boys are.” But he would just scream for hours and hours, uncontrollable. He didn’t sleep. We didn’t understand it. After a while, his teachers said, “You probably ought to have him seen.” So we went to a psychiatrist and neurologist and ultimately we got differing diagnoses. © 2014 The New York Times Company

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 19404 - Posted: 03.25.2014

by Simon Makin How much can environmental factors explain the apparent rise in autism spectrum disorders? Roughly 1 per cent of children in the US population are affected by autism spectrum disorder (ASD). Rates in many countries, including the US, have risen sharply in recent years but no one is sure why. It is still not clear whether this is prompted by something in the environment, increased awareness of the condition and changes in diagnoses, or a result of people having children later. The environmental case is hotly debated. There is some evidence that maternal infections during pregnancy can increase the risk. Other studies have pointed to a possible link with antidepressants while others have looked at elevated levels of mercury. But determining prenatal exposure to any substance is difficult because it is hard to know what substances people have been exposed to and when. To get around this, Andrey Rzhetsky and colleagues at the University of Chicago analysed US health insurance claims containing over 100 million patient records – a third of the population – dating from 2003 to 2010. They used rates of genital malformations in newborn boys as a proxy of parents' exposure to environmental risk factors. This is based on research linking a proportion of these malformations to toxins in the environment, including pesticides, lead and medicines. Toxic environment? The team compared the rates of these malformations to rates of ASD county by county. After adjusting for gender, income, ethnicity and socio-economic status, they found that a 1 per cent increase in birth defects – their measure for environmental effects - was associated with an average increase of 283 per cent in cases of ASD. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 19393 - Posted: 03.21.2014

By Jessica Wright and SFARI.org It takes more mutations to trigger autism in women than in men, which may explain why men are four times more likely to have the disorder, according to a study published 26 February in the American Journal of Human Genetics. The study found that women with autism or developmental delay tend to have more large disruptions in their genomes than do men with the disorder. Inherited mutations are also more likely to be passed down from unaffected mothers than from fathers. Together, the results suggest that women are resistant to mutations that contribute to autism. “This strongly argues that females are protected from autism and developmental delay and require more mutational load, or more mutational hits that are severe, in order to push them over the threshold,” says lead researcher Evan Eichler, professor of genome sciences at the University of Washington in Seattle. “Males on the other hand are kind of the canary in the mineshaft, so to speak, and they are much less robust.” The findings bolster those from previous studies, but don't explain what confers protection against autism in women. The fact that autism is difficult to diagnose in girls may mean that studies enroll only those girls who are severely affected and who may therefore have the most mutations, researchers note. “The authors are geneticists, and the genetics is terrific,” says David Skuse, professor of behavioral and brain sciences at University College London, who was not involved in the study. “But the questions about ascertainment are not addressed adequately.” © 2014 Scientific American

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 8: Hormones and Sex
Link ID: 19347 - Posted: 03.11.2014

By RON SUSKIND In our first year in Washington, our son disappeared. Just shy of his 3rd birthday, an engaged, chatty child, full of typical speech — “I love you,” “Where are my Ninja Turtles?” “Let’s get ice cream!” — fell silent. He cried, inconsolably. Didn’t sleep. Wouldn’t make eye contact. His only word was “juice.” I had just started a job as The Wall Street Journal’s national affairs reporter. My wife, Cornelia, a former journalist, was home with him — a new story every day, a new horror. He could barely use a sippy cup, though he’d long ago graduated to a big-boy cup. He wove about like someone walking with his eyes shut. “It doesn’t make sense,” I’d say at night. “You don’t grow backward.” Had he been injured somehow when he was out of our sight, banged his head, swallowed something poisonous? It was like searching for clues to a kidnapping. After visits to several doctors, we first heard the word “autism.” Later, it would be fine-tuned to “regressive autism,” now affecting roughly a third of children with the disorder. Unlike the kids born with it, this group seems typical until somewhere between 18 and 36 months — then they vanish. Some never get their speech back. Families stop watching those early videos, their child waving to the camera. Too painful. That child’s gone. In the year since his diagnosis, Owen’s only activity with his brother, Walt, is something they did before the autism struck: watching Disney movies. “The Little Mermaid,” “Beauty and the Beast,” “Aladdin” — it was a boom time for Disney — and also the old classics: “Dumbo,” “Fantasia,” “Pinocchio,” “Bambi.” They watch on a television bracketed to the wall in a high corner of our smallish bedroom in Georgetown. It is hard to know all the things going through the mind of our 6-year-old, Walt, about how his little brother, now nearly 4, is changing. They pile up pillows on our bed and sit close, Walt often with his arm around Owen’s shoulders, trying to hold him — and the shifting world — in place. © 2014 The New York Times Company

