Links for Keyword: Development of the Brain

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 680

By Dina Fine Maron The game is a contemporary of the original Nintendo but it still appeals to today’s teens and lab monkeys alike—which is a boon for neuroscientists. It offers no lifelike graphics. Nor does it boast a screen. Primate players—whether human or not—are simply required to pull levers and replicate patterns of flashing lights. Monkeys get a banana-flavored treat as a reward for good performance whereas kids get nickels. But the game's creators are not really in it for fun. It was created by toxicologists at the U.S. Food and Drug Administration in the 1980s to study how chronic exposure to marijuana smoke affects the brain. Players with trouble responding quickly and correctly to the game’s commands may have problems with short-term memory, attention or other cognitive issues. The game has since been adapted to address a different question: whether anesthetics used to knock pediatric patients unconscious during surgery and diagnostic tests could affect a youngster's long-term neural development and cognition. Despite 20 years’ worth of experiments in young rodents and monkeys, there have been few definitive answers. To date, numerous studies suggest that being put under with anesthesia early in life seems somehow related to future cognitive problems. But whether this association is causal or merely coincidence is unclear. Researchers do know that the young human brain is exceptionally sensitive. When kids are exposed to certain harmful chemicals in their formative years, that experience can fundamentally alter the brain’s architecture by misdirecting the physical connections between neurons or causing cell deaths. But unraveling whether anesthetics may fuel such long-term damage in humans remains a challenge. © 2015 Scientific American

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 14: Biological Rhythms, Sleep, and Dreaming
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 10: Biological Rhythms and Sleep
Link ID: 21116 - Posted: 07.01.2015

Sharon Darwish Bottlenose dolphins have an average brain mass of 1.6 kg, slightly greater than that of humans, and about four times the size of chimpanzee brains. Although you couldn’t really imagine a dolphin writing poetry, dolphins demonstrate high levels of intelligence and social behaviour. For example, they display mirror self-recognition, as well as an understanding of symbol-based communication systems. Research into the differing brain sizes and intellectual capabilities within the animal kingdom is fascinating. Why have some species evolved to be more intelligent than others? Does brain size affect cognitive ability? Some studies say yes, but some insist otherwise. It really depends which species we are talking about. In humans, for example, larger brains do not indicate higher intelligence – otherwise Einstein, who had an average-sized brain, may have not been quite as successful in his career. (Yes, that link was to a 23-pager on the analysis of Einstein’s brain. It makes for great bedtime reading.) Most neuroscientists now believe that it is the structure of the brain on a cellular and molecular level that determines its computational capacity. Within certain animal species however, a larger brain offers evolutionary advantage. For example, large-brained female guppies are better survivors and demonstrate greater cognitive strengths than their smaller-brained counterparts. © 2015 Guardian News and Media Limited

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 21102 - Posted: 06.27.2015

Maanvi Singh Teenagers aren't exactly known for their responsible decision making. But some young people are especially prone to making rash, risky decisions about sex, drugs and alcohol. Individual differences in the brain's working memory — which allows people to draw on and use information to make decisions — could help explain why some adolescents are especially impulsive when it comes to sex, according to a study published Wednesday in Child Development. "Working memory is the ability to keep different things in mind when you're making decisions or problem solving," explains Atika Khurana, an assistant professor of counseling psychology at the University of Oregon who led the study. Khurana and her colleagues rounded up 360 adolescents, ages 12 to 15, and assessed their working memory using a series of tests. For example, the researchers told the participants a string of random numbers and asked them to repeat what they heard in reverse order. "We basically tested their ability to keep information in mind while making decisions," Khurana says. The researchers then tracked all the participants for two years, and asked about the teens' sexual activity. And through another series of tests and surveys, the researcher tried to gauge how likely each teen was to act without thinking, to make rash decisions and take risks. There was a correlation between weaker working memory and the likelihood that a teen would have sex — including unprotected sex — at a younger age. And they were more likely to act without much deliberation. That trend held true even after the researchers accounted for the teenagers' age, socioeconomic status and gender. © 2015 NPR

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 14: Attention and Consciousness
Link ID: 21070 - Posted: 06.18.2015

