Links for Keyword: Development of the Brain

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 61 - 80 of 765

Laura Sanders It didn’t take a lot of brainpower to come up with the name for a nerve cell that looks like a bushy, round tangle of fibers perched atop a nucleus. Meet the shrub cell. This botanically named cell, discovered in the brains of adult mice, made its formal debut in the Nov. 27 Science. The newly described cell lives in a particular nervy neighborhood — an area called layer 5 in the part of the brain that handles incoming visual information. Xiaolong Jiang of Baylor College of Medicine in Houston and colleagues defined shrub cells and other newcomers by their distinct shapes, their particular connections to other nerve cells or their similarities to nerve cells found elsewhere. Joining shrub cells are the freshly named horizontally elongated cells, deep-projecting cells, L5 basket cells and L5 neurogliaform cells. Each is an interneuron, a middleman that connects nerve cells to each other. The finding highlights the stunning variety of shapes and wiring patterns of cells in the brain. Citations X. Jiang et al. Principles of connectivity among morphologically defined cell types in adult neocortex. Science. Vol. 350, November 27, 2015. doi: 10.1126/science.aac9462 © Society for Science & the Public 2000 - 2015.

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 21754 - Posted: 01.07.2016

By Katrina Schwartz It has become a cultural cliché that raising adolescents is the most difficult part of parenting. It’s common to joke that when kids are in their teens they are sullen, uncommunicative, more interested in their phones than in their parents and generally hard to take. But this negative trope about adolescents misses the incredible opportunity to positively shape a kid’s brain and future life course during this period of development. “[Adolescence is] a stage of life when we can really thrive, but we need to take advantage of the opportunity,” said Temple University neuroscientist Laurence Steinberg at a Learning and the Brain conference in Boston. Steinberg has spent his career studying how the adolescent brain develops and believes there is a fundamental disconnect between the popular characterizations of adolescents and what’s really going on in their brains. Because the brain is still developing during adolescence, it has incredible plasticity. It’s akin to the first five years of life, when a child’s brain is growing and developing new pathways all the time in response to experiences. Adult brains are somewhat plastic as well — otherwise they wouldn’t be able to learn new things — but “brain plasticity in adulthood involves minor changes to existing circuits, not the wholesale development of new ones or elimination of others,” Steinberg said. Adolescence is the last time in a person’s life that the brain can be so dramatically overhauled. © 2015 KQED Inc.

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 8: Hormones and Sex
Link ID: 21729 - Posted: 12.29.2015

A new, open-source software that can help track the embryonic development and movement of neuronal cells throughout the body of the worm, is now available to scientists. The software is described in a paper published in the open access journal, eLife on December 3rd by researchers at the National Institute of Biomedical Imaging and Bioengineering (NIBIB) and the Center for Information Technology (CIT); along with Memorial Sloan-Kettering Institute, New York City; Yale University, New Haven, Connecticut; Zhejiang University, China; and the University of Connecticut Health Center, Farmington. NIBIB is part of the National Institutes of Health. As far as biologists have come in understanding the brain, much remains to be revealed. One significant challenge is determining the formation of complex neuronal structures made up of billions of cells in the human brain. As with many biological challenges, researchers are first examining this question in simpler organisms, such as worms. Although scientists have identified a number of important proteins that determine how neurons navigate during brain formation, it’s largely unknown how all of these proteins interact in a living organism. Model animals, despite their differences from humans, have already revealed much about human physiology because they are much simpler and easier to understand. In this case, researchers chose Caenorhabditis elegans (C. elegans), because it has only 302 neurons, 222 of which form while the worm is still an embryo. While some of these neurons go to the worm nerve ring (brain) they also spread along the ventral nerve cord, which is broadly analogous to the spinal cord in humans. The worm even has its own versions of many of the same proteins used to direct brain formation in more complex organisms such as flies, mice, or humans.

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 21678 - Posted: 12.08.2015

In Greek mythology, the Hydra was a gigantic, snake-like monster with nine heads and poisonous blood and breath, which lurked in the swamps of Lerna. Heracles was sent to destroy the beast as one of his twelve labours, but when he decapitated one of its heads, two more grew back in its place. He eventually defeated it with the help of his trusty nephew Iolaus, however, by burning out the severed roots with firebrands to prevent the regrowth, then decapitating its one immortal head and burying it under a heavy rock. The real Hydra has regenerative capacities that surpass those of its mythological namesake. When it is dismembered, any fragment of its body can regenerate to form a completely new individual, and it can even remain alive after its entire nervous system has been lost. Researchers in Switzerland now report that it does so by adapting its skin cells to make them behave more like neurons. Their findings provide clues about how nerve cells first evolved, billions of years ago. Hydra is a small freshwater polyp with a tubular body consisting of just two layers of cells, and a network of nerves that controls its movements, feeding, and its light-sensitive stinging tentacles. The central region of its body contains specialized, multi-purpose skin cells which can contract and detect mechanical stimuli. These so-called ‘i-cells’ also act as stem cells, continuously renewing themselves, while also producing immature nerve cells that migrate out to the extremities, where they differentiate to form the dense nerve net. © 2015 Guardian News and Media Limited

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 21663 - Posted: 11.28.2015

by Laura Sanders Babies’ minds are mysterious. Thoughts might be totally different in a brain that lacks words, and sensations might feel alien in a body so new. Are babies’ perceptions like ours, or are they completely different? Even if babies could talk, words would surely fail to convey what it’s like to experience, oh, every single thing for the first time. A recent paper offers a sliver of insight into young babies’ inner lives. The study, published October 19 in Current Biology, finds