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 19341 - Posted: 03.10.2014

by Clare Wilson More genetic mutations may be needed to give rise to autism in girls than in boys. The finding supports the notion that the female brain is somehow protected against autism, and this may in turn explain why four times as many males have autism than females. Although some cases of autism are associated with one mutation, most are thought to involve several genetic abnormalities. In the past few years, hundreds of mutations have been discovered that can make people more vulnerable to the condition. To see if the mutations affect men and women differently, Sébastien Jacquemont at the University Hospital of Lausanne in Switzerland and colleagues measured the frequency of two different kinds of mutation in 762 families that had a child with autism. Among the children with autism, one class of mutation known as a copy number variation – deletions or duplications of a large chunk of genetic material – was three times more common in girls than in boys. The team also found that substitutions of a single letter of DNA were about one-third more common in affected girls. Jacquemont says this suggests it takes more mutations for autism to arise in girls than in boys. "Females function a lot better than males with similar mutations," he says. The results reflect the "shielding" effect of being female, he says. "There's something that's protecting [their] brain development." A larger, as yet unpublished, study of about 2400 people with autism, conducted as part of the Autism Genome Project - an attempt to sequence the whole genome of 10,000 individuals affected by the condition – has produced similar results, says Joseph Buxbaum of Mount Sinai Hospital in New York. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 8: Hormones and Sex
Link ID: 19311 - Posted: 03.01.2014

By Maggie Fox Researchers looking for simple ways to treat autism say they may have explained why at least some cases occur: It all has to do with the stress babies undergo at birth. They’re already testing a simple drug for treating kids with autism and say their findings may point to ways to treat the disorder earlier in life. It’s all experimental, but the study, published in the journal Science, should inspire other researchers to take a closer look. “This is exciting stuff to people in the field, because it’s getting at a basic mechanism," says Andrew Zimmerman of the University of Massachusetts Medical School, who reviewed the study. Yehezkel Ben-Ari of the Mediterranean Institute of Neurobiology in Marseille, France, and colleagues have been treating children with autism with a diuretic called bumetanide that reduces levels of chloride in cells. Diuretics lower blood pressure by making people urinate more, reducing fluid. Ben-Ari has had mixed success in his trials in kids, and wanted to prove his theory that chloride was the key. He worked with two rodent “models” of autism — they’re the closest things scientists have for replicating autism in a human. One has mutated genes linked with autism, and another develops autism when given valproate, an epilepsy drug blamed for causing autism in the children of mothers who take it while pregnant. They looked at what was going on in the brains of the mouse and rat pups just before and after birth. Then they gave the mouse and rat moms bumetanide — and fewer of their newborns showed autistic-like behaviors.