A patient tormented by suicidal thoughts gives his psychiatrist a few strands of his hair. She derives stem cells from them to grow budding brain tissue harboring the secrets of his unique illness in a petri dish. She uses the information to genetically engineer a personalized treatment to correct his brain circuit functioning. Just Sci-fi? Yes, but... An evolving “disease-in-a-dish” technology, funded by the National Institutes of Health (NIH), is bringing closer the day when such a seemingly futuristic personalized medicine scenario might not seem so far-fetched. Scientists have perfected mini cultured 3-D structures that grow and function much like the outer mantle – the key working tissue, or cortex — of the brain of the person from whom they were derived. Strikingly, these “organoids” buzz with neuronal network activity. Cells talk with each other in circuits, much as they do in our brains. Sergiu Pasca, M.D. External Web Site Policy, of Stanford University, Palo Alto, CA, and colleagues, debut what they call “human cortical spheroids,” May 25, 2015 online in the journal Nature Methods. Prior to the new study, scientists had developed a way to study neurons differentiated from stem cells derived from patients’ skin cells — using a technology called induced pluripotent stem cells (iPSCs). They had even produced primitive organoids by coaxing neurons and support cells to organize themselves, mimicking the brain’s own architecture. But these lacked the complex circuitry required to even begin to mimic the workings of our brains.

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 20998 - Posted: 05.30.2015

Children developed better fine-motor skills when the clamping of their umbilical cord at birth was delayed several minutes compared with just seconds, according to a new randomized trial. Delaying clamping allows fetal blood circulating in the placenta to be transfused to the infant, which has been shown to reduce iron deficiency at four to six months of age. Now the longer term benefits of a delay are becoming clearer. Researchers in Sweden randomly assigned 382 full-term infants born after low-risk pregnancies to be clamped at least three minutes after delivery or within 10 seconds of birth. When the children were four, a psychologist assessed them on standard tests of IQ, motor skills and behaviour. The parents also filled in questionnaires about their child's communication and social skills. "Delayed cord clamping compared with early cord clamping improved scores and reduced the number of children having low scores in fine-motor skills and social domains," the study's lead author, Dr. Ola Andersson of Uppsala University in Sweden, and his co-authors said in Tuesday's issue of JAMA Pediatrics. The fine-motor skill tests showed those in the delayed clamping group had a more mature pencil grip. There was also a difference in boys, who researchers said are generally more prone to iron deficiency than girls. Boys showed more improvements in fine-motor skills with delayed clamping. Andersson said delayed cord clamping can have quite an effect on the amount of iron in the blood, which is important for brain development just after birth. ©2015 CBC/Radio-Canada.

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 20988 - Posted: 05.27.2015

by Ashley Yeager This guest post is by SN's web producer Ashley Yeager, who can't remember ever not knowing how to swim. Sometimes my brother-in-law will scoop up my 2-year-old niece and fly her around like Superwoman. She’ll start kicking her legs and swinging her arms like she’s swimming — especially when we say, “paddle, paddle, paddle.” My niece, Baby D, loves the water. She often looks like one of the kids captured in famed photographer Seth Casteel’s new book, Underwater Babies. But she probably won’t remember her first trips to the pool — she was only a few months old when her mom first took her swimming. Part of my sister’s reasoning for such an early start was standard water safety. Every day in the United States, accidental drowning claims the lives of two children under the age of 14 years. Our family spends a lot of time at the pool and the beach, so making sure Baby D is protected is a priority. But there’s another reason my sister was keen to get Baby D to the pool. Loosely based on something our mother told us, it’s that learning to swim early in life may give kids a head start in developing balance, body awareness and maybe even language and math skills. Mom may have been right. A multi-year study released in 2012 suggests that kids who take swim lessons early in life appear to hit certain developmental milestones well before their nonswimming peers. In the study, Australian researchers surveyed about 7,000 parents about their children’s development and gave 177 kids aged 3 to 5 years standard motor, language, memory and attention tests. Compared with kids who didn’t spend much time in the water, kids who had taken swim lessons seemed to be more advanced at tasks like running and climbing stairs and standing on their tiptoes or on one leg, along with drawing, handling scissors and building towers out of blocks. © Society for Science & the Public 2000 - 2015.

