Links for Keyword: Autism

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 41 - 60 of 572

By Dana Smith Daniel Tammet has memorized Pi to the 22,514th digit. He speaks ten different languages, including one of his own invention, and he can multiply enormous sums in his head within a matter of seconds. However, he is unable to hold down a standard 9-to-5 job, in part due to his obsessive adherence to ritual, down to the precise times he has his tea every day. Daniel is a savant. He is also autistic. And he is a synesthete. Daniel experiences numbers as having color, as well as shape and texture. This helps him perform amazing mathematical feats seemingly without effort, the answer simply materializing to him rather than having to calculate it out. In an interview he gave with The Guardian, Daniel explained, “When I multiply numbers together, I see two shapes. The image starts to change and evolve, and a third shape emerges. That’s the answer. It’s mental imagery. It’s like maths without having to think.” Clearly this man has an extraordinary brain. However, Daniel is perhaps not entirely unique, and it appears that the link between autism and synesthesia is more common than originally thought. This suggests that there is a potential common mechanism between these two conditions, which may even help to explain some of Daniel’s special savant abilities. A new study published in the journal Molecular Autism from a team of researchers at the University of Cambridge now empirically shows that there is an almost three-fold higher occurrence of synesthesia in individuals with autism (18.9%), compared with that of the general population (7.2%). This increased prevalence implies that there is indeed a significant link between autism and synesthesia. © 2013 Scientific American

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 8: General Principles of Sensory Processing, Touch, and Pain
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 5: The Sensorimotor System
Link ID: 19008 - Posted: 12.06.2013

By PAM BELLUCK Scientists have been eager to see if oxytocin, which plays a role in emotional bonding, trust and many biological processes, can improve social behavior in people with autism. Some parents of children with autism have asked doctors to prescribe it, although it is not an approved treatment for autism, or have purchased lower-dose versions of the drug over the counter. Scientifically, the jury is out, and experts say parents should wait until more is known. Some studies suggest that oxytocin, sometimes called the “love hormone,” improves the ability to empathize and connect socially, and may decrease repetitive behaviors. Others find little or no impact, and some research suggests that it can promote clannish and competitive feelings, or exacerbate symptoms in people already oversensitive to social cues. Importantly, nobody knows if oxytocin is safe or desirable to use regularly or long term. Now, the first study of how oxytocin affects the brains of children with autism finds hints of promise — and also suggestions of what its limitations might be. On the promising side, the small study, published Monday in The Proceedings of the National Academy of Sciences, found that the hormone, given as an inhalant, generated increased activity in parts of the brain involved in social connection. This suggests not only that oxytocin can stimulate social brain areas, but also that in children with autism these brain regions are not irrevocably damaged but are plastic enough to be influenced. The limitations could include a finding that oxytocin prompted greater brain activity in children with the least severe autism. Some experts said that this could imply that oxytocin may work primarily in less-impaired people, but others said it might simply suggest that different doses are needed. © 2013 The New York Times Company

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 5: Hormones and the Brain
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 8: Hormones and Sex
Link ID: 18996 - Posted: 12.03.2013

by Bethany Brookshire Most people take it as a given that distraction is bad for — oh, hey, a squirrel! Where was I? … Right. Most people take it as a given that distraction is bad for memory. And most of the time, it is. But under certain conditions, the right kind of distraction might actually help you remember. Nathan Cashdollar of University College London and colleagues were looking at the effects of distraction on memory in memory-impaired patients. They were specifically looking at distractions that were totally off-topic from a particular task, and how those distractions affected memory performance. Their results were published November 27 in the Journal of Neuroscience. The researchers worked with a small group of people with severe epilepsy who had lesions in the hippocampus, and therefore had memory problems. They compared them to groups of people with epilepsy without lesions, young healthy people, and older healthy people that were matched to the epilepsy group. Each of the participants went through a memory task called “delayed match-to-sample.” For this task, participants are given a set of samples or pictures, usually things like nature scenes. Then there’s a delay, from one second at the beginning of the test on up to nearly a minute. Then participants are shown another nature scene. Is it one they have seen before? Yes or no? The task starts out simply, with only one nature scene to match, but soon becomes harder, with up to five pictures to remember, and a five-second delay. People with memory impairments did a lot worse when they had more items to remember (called high cognitive load), falling off very steeply in their performance. Normal controls did better, still remaining fairly accurate, but making mistakes once in a while. © Society for Science & the Public 2000 - 2013.