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 11: Emotions, Aggression, and Stress
Link ID: 19229 - Posted: 02.10.2014

Ewen Callaway A study in mice and rats suggests that an imbalance in chloride ions during a child's development in the womb could be a factor for autism. Children with autism typically begin showing obvious symptoms, such as trouble making eye contact and slow language development, a year or more after birth. A study in mice and rats now hints that prenatal drug treatment could head off these problems. The findings, reported today in Science1, do not suggest that autism spectrum disorders can be prevented in children. But researchers not involved in the study say that they add support to a controversial clinical trial suggesting that some children with autism benefited from taking a common diuretic medication called bumetanide2. In that trial, a team led by neuroscientist Yehezkel Ben-Ari at the Mediterranean Institute of Neurobiology in Marseille gave 60 children bumetanide or a placebo daily for three months. Children who had less severe forms of autism showed mild improvements in social behaviour after taking the drug, and almost no adverse side effects were observed (see 'Diuretic drug improves symptoms of autism'). But autism researchers greeted the results with caution. Many pointed out that the study did not provide a clear biological mechanism that could explain how the drug improved the symptoms of the disorder. The latest study is an attempt to answer such criticisms by identifying a role for the neurotransmitter GABA. Studies in humans and animals have suggested that GABA, which in healthy people typically inhibits the activity in neurons, is altered in autism and instead activates some brain cells. © 2014 Nature Publishing Group,

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 19225 - Posted: 02.08.2014

by Helen Thomson When the criteria for diagnosing autism were changed last year, concerns were raised that people already diagnosed might be re-evaluated and end up losing access to treatments and services. The American Psychiatric Association (APA), which publishes the diagnostic guidelines, recommends that children who are receiving appropriate treatment as the result of the old criteria should not be required to undergo a re-examination with the new criteria by insurance companies. But a small survey revealed to New Scientist suggests that not everyone is following the party line. In May, the APA published the DSM-5, the latest edition of what has come to be known as psychiatry's diagnostic bible. One controversial change was to the criteria used to diagnose different kinds of autism, which are now combined under the umbrella term of "Autism Spectrum Disorder" (ASD). Under the previous criteria of DSM-4, a person would be diagnosed with ASD by exhibiting at least six of 12 behaviours, which include problems with communication, interaction and repetition. Now, that same person would need to exhibit three deficits in social communication and interaction and at least two repetitive behaviours – the latter, say critics, makes the new criteria more restrictive. To see how the change in criteria was affecting people, Autism Speaks, a US science and advocacy organisation, asked users of its website to complete an online survey about their experiences. "We wanted to ensure that people are still maintaining access to the services they need," says Michael Rosanoff, Autism Speaks' associate director for public health research and scientific review. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 19174 - Posted: 01.27.2014

By SARAH MASLIN NIR The day after the funeral of Avonte Oquendo, the boy with autism whose remains were found this month after he disappeared at age 14 from his school in October, his mother and grandmother stood with Senator Charles E. Schumer as he announced a proposal for a new law. Called “Avonte’s law,” it would finance a program to provide optional electronic tracking devices to be worn by children with autism. “Avonte’s running away was not an isolated incident,” Mr. Schumer, Democrat of New York, said at a news conference on Sunday morning in his office on the East Side of Manhattan. “This is a high-tech solution to an age-old problem.” Citing research that suggests nearly 50 percent of children with autism wander off, often to escape the overstimulation of sounds and noise, Mr. Schumer said the new legislation would expand an existing Department of Justice program that grants money to law enforcement agencies and other groups to provide trackers for people who have Alzheimer’s disease. Mr. Schumer said he had contacted the department months ago about including children with autism in the program. There was receptiveness, he said, but money was needed to provide children with the devices, which cost $80 to $90 and a few dollars a month to operate. The legislation would allocate $10 million for the program, giving interested parents free access to the equipment, which can be worn like a watch or even sewn into clothing. Whether to use such a monitor would be up to the parents, and the exact system of employing the devices would be up to individual municipalities, Mr. Schumer said. There are different variants that could be selected, including one that alerts authorities automatically when a child has stepped across a given perimeter — for example, outside school grounds — and another that becomes activated only after authorities are called. © 2014 The New York Times Company