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 13: Memory, Learning, and Development
Link ID: 20955 - Posted: 05.20.2015

Ian Sample, science editor Brain scans of children who were born prematurely have revealed differences in the connectivity of key regions that may play a role in developmental disorders. Previous studies have already highlighted that children who are born preterm are more at risk of autism and other behavioural conditions, such as the poor attention that is associated with ADHD, or attention deficit hyperactivity disorder. The new findings could help doctors understand why preterm children are so often affected, and work out whether medications or different styles of care could help the children reach their full potential. Researchers at King’s College London scanned the brains of 66 infants on average 42 weeks after their mothers’ last period before the birth. Forty seven of the babies were born prematurely, at less than 33 weeks. The other 19 babies were born on average after 40 weeks gestation. In their final weeks in the womb, babies’ brains are building connections at an incredible rate, which makes them particularly sensitive to changes in the last trimester. If a baby is born prematurely, the crucial period of brain growth happens in the radically different environment of the neonatal unit. From the MRI scans, the scientists found that infants born prematurely had increased connectivity in only one part of the brain they tested. A region called the thalamus, a kind of neural relay station, was better connected to a part called the lateral sensory cortex, which handles signals from the mouth, lips and jaw. The result might be explained by pre-term babies breast or bottle feeding much earlier, or being given dummies while on supportive breathing machines. © 2015 Guardian News and Media Limited

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 14: Attention and Consciousness
Link ID: 20890 - Posted: 05.05.2015

James Gorman If modern science is right, the great mystery of embryonic development is less about how life unfolds, and more about how it folds. Embryos of many organisms grow from two cells to four, then eight, and so on until there are thousands in a kind of ball. Then sheets of cells start to make folds or furrows as the basic shape of the creature — fly or fish or human — begins to emerge. One of the most striking examples is a moment in the development of Volvox, a kind of algae that forms one of the simplest multicellular organisms. When it is a sphere of a few thousand cells, it reaches adult size, but not adult shape. So it turns itself inside out. Scientists at the University of Cambridge in England have made a time-lapse recording of the process that shows it in three dimensions for the first time and has enough detail that researchers can check their mathematical descriptions of the transformation. © 2015 The New York Times Company

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 20888 - Posted: 05.05.2015

by Laura Sanders Here I am, fresh off of my second maternity leave ready to serve up lots of juicy fresh science about babies. And I would love to do that, if only I were sleeping more at night. With her intoxicating baby aroma, squishy face and sweet little coos, our newest little daughter is irresistible by day. Night is another story altogether. And it’s a sad one. Our tale begins and ends with her cries wrenching me from a dead sleep over and over again. Sometimes I lie in bed for a split second, deluding myself into thinking that maybe this time she’ll go back to sleep. That pause is long enough for me to notice all the ways her cries affect me: Pounding heart, sweaty hands and feet, and most importantly, a single-minded, maniacal focus on that sound. Evolution didn’t give babies many ways to communicate, but the method they have, crying, sure gets the job done. So I read with interest an April 23 study in Nature that explains one way in which baby cries sledgehammer a mother’s brain. Upon hearing a lost pup’s cries, mother mice promptly go and fetch the wayward pup by the scruff of its neck. But this behavior has to be learned — a first-time mom isn’t as attuned to the sounds of her pups’ cries. As she gets the hang of that whole mothering thing, the momma mouse’s brain gets better at picking the sound of a distant crying pup out of the background din. These pup cries bore their way into the mother’s brain in an interesting way, the researchers found. © Society for Science & the Public 2000 - 2015.

Related chapters from BP7e: Chapter 15: Emotions, Aggression, and Stress; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 11: Emotions, Aggression, and Stress; Chapter 8: Hormones and Sex
Link ID: 20864 - Posted: 04.30.2015

by Katie Collins Sarah-Jayne Blakemore is just as fascinated by the links between neuroscience and education as she is outraged by the pseudo science that often intrudes upon this territory. Neuroscience in education has really been flourishing in recent years, she says on stage at WIRED Health 2015, but some theories about neuroscience have already infiltrated schools, and not necessarily in a good way. Some products that makes claims about having a positive effect on cognition make bogus claims that may well have positive effects in the classroom, but at the same time promote completely inaccurate science. Blakemore points specifically to the Brain Gym educational model, which claims to improve memory, concentration and information retention. There are no problems with the exercises themselves, she says, but the claims made about the brain are baseless. For a start, she said, Brain Gym claims that children can push "brain buttons" on their bodies that will stimulate blood flow to the brain. Another physical exercise claimed to increase and improve connectivity between the two sides of the brain. "This makes no sense -- they are in communication anyway," says Blakemore. Teachers like Brain Gym because it does what it says and results in improvements in the classroom, but it could just as easily be placebo or novelty causing the effects. One thing Blakemore is sure of? "They're nothing to do with brain buttons or coordinating the two brain hemispheres."