Related chapters from BP7e: Chapter 18: Attention and Higher Cognition; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 14: Attention and Consciousness; Chapter 13: Memory, Learning, and Development
Link ID: 18979 - Posted: 11.27.2013

By Helen Briggs BBC News A condition where people experience a mixing of the senses, such as tasting words, has been linked with autism. Research suggests synaesthesia is nearly three times as common in adults with autism spectrum disorder than in the general population. The two conditions may share common features such as unusual wiring of the brain, say UK scientists. The study helps understanding of how people with autism experience life, says the National Autistic Society. Synaesthesia is a condition where one sense automatically triggers another. Some people experience tastes when they read or hear words, some perceive numbers as shapes, others see colours when they hear music. People with synaesthesia might say: "The letter q is dark brown," or: "The word 'hello' tastes like coffee," for example. Following anecdotal evidence of links between synaesthesia and Asperger's syndrome, researchers at the Autism Research Centre at Cambridge University set out to test the idea. More than 200 study participants - 164 adults diagnosed with high-functioning autism or Asperger's syndrome, and 97 adults without autism - were asked to fill in questionnaires to measure synaesthesia and autism traits. The study found one in five adults with autism spectrum conditions - a range of related developmental disorders, including autism and Asperger's syndrome - had synaesthesia compared with about 7% of people with no signs of the disorders. Prof Simon Baron-Cohen, who led the research, told BBC News: "Synaesthesia involves a mixing of the senses and it's a very subjective private experience, so the only way we know it's happening is if you ask people to report on their experiences. BBC © 2013

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 8: General Principles of Sensory Processing, Touch, and Pain
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 5: The Sensorimotor System
Link ID: 18948 - Posted: 11.20.2013

Jessica Wright A new test of mouse intelligence closely mimics the types of assays used with people and detects a subtle learning deficit reminiscent of one seen in teenagers with autism, according to findings presented Saturday at the2013 Society for Neuroscience annual meeting in San Diego. Another behavioral test, also presented Saturday, uncovers an unexpected social deficit in an autism mouse model. The test in the first study could be used to screen for drugs that improve cognitive deficits associated with autism, says Jill Silverman, a postdoctoral associate in Jacqueline Crawley’s lab at the University of California, Davis MIND Institute. Silverman presented the work at a poster session. To measure learning in mice, researchers typically place them in a water maze, or see if they learn to anticipate an electric shock. “But you don’t shock people or put them in a pool to swim,” notes Silverman. Silverman instead trained the mice in a human activity: using a touchscreen. In the most basic form of the test, the mice see two graphic images (such as a plane and a spider) and learn that they get “yummy” strawberry milkshake if they touch the spider, Silverman says. (She says she uses milkshakes because the mice work hard for them, even if they aren’t hungry.) BTBR mice, which have many autism-like features, learn to go for the spider just as readily as control mice do. So Silverman made things much more complicated. The complex test follows the logic of transitive properties. For example, if John is taller than Anne and Anne is taller than Jane, we are able to infer that John is taller than Jane. © Copyright 2013 Simons Foundation

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 13: Memory, Learning, and Development
Link ID: 18908 - Posted: 11.11.2013