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 19173 - Posted: 01.27.2014

By DONALD G. McNEIL Jr. A long-awaited study has confirmed the fears of Somali residents in Minneapolis that their children suffer from higher rates of a disabling form of autism compared with other children there. The study — by the University of Minnesota, the Centers for Disease Control and Prevention, and the research and advocacy group Autism Speaks — found high rates of autism in two populations: About one Somali child in 32 and one white child in 36 in Minneapolis were on the autism spectrum. The national average is one child in 88, according to Coleen A. Boyle, who directs the C.D.C.’s Center on Birth Defects and Developmental Disabilities. But the Somali children were less likely than the whites to be “high-functioning” and more likely to have I.Q.s below 70. (The average I.Q. score is 100.) The study offered no explanation of the statistics. “We do not know why more Somali and white children were identified,” said Amy S. Hewitt, the project’s primary investigator and director of the University of Minnesota’s Research and Training Center on Community Living. “This project was not designed to answer these questions.” The results echoed those of a Swedish study published last year finding that children from immigrant families in Stockholm — many of them Somali — were more likely to have autism with intellectual disabilities. The Minneapolis study also found that Somali children with autism received their diagnoses late. Age 5 was the average, while autism and learning disabilities can be diagnosed as early as age 2, and children get the most benefit from behavioral treatment when it is started early. Black American-born children and Hispanic children in Minneapolis had much lower autism rates: one in 62 for the former and one in 80 for the latter. © 2013 The New York Times Company

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 19044 - Posted: 12.17.2013

Many physicians and parents report that their autistic children have unusually severe gastrointestinal problems, such as chronic constipation or diarrhea. These observations have led some researchers to speculate that an ailing gut contributes to the disorder in some cases, but scientific data has been lacking. Now, a provocative study claims that a probiotic treatment for gastrointestinal issues can reduce autismlike symptoms in mice and suggests that this treatment could work for humans, too. The reported incidence of gut maladies in people with autism varies wildly between published studies—from zero to more than 80%—making it difficult to establish just how commonly the two conditions go together, says principal investigator Sarkis Mazmanian, a microbiologist at the California Institute of Technology (Caltech) in Pasadena. Overall, however, the evidence seems to point toward a connection. Last year, for example, a Centers for Disease Control and Prevention study of thousands of children with developmental disabilities found that kids with autism were twice as likely as children with other types of disorders to have frequent diarrhea or colitis, an inflammation of the large intestine. For many years, Mazmanian and his and colleagues have been studying the effects of a nontoxic strain of the bacterium Bacteroides fragilis on diseases such as Crohn's disease, which causes intestinal inflammation and allows potentially harmful substances that should pass out of the body to leak through junctions between cells that are normally tight. Although the researchers don’t understand the mechanism, the bacterium appears to restore the damaged gut, possibly by helping close these gaps. © 2013 American Association for the Advancement of Science.

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 13: Homeostasis: Active Regulation of the Internal Environment
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 9: Homeostasis: Active Regulation of the Internal Environment
Link ID: 19009 - Posted: 12.06.2013

By Dana Smith Daniel Tammet has memorized Pi to the 22,514th digit. He speaks ten different languages, including one of his own invention, and he can multiply enormous sums in his head within a matter of seconds. However, he is unable to hold down a standard 9-to-5 job, in part due to his obsessive adherence to ritual, down to the precise times he has his tea every day. Daniel is a savant. He is also autistic. And he is a synesthete. Daniel experiences numbers as having color, as well as shape and texture. This helps him perform amazing mathematical feats seemingly without effort, the answer simply materializing to him rather than having to calculate it out. In an interview he gave with The Guardian, Daniel explained, “When I multiply numbers together, I see two shapes. The image starts to change and evolve, and a third shape emerges. That’s the answer. It’s mental imagery. It’s like maths without having to think.” Clearly this man has an extraordinary brain. However, Daniel is perhaps not entirely unique, and it appears that the link between autism and synesthesia is more common than originally thought. This suggests that there is a potential common mechanism between these two conditions, which may even help to explain some of Daniel’s special savant abilities. A new study published in the journal Molecular Autism from a team of researchers at the University of Cambridge now empirically shows that there is an almost three-fold higher occurrence of synesthesia in individuals with autism (18.9%), compared with that of the general population (7.2%). This increased prevalence implies that there is indeed a significant link between autism and synesthesia. © 2013 Scientific American