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 14: Attention and Consciousness
Link ID: 20844 - Posted: 04.25.2015

Mothers may influence the mood and behaviour of their babies through their breast milk, researchers say. There's growing evidence that mother's milk doesn't just affect the growth of a baby's body "but also areas of their brain that shape their motivations, their emotions, and therefore their behavioural activity," says Katie Hinde, an assistant professor of human evolutionary biology at Harvard University. In a paper published in the journal Evolution, Medicine and Public Health, Hinde and two other researchers propose a way in which the composition of breast milk could influence a baby's brain and behaviour. If food is scarce or there are a lot of predators around, it may be better for a mother to have a baby that is calmer and focuses on growing rather than one that is very active and playful, Hinde told CBC Radio's Quirks & Quarks in an interview that airs Saturday. It may be possible to influence a baby's activity level by changing the composition of the milk to affect the bacteria in the infant's gut, she added. Breast milk contains a lot of sugars that infants can't digest, but that feed bacteria that live in human intestines. Those bacteria don't just help digest food, said Hinde. "They can release chemical signals that travel to the infant's brain and shape neurodevelopment." ©2015 CBC/Radio-Canada

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 8: Hormones and Sex
Link ID: 20813 - Posted: 04.18.2015

by Beth Mole Small doses of lead may have big impacts on reading and math scores, scientists report April 7 in Environmental Health. Researchers looked at third grade test scores and levels of lead in blood samples from 58,650 students in Chicago public schools. As little as 2 micrograms of lead per deciliter of blood was associated with lower reading and math scores. The Centers for Disease Control and Prevention recommends that anything above 5 micrograms per deciliter is of concern. The researchers estimate that childhood lead levels at or above 5 micrograms per deciliter of blood accounted for as many as 25 percent of the children in the study failing reading and math standardized tests. The findings confirm that lead exposure, even at low doses, is associated with poor school performance. © Society for Science & the Public 2000 - 2015

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Link ID: 20809 - Posted: 04.18.2015

Cory Turner To survive, we humans need to be able to do a handful of things: breathe, of course. And drink and eat. Those are obvious. We're going to focus now on a less obvious — but no less vital — human function: learning. Because new research out today in the journal Science sheds light on the very building blocks of learning. Imagine an 11-month-old sitting in a high chair opposite a small stage where you might expect, say, a puppet show. Except this is a lab at Johns Hopkins University. Instead of a puppeteer, a researcher is rolling a red and blue striped ball down a ramp, toward a little wall at the bottom. Even babies seem to know the ball can't go through that wall, though not necessarily because they learned it. It's what some scientists call core knowledge — something, they say, we're born with. "Some pieces of knowledge are so fundamental in guiding regular, everyday interactions with the environment, navigating through space, reaching out and picking up an object, avoiding an oncoming object — those things are so fundamental to survival that they're really selected for by evolution," says Lisa Feigenson, a professor of psychological and brain sciences at Hopkins and one of the researchers behind this study. Which explains why the baby seems genuinely surprised when the ball rolls down the ramp and does go through the wall — thanks to some sleight of hand by the researchers: © 2015 NPR

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 20756 - Posted: 04.04.2015

Sara Reardon A new study finds that children's cognitive skills are linked to family income. The stress of growing up poor can hurt a child’s brain development starting before birth, research suggests — and even very small differences in income can have major effects on the brain. Researchers have long suspected that children’s behaviour and cognitive abilities are linked to their socioeconomic status, particularly for those who are very poor. The reasons have never been clear, although stressful home environments, poor nutrition, exposure to industrial chemicals such as lead and lack of access to good education are often cited as possible factors. In the largest study of its kind, published on 30 March in Nature Neuroscience1, a team led by neuroscientists Kimberly Noble from Columbia University in New York City and Elizabeth Sowell from Children's Hospital Los Angeles, California, looked into the biological underpinnings of these effects. They imaged the brains of 1,099 children, adolescents and young adults in several US cities. Because people with lower incomes in the United States are more likely to be from minority ethnic groups, the team mapped each child’s genetic ancestry and then adjusted the calculations so that the effects of poverty would not be skewed by the small differences in brain structure between ethnic groups. The brains of children from the lowest income bracket — less than US$25,000 — had up to 6% less surface area than did those of children from families making more than US$150,000, the researchers found. In children from the poorest families, income disparities of a few thousand dollars were associated with major differences in brain structure, particularly in areas associated with language and decision-making skills. Children's scores on tests measuring cognitive skills, such as reading and memory ability, also declined with parental income. © 2015 Nature Publishing Group,