Sarah DeWeerdt Parts of the brain that process vision and control movements are poorly connected in children with autism, according to results presented Saturday at the 2013 Society for Neuroscience annual meeting in San Diego. In addition to the social deficits that are a core feature of autism, children with the disorder often have clumsy movements. Studies have also found that people with autism have trouble imitating others. The new study uncovers patterns of brain activity suggesting all three of these deficits may be related. The researchers used functional magnetic resonance imaging (fMRI) to measure resting-state activation — brain activity that occurs while individuals are resting quietly in the scanner — in 45 children with autism and 45 controls. Parts of the brain that tend to activate and deactivate together during this procedure are said to be functionally connected. The researchers zeroed in on two sets of brain structures involved in motor activity. One of them, the ventral motor component, includes parts of the cortex, the thalamus and lobule 6 of the cerebellum. They also focused on three areas of the brain involved in visual processing. The most interesting is a region at the back of the brain responsible for complex interpretation of visual information. © Copyright 2013 Simons Foundation

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 11: Motor Control and Plasticity
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 5: The Sensorimotor System
Link ID: 18906 - Posted: 11.11.2013

Ewen Callaway Children with autism make less eye contact than others of the same age, an indicator that is used to diagnose the developmental disorder after the age of two years. But a paper published today in Nature1 reports that infants as young as two months can display signs of this condition, the earliest detection of autism symptoms yet. If the small study can be replicated in a larger population, it might provide a way of diagnosing autism in infants so that therapies can begin early, says Warren Jones, research director at the Marcus Autism Center in Atlanta, Georgia. Jones and colleague Ami Klin studied 110 infants from birth — 59 of whom had an increased risk of being diagnosed with autism because they had a sibling with the disorder, and 51 of whom were at lower risk. One in every 88 children has an autism spectrum disorder (ASD), according to the most recent survey by the US Centers for Disease Control and Prevention in Atlanta. At ten regular intervals over the course of two years, the researchers in the new study showed infants video images of their carers and used eye-tracking equipment and software to track where the babies gazed. “Babies come into the world with a lot of predispositions towards making eye contact,” says Jones. “Young babies look more at the eyes than at any part of the face, and they look more at the face than at any part of the body.” Twelve children from the high-risk group were diagnosed with an ASD — all but two of them boys — and one male from the low-risk group was similarly diagnosed. Between two and six months of age, these children tended to look at eyes less and less over time. However, when the study began, these infants tended to gaze at eyes just as often as children who would not later develop autism. © 2013 Nature Publishing Group

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 10: Vision: From Eye to Brain
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 7: Vision: From Eye to Brain
Link ID: 18890 - Posted: 11.07.2013

By PAM BELLUCK In a study published Wednesday, researchers using eye-tracking technology found that children who were found to have autism at age 3 looked less at people’s eyes when they were babies than children who did not develop autism. But contrary to what the researchers expected, the difference was not apparent at birth. It emerged in the next few months and autism experts said that might suggest a window during which the progression toward autism can be halted or slowed. The study, published online in the journal Nature, found that infants who later developed autism began spending less time looking at people’s eyes between 2 and 6 months of age and paid less attention to eyes as they grew older. By contrast, babies who did not develop autism looked increasingly at people’s eyes until about 9 months old, and then kept their attention to eyes fairly constant into toddlerhood. “This paper is a major leap forward,” said Dr. Lonnie Zwaigenbaum, a pediatrician and autism researcher at the University of Alberta, who was not involved in the study. “Documenting that there’s a developmental difference between 2 and 6 months is a major, major finding.” The authors, Warren R. Jones and Ami Klin, both of the Marcus Autism Center and Emory University, also found that babies who showed the steepest decline in looking at people’s eyes over time developed the most severe autism. “Kids whose eye fixation falls off most rapidly are the ones who later on are the most socially disabled and show the most symptoms,” said Dr. Jones, director of research at the autism center. “These are the earliest known signs of social disability, and they are associated with outcome and with symptom severity. Our ultimate goal is to translate this discovery into a tool for early identification” of children with autism. Copyright 2013 The New York Times Company