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 8: General Principles of Sensory Processing, Touch, and Pain
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 5: The Sensorimotor System
Link ID: 19008 - Posted: 12.06.2013

By PAM BELLUCK Scientists have been eager to see if oxytocin, which plays a role in emotional bonding, trust and many biological processes, can improve social behavior in people with autism. Some parents of children with autism have asked doctors to prescribe it, although it is not an approved treatment for autism, or have purchased lower-dose versions of the drug over the counter. Scientifically, the jury is out, and experts say parents should wait until more is known. Some studies suggest that oxytocin, sometimes called the “love hormone,” improves the ability to empathize and connect socially, and may decrease repetitive behaviors. Others find little or no impact, and some research suggests that it can promote clannish and competitive feelings, or exacerbate symptoms in people already oversensitive to social cues. Importantly, nobody knows if oxytocin is safe or desirable to use regularly or long term. Now, the first study of how oxytocin affects the brains of children with autism finds hints of promise — and also suggestions of what its limitations might be. On the promising side, the small study, published Monday in The Proceedings of the National Academy of Sciences, found that the hormone, given as an inhalant, generated increased activity in parts of the brain involved in social connection. This suggests not only that oxytocin can stimulate social brain areas, but also that in children with autism these brain regions are not irrevocably damaged but are plastic enough to be influenced. The limitations could include a finding that oxytocin prompted greater brain activity in children with the least severe autism. Some experts said that this could imply that oxytocin may work primarily in less-impaired people, but others said it might simply suggest that different doses are needed. © 2013 The New York Times Company

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 5: Hormones and the Brain
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 8: Hormones and Sex
Link ID: 18996 - Posted: 12.03.2013

by Bethany Brookshire Most people take it as a given that distraction is bad for — oh, hey, a squirrel! Where was I? … Right. Most people take it as a given that distraction is bad for memory. And most of the time, it is. But under certain conditions, the right kind of distraction might actually help you remember. Nathan Cashdollar of University College London and colleagues were looking at the effects of distraction on memory in memory-impaired patients. They were specifically looking at distractions that were totally off-topic from a particular task, and how those distractions affected memory performance. Their results were published November 27 in the Journal of Neuroscience. The researchers worked with a small group of people with severe epilepsy who had lesions in the hippocampus, and therefore had memory problems. They compared them to groups of people with epilepsy without lesions, young healthy people, and older healthy people that were matched to the epilepsy group. Each of the participants went through a memory task called “delayed match-to-sample.” For this task, participants are given a set of samples or pictures, usually things like nature scenes. Then there’s a delay, from one second at the beginning of the test on up to nearly a minute. Then participants are shown another nature scene. Is it one they have seen before? Yes or no? The task starts out simply, with only one nature scene to match, but soon becomes harder, with up to five pictures to remember, and a five-second delay. People with memory impairments did a lot worse when they had more items to remember (called high cognitive load), falling off very steeply in their performance. Normal controls did better, still remaining fairly accurate, but making mistakes once in a while. © Society for Science & the Public 2000 - 2013.