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 8: Hormones and Sex
Link ID: 20741 - Posted: 03.31.2015

Hannah Devlin, science correspondent Scientists have raised the alert about an antibiotic routinely prescribed for chest infections, after linking it to an increased risk of epilepsy and cerebral palsy in children whose mothers took the drug during pregnancy. Children of mothers who had taken macrolide antibiotics were found to be almost twice as likely to be affected by the conditions, prompting scientists to call for a review of their use during pregnancy. The study authors urged pregnant women not to stop taking prescribed antibiotics, however. The potential adverse effects are rare and, as yet, unproven, while infections during pregnancy are a well-established cause of health problems in babies. Professor Ruth Gilbert, a clinical epidemiologist who led the research at University College London, said: “The main message is for medicines regulators and whether they need to issue a warning about these drugs. For women, if you’ve got a bacterial infection, it’s more important to get on and treat it.” The study tracked the children of nearly 65,000 women who had been prescribed a variety of antibiotics for illnesses during pregnancy, including chest and throat infections and cystitis. There was no evidence that most antibiotics (including penicillin, which made up 67% of prescriptions), led to an increased risk of the baby developing cerebral palsy or epilepsy. However, when the antibiotics were compared head-to-head, the potential adverse effect of macrolide drugs emerged. Around 10 in 1,000 children whose mothers were given the drug had developed the conditions by the age of seven, compared to 6 in 1,000 children, for those who had other types of antibiotic. © 2015 Guardian News and Media Limited

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 3: Neurophysiology: The Generation, Transmission, and Integration of Neural Signals
Link ID: 20723 - Posted: 03.26.2015

Michaeleen Doucleff Malaria is one of the oldest scourges of mankind. Yet it's been a mystery how the deadliest form of the disease kills children. One doctor in Michigan has dedicated her life to figuring that out. Now she and her team report their findings in this week's issue of the New England Journal of Medicine. The key to solving the mystery was looking inside the brain. Most of the time malaria causes a bad fever and body aches. But in rare cases — often in children — the parasite gets stuck in the capillaries of the brain. The child has a seizure, goes into a coma and can die. This all happens in only two or three days, says Dr. Terrie Taylor of Michigan State University. "These are bright, happy children who are suddenly felled by a disease that quickly renders them unconscious. And quickly kills them. It's a catastrophe." The sudden death of a child devastates not just the family but the whole community, Taylor says: "Imagine the ripple effects on their friends and their siblings. Suddenly their friends are gone. Just gone." Since 1986, Taylor has been treating children with severe malaria at Queen Elizabeth Central Hospital in Blantyre, Malawi. Seeing so many families deal with these huge losses, year after year, made Taylor focus her career on one goal: Figuring out why some children die from cerebral malaria but others soon recover. © 2015 NPR

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 20702 - Posted: 03.19.2015

A long-term study has pointed to a link between breastfeeding and intelligence. The research in Brazil traced nearly 3,500 babies, from all walks of life, and found those who had been breastfed for longer went on to score higher on IQ tests as adults. Experts say the results, while not conclusive, appear to back current advice that babies should be exclusively breastfed for six months. But they say mothers should still have a choice about whether or not to do it. Regarding the findings - published in The Lancet Global Health - they stress there are many different factors other than breastfeeding that could have an impact on intelligence, although the researchers did try to rule out the main confounders, such as mother's education, family income and birth weight. Dr Bernardo Lessa Horta, from the Federal University of Pelotas in Brazil, said his study offers a unique insight because in the population he studied, breastfeeding was evenly distributed across social class - not something just practised by the rich and educated. Most of the babies, irrespective of social class, were breastfed - some for less than a month and others for more than a year. Those who were breastfed for longer scored higher on measures of intelligence as adults. They were also more likely to earn a higher wage and to have completed more schooling. Dr Horta believes breast milk may offer an advantage because it is a good source of long-chain saturated fatty acids which are essential for brain development. But experts say the study findings cannot confirm this and that much more research is needed to explore any possible link between breastfeeding and intelligence. © 2015 BBC.