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 18889 - Posted: 11.07.2013

by Anil Ananthaswamy THE first clinical trial aimed at boosting social skills in people with autism using magnetic brain stimulation has been completed – and the results are encouraging. "As a first clinical trial, this is an excellent start," says Lindsay Oberman of the Beth Israel Deaconess Medical Centre in Boston, who was not part of the study. People diagnosed with autism spectrum disorder often find social interactions difficult. Previous studies have shown that a region of the brain called the dorsomedial prefrontal cortex (dmPFC) is underactive in people with autism. "It's also the part of the brain linked with understanding others' thoughts, beliefs and intentions," says Peter Enticott of Monash University in Melbourne, Australia. Enticott and his colleagues wondered whether boosting the activity of the dmPFC using repetitive transcranial magnetic stimulation (rTMS), which involves delivering brief but strong magnetic pulses through the scalp, could help individuals with autism deal with social situations. So the team carried out a randomised, double-blind clinical trial – the first of its kind – involving 28 adults diagnosed with either high-functioning autism or Asperger's syndrome. Some participants received 15 minutes of rTMS for 10 days, while others had none, but experienced all other aspects, such as having coils placed on their heads and being subjected to the same sounds and vibrations. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 18863 - Posted: 11.02.2013

By MICHAEL TORTORELLO SONOMA, Calif. — Here is a truth about children with autism: they grow up to become adults with autism. Advocates estimate that over the next decade some 500,000 such individuals will come of age in the United States. No one can say for sure what adulthood will hold for them. To start, where will everyone live and work? A 2008 Easter Seals study found that 79 percent of young adults with autism spectrum disorders continue to reside with their parents. A solid majority of them have never looked for a job. And yet the life expectancy of people with autism is more or less average. Here is another truth, then, about children with autism: they can’t stay at home forever. This realization — as obvious as it is worrying — has recently stirred the beginnings of a response from researchers, architects and, not least, parents. In 2009, a pair of academics, Kim Steele and Sherry Ahrentzen, collaborated on “Advancing Full Spectrum Housing,” a comprehensive design guideline for housing adults with autism. (An expanded book on the topic is scheduled to come out next year.) Perhaps the first development to closely follow their template is Sweetwater Spectrum, a residence for 16 adults whose abilities and disabilities span the full range of autism. The innovative $10.4 million project opened in January in the heart of California wine country, and its founding families and board hope to make Sweetwater a model for like-minded experiments across the country. “You hear about different organizations planning to do these things,” said Dr. Ahrentzen, a professor in the Shimberg Center for Housing Studies at the University of Florida, in Gainesville. But “it takes time to get all these different funding sources in place.” © 2013 The New York Times Company

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 18774 - Posted: 10.10.2013

The discovery of "missing" genes could help scientists understand how autism develops, a study suggests. US researchers looked at the genetic profiles of more than 431 people with an autistic spectrum disorder (ASD) and 379 without. They found those with an ASD were more likely to have just one copy of certain genes, when they should have had two. UK experts said genetic factors were one promising area of research into the causes of autism. About 1% of the population has an ASD. They can run in families - but scientists have not identified a cause. Gene deletions or additions happen in everyone - it is why people are different. It is which genes are affected that determines what the effect is. 'Mis-wiring' There were far more gene deletions in the ASD group, and they were more likely to have multiple deletions. Writing in the American Journal of Human Genetics, the team from Mount Sinai suggests this "mis-wiring" could alter the activity of nerve cells in the brain. Prof Joseph Buxbaum, who led the research team, said: "This is the first finding that small deletions impacting one or two genes appear to be common in autism, and that these deletions contribute to risk of development of this disorder." BBC © 2013