Related chapters from BP7e: Chapter 18: Attention and Higher Cognition; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 14: Attention and Consciousness; Chapter 13: Memory, Learning, and Development
Link ID: 18979 - Posted: 11.27.2013

By Helen Briggs BBC News A condition where people experience a mixing of the senses, such as tasting words, has been linked with autism. Research suggests synaesthesia is nearly three times as common in adults with autism spectrum disorder than in the general population. The two conditions may share common features such as unusual wiring of the brain, say UK scientists. The study helps understanding of how people with autism experience life, says the National Autistic Society. Synaesthesia is a condition where one sense automatically triggers another. Some people experience tastes when they read or hear words, some perceive numbers as shapes, others see colours when they hear music. People with synaesthesia might say: "The letter q is dark brown," or: "The word 'hello' tastes like coffee," for example. Following anecdotal evidence of links between synaesthesia and Asperger's syndrome, researchers at the Autism Research Centre at Cambridge University set out to test the idea. More than 200 study participants - 164 adults diagnosed with high-functioning autism or Asperger's syndrome, and 97 adults without autism - were asked to fill in questionnaires to measure synaesthesia and autism traits. The study found one in five adults with autism spectrum conditions - a range of related developmental disorders, including autism and Asperger's syndrome - had synaesthesia compared with about 7% of people with no signs of the disorders. Prof Simon Baron-Cohen, who led the research, told BBC News: "Synaesthesia involves a mixing of the senses and it's a very subjective private experience, so the only way we know it's happening is if you ask people to report on their experiences. BBC © 2013

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 8: General Principles of Sensory Processing, Touch, and Pain
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 5: The Sensorimotor System
Link ID: 18948 - Posted: 11.20.2013

Jessica Wright A new test of mouse intelligence closely mimics the types of assays used with people and detects a subtle learning deficit reminiscent of one seen in teenagers with autism, according to findings presented Saturday at the2013 Society for Neuroscience annual meeting in San Diego. Another behavioral test, also presented Saturday, uncovers an unexpected social deficit in an autism mouse model. The test in the first study could be used to screen for drugs that improve cognitive deficits associated with autism, says Jill Silverman, a postdoctoral associate in Jacqueline Crawley’s lab at the University of California, Davis MIND Institute. Silverman presented the work at a poster session. To measure learning in mice, researchers typically place them in a water maze, or see if they learn to anticipate an electric shock. “But you don’t shock people or put them in a pool to swim,” notes Silverman. Silverman instead trained the mice in a human activity: using a touchscreen. In the most basic form of the test, the mice see two graphic images (such as a plane and a spider) and learn that they get “yummy” strawberry milkshake if they touch the spider, Silverman says. (She says she uses milkshakes because the mice work hard for them, even if they aren’t hungry.) BTBR mice, which have many autism-like features, learn to go for the spider just as readily as control mice do. So Silverman made things much more complicated. The complex test follows the logic of transitive properties. For example, if John is taller than Anne and Anne is taller than Jane, we are able to infer that John is taller than Jane. © Copyright 2013 Simons Foundation

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 13: Memory, Learning, and Development
Link ID: 18908 - Posted: 11.11.2013

Sarah DeWeerdt Parts of the brain that process vision and control movements are poorly connected in children with autism, according to results presented Saturday at the 2013 Society for Neuroscience annual meeting in San Diego. In addition to the social deficits that are a core feature of autism, children with the disorder often have clumsy movements. Studies have also found that people with autism have trouble imitating others. The new study uncovers patterns of brain activity suggesting all three of these deficits may be related. The researchers used functional magnetic resonance imaging (fMRI) to measure resting-state activation — brain activity that occurs while individuals are resting quietly in the scanner — in 45 children with autism and 45 controls. Parts of the brain that tend to activate and deactivate together during this procedure are said to be functionally connected. The researchers zeroed in on two sets of brain structures involved in motor activity. One of them, the ventral motor component, includes parts of the cortex, the thalamus and lobule 6 of the cerebellum. They also focused on three areas of the brain involved in visual processing. The most interesting is a region at the back of the brain responsible for complex interpretation of visual information. © Copyright 2013 Simons Foundation

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 5: The Sensorimotor System
Link ID: 18906 - Posted: 11.11.2013