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 1: Biological Psychology: Scope and Outlook
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 1: An Introduction to Brain and Behavior
Link ID: 20699 - Posted: 03.19.2015

|By Daisy Yuhas The brain is a hotbed of electrical activity. Scientists have long known that brain cells communicate via electrical missives, created by charged atoms and molecules called ions as they travel across the membranes of those cells. But a new study suggests that in the days and weeks that lead up to a brain forming in an embryo or fetus, altering the electrical properties of these cells can dramatically change how the ensuing brain develops. Researchers at Tufts University and the University of Minnesota have investigated how the difference in charge on either side of a resting cell’s membrane—its electrical potential—helps build the brain. In previous work Tufts University developmental biologist Michael Levin found that patterns of electrical potentials in the earliest stages of an embryo’s development can direct how an animal’s body grows, and that manipulating those potentials can cause a creature to sprout extra limbs, tails or functioning eyes. Now, Levin’s group has investigated how these potentials shape the brain. Working with frog embryos the researchers first used dyes to see the patterns of electrical potentials that precede brain development. They noticed that before the development of a normal brain the cells lining the neural tube, a structure that eventually becomes the brain and spinal cord, have extreme differences in ionic charge within and outside the membrane that houses the cells. In other words, these cells are extremely polarized. © 2015 Scientific American

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 20684 - Posted: 03.12.2015

Children who attend school in heavy traffic areas may show slower cognitive development and lower memory test scores, Spanish researchers have found. About 21,000 premature deaths are attributed to air pollution in Canada each year, according to the Canadian Medical Association. The detrimental effects of air pollution on cardiovascular health and on the lungs are well documented and now researchers are looking at its effects on the brain. To that end, Dr. Jordi Sunyer and his colleagues from the Centre for Research in Environmental Epidemiology in Barcelona measured three aspects of memory and attentiveness in more than 2,700 primary school children every three months over 12 months. "What was surprising for us is among our children, we see very robust, consistent effects," Sunyer said Tuesday from Rome. The associations between slower cognitive development and higher levels of air pollutants remained after the researchers took factors such as parents’ education, commuting time, smoking in the home and green spaces at school into account. The researchers measured air pollutants from traffic twice, in the school courtyard and inside the classroom for schools with high and low traffic-related air pollution. Pollutants from burning fossil fuels, carbon, nitrogen dioxide and ultrafine particles were measured. For example, working memory improved 7.4 per cent among children in highly polluted schools compared with 11.5 per cent among those in less polluted schools. ©2015 CBC/Radio-Canada.

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 4: The Chemistry of Behavior: Neurotransmitters and Neuropharmacology
Link ID: 20650 - Posted: 03.04.2015

By Elizabeth Pennisi Last week, researchers expanded the size of the mouse brain by giving rodents a piece of human DNA. Now another team has topped that feat, pinpointing a human gene that not only grows the mouse brain but also gives it the distinctive folds found in primate brains. The work suggests that scientists are finally beginning to unravel some of the evolutionary steps that boosted the cognitive powers of our species. “This study represents a major milestone in our understanding of the developmental emergence of human uniqueness,” says Victor Borrell Franco, a neurobiologist at the Institute of Neurosciences in Alicante, Spain, who was not involved with the work. The new study began when Wieland Huttner, a developmental neurobiologist at the Max Planck Institute of Molecular Cell Biology and Genetics in Dresden, Germany, and his colleagues started closely examining aborted human fetal tissue and embryonic mice. “We specifically wanted to figure out which genes are active during the development of the cortex, the part of the brain that is greatly expanded in humans and other primates compared to rodents,” says Marta Florio, the Huttner graduate student who carried out the main part of the work. That was harder than it sounded. Building a cortex requires several kinds of starting cells, or stem cells. The stem cells divide and sometimes specialize into other types of “intermediate” stem cells that in turn divide and form the neurons that make up brain tissue. To learn what genes are active in the two species, the team first had to develop a way to separate out the various types of cortical stem cells. © 2015 American Association for the Advancement of Science

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 6: Evolution of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 20628 - Posted: 02.27.2015