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 18748 - Posted: 10.05.2013

Virginia Hughes Enzymes called topoisomerases are crucial for the expression of extremely long genes in neurons, according to a study published 5 September in Nature1. More than one-quarter of these genes are known autism candidates, the study found. In the process of doing these analyses, the researchers stumbled on something surprising about autism genes in general: They're three to four times longer than the average gene expressed in neurons. "It's pretty remarkable that, at least to my knowledge, no one had noticed this before," notes Benjamin Philpot, associate professor of cell biology and physiology at the University of North Carolina, Chapel Hill, and one of the study's leaders. "But the genes are definitely much longer. It's very striking." The findings suggest that defects in topoisomerases — whether caused by genetic mutations or environmental influences — may contribute to some cases of autism and other developmental disorders, the researchers say. If it's true that long genes are preferentially affected in autism, "the implications are really quite fascinating," notes James Sutcliffe, associate professor of molecular physiology and biophysics at Vanderbilt University in Nashville, Tennessee, who was not involved in the research. In genetic sequencing studies, for example, mutations found in long genes tend to be discounted in statistical analyses. That’s because the longer a gene is, the more likely it is to harbor a mutation just by chance. But the new study suggests that mutations in long genes should be considered more carefully.

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 18694 - Posted: 09.24.2013

By Laura Geggel and SFARI.org Boredom, tiredness, hunger and stress can all set off a yawn. People can even 'catch' a bout of yawning when they see or hear another person in the throes of the involuntary gesture, a phenomenon known as social yawning. Researchers speculate that this shared behavior is a form of empathy that strengthens the bonds of a group: One drowsy person’s yawn that triggers others to do the same could lead to a unanimous call for bedtime, for example. Humans aren't the only species to yawn sympathetically: Dogs yawn in response to human yawns, and chimpanzees and baboons yawn in concert with one another. Children with autism apparently don’t respond to social yawning, however, prompting some researchers to blame their well-chronicled struggle with empathy. A new Japanese study suggests that, instead, children with the disorder miss facial cues, such as closed eyes, that make yawning contagious. The study was published 22 July in Autism Research and Treatment. The researchers say children with autism miss those cues because they avoid looking at people’s faces. But that may not entirely explain it. For example, a small 2009 study found that typically developing children yawn even when they’ve only heard another person do so, but children with autism do not. In the new study, the researchers set up two experiments to determine whether children with autism look at others’ faces enough to catch a social yawn. In the first test, 26 children with autism and 46 controls wore eye-tracking devices while watching video clips of people either yawning or remaining still. The researchers asked the children to count how many people in the clips were wearing glasses to make sure they looked at the people’s eyes. The video showed the person yawning only when the eye tracker verified that the children had fixed their gaze on the eyes. © 2013 Scientific American

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 11: Emotions, Aggression, and Stress
Link ID: 18693 - Posted: 09.24.2013

Emily Underwood Jackie Murphy didn't worry that her son Fintan was a late talker, at least at first. Her other two children had been slow to say their first words, so it was only when the former California nurse noticed that her 20-month-old wasn't responding to his name, or even reacting to loud noises, that she became concerned. "One day, I dropped a toy xylophone behind him and he didn't even flinch," she says. "That's when I knew something was wrong." Fintan didn't have a hearing problem—he had autism, his mom finally learned after more than 6 months of searching for a diagnosis. A few months later, Murphy enrolled Fintan in the Autism Phenome Project at the MIND Institute at the University of California (UC), Davis, a long-term assessment of children, as many as 1800, aimed at teasing out subtypes of the complex disorder. Murphy also became a research subject, donating a blood sample. One of the project's researchers, Melissa Bauman, soon informed Murphy that her blood had tested positive for antibodies that react to fetal brain proteins. Bauman asked her to donate more blood for studies exploring the provocative idea that some of Murphy's antibodies had slipped through the placenta and into Fintan's developing brain, affecting its maturation. At that point, Murphy says, she and her husband made a big decision: Fearing that the immune proteins in her blood would harm another baby, they decided that she would not again get pregnant. Many more women could face a similarly difficult choice. In July, immunologist Judy Van de Water and her team at UC Davis, which includes Bauman and Daniel Braunschweig, bolstered the hypothesis that maternal antibodies cause some autism with two studies, including one showing autismlike symptoms in monkeys injected with such antibodies. And women may soon be able to check whether they have the suspect antibodies: California company Pediatric Bioscience announced that it is moving forward with a new diagnostic test, based on patented antibody screening techniques licensed from Van de Water and UC Davis. © 2013 American Association for the Advancement of Science

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 15: Emotions, Aggression, and Stress
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 11: Emotions, Aggression, and Stress
Link ID: 18646 - Posted: 09.14.2013

by Simon Makin Autism may shape the brains of women differently to those of men. The condition seems to cause female, but not male, brains to look more masculine, suggesting that one controversial view of autism – as an extreme version of the male brain – may need rethinking. Simon Baron-Cohen at the Autism Research Centre in Cambridge, UK, has previously found that men tend to be better at systematising tasks and females better at ones involving empathising. As people with autism tend to be good systematisers and below-average empathisers, he has argued that autism may be an extreme version of the male brain, or EMB. However, the theory is contentious. "The jury is still out," says autism researcher Uta Frith of University College London. That's partly because of the difficulty in pinning down the source of the gender differences. "It's far from clear which male-female differences are biological and which are cultural," says developmental psychologist Caspar Addyman, of the Birkbeck Babylab at the University of London. In their latest study, Baron-Cohen's team used MRI scans to look for differences in the volume of brain regions in 120 adults, split into four equal groups – men and women, with and without autism. The researchers first compared the brains of males with and without autism, then did the same for female brains. They then compared these two differences. "If autism manifests the same in both genders, these two differences should be alike," says Baron-Cohen's colleague at the Autism Research Centre Meng-Chuan Lai, "but if not, they should be different – and this is what we found." © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 8: Hormones and Sex
Link ID: 18504 - Posted: 08.14.2013

The Associated Press The biggest study of its kind suggests autism might be linked with inducing and speeding up labour, preliminary findings that need investigating since labour is induced in increasing numbers of U.S. women, the authors and other autism experts say. It's possible that labour-inducing drugs might increase the risk — or that the problems that lead doctors to start labour explain the results. These include mothers' diabetes and fetal complications, which have previously been linked with autism. There is a growing consensus that risks for autism occur before birth or soon after.There is a growing consensus that risks for autism occur before birth or soon after. (Veejay Villafranca/Getty ) Like most research into autism causes, the study doesn't provide conclusive answers, and the authors say the results shouldn't lead doctors to avoid inducing labour or speeding it up since it can be life-saving for mothers and babies. Simon Gregory, lead author and an associate professor of medicine and medical genetics at Duke University, emphasized, "We haven't found a connection for cause and effect. One of the things we need to look at is why they were being induced in the first place." Government data suggest 1 in 5 U.S. women have labour induced — twice as many as in 1990. Smaller studies suggested a possible tie between induced labour and autism, but the new research is the largest to date, involving more than 600,000 births. The government-funded study was published online Monday in JAMA Pediatrics. © CBC 2013

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 5: Hormones and the Brain
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 8: Hormones and Sex
Link ID: 18503 - Posted: 08.14.2013

By GINA KOLATA Researchers studying two seemingly unrelated conditions — autism and cancer — have unexpectedly converged on a surprising discovery. Some people with autism have mutated cancer or tumor genes that apparently caused their brain disorder. Ten percent of children with mutations in a gene called PTEN, which causes cancers of the breast, colon, thyroid and other organs, have autism. So do about half of children with gene mutations that can lead to some kinds of brain and kidney cancer and large tumors in several organs, including the brain. That is many times the rate of autism in the general population. “It’s eerie,” Evan Eichler, a professor of genome science at the University of Washington, said about the convergence. He and others caution that the findings apply to only a small proportion of people with autism; in most cases, the cause remains a mystery. And as with nearly all genetic disorders, not everyone with the mutations develops autism or cancer, or other disorders associated with the genes, like epilepsy, enlarged brains and benign brain tumors. But researchers say the findings are intriguing, given that there are no animals that naturally get autism, no way of analyzing what might cause autism in developing brains and no cure. The newly discovered link has enabled scientists to genetically engineer mice with many symptoms of the human disorder. And it has led to the first clinical trial of a treatment for children with autism, using the drug that treats tumors that share the same genetic basis. Richard Ewing of Nashville, a 10-year-old who has a form of autism caused by a tumor-causing gene, is among those in the new study. His parents, Alexandra and Rick Ewing, know he is at risk for tumors in the brain, heart, kidney, skin and eyes. But that bad news was tempered by his eligibility for the clinical trial, which has only just started. © 2013 The New York Times Company

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 18493 - Posted: 08.12.2013

Autism affects male and female brains differently, a study has suggested. UK experts studied brain scans of 120 men and women, with half of those studied having autism. The differences found in the research, published in journal Brain, show more work is needed to understand how autism affects girls, the scientists say. Experts said girls with the condition could be more stigmatised than boys - and it could be harder for them to be diagnosed at all. Autism affects 1% of the population and is more prevalent in boys, so most research has focused on them. In this study, scientists from the Autism Research Centre at the University of Cambridge used magnetic resonance imaging (MRI) to examine how autism affects the brain of males and females. The study looked at the difference between the brains of typical males and those with autism - and then females with and without autism. They found the brains of females with autism "look" more like - but still not the same as - healthy males, when compared with healthy females. But the same kind of difference was not seen in males with autism - so their brains did not show "extreme" male characteristics. Dr Meng-Chuan Lai, who worked on the study said: "What we have known about autism to date is mainly male-biased. BBC © 2013

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 8: Hormones and Sex
Link ID: 18482 - Posted: 08.10.2013

by Nora Schultz A unique population in northern Finland has helped reveal that schizophrenia, some autism spectrum disorders and other forms of cognitive impairment may all share a common genetic pathway. In Finland, there exist several small communities that used to live for years in isolation. Amongst the descendants of these groups, otherwise rare genes occur more regularly than elsewhere in the country because a level of inbreeding was almost inevitable. Nelson Freimer at the University of California, Los Angeles, and colleagues studied one of these communities, where schizophrenia and other neurological disorders are unusually common. His team first searched for any genetic deletions – chunks of DNA that are missing from a chromosome – that were more common in this group than in the general population. They found a promising candidate on chromosome 22. A deletion on this chromosome was present in 18 of 173 people from this isolated group, but in just one of the 1586 samples taken from people spread throughout the rest of Finland. Tests confirmed that people with schizophrenia or cognitive impairments were more likely to be missing this chunk of DNA. Identifying this deletion as a risk factor for schizophrenia and cognitive impairment puts us one step closer to understanding the biological processes at the root of such complex syndromes, says Freimer. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 16: Psychopathology: Biological Basis of Behavior Disorders
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 12: Psychopathology: Biological Basis of Behavioral Disorders
Link ID: 18472 - Posted: 08.07.2013

By Bahar Gholipour, Children with Asperger's syndrome show patterns of brain connectivity distinct from those of children with autism, according to a new study. The findings suggest the two conditions, which are now in one category in the new psychiatry diagnostic manual, may be biologically different. The researchers used electroencephalography (EEG) recordings to measure the amount of signaling occurring between brain areas in children. They had previously used this measure of brain connectivity to develop a test that could distinguish between children with autism and normally developing children. "We looked at a group of 26 children with Asperger's, to see whether measures of brain connectivity would indicate they're part of autism group, or they stood separately," said study researcher Dr. Frank Duffy, a neurologist at Boston's Children Hospital. The study also included more than 400 children with autism, and about 550 normally developing children, who served as controls. At first, the test showed that children with Asperger's and those with autism were similar: both showed weaker connections, compared with normal children, in a region of the brain's left hemisphere called the arcuate fasciculus, which is involved in language. However, when looking at connectivity between other parts of the brain, the researchers saw differences. Connections between several regions in the left hemisphere were stronger in children with Asperger's than in both children with autism and normally developing children. © 2013 Yahoo! Inc

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 18461 - Posted: 08.06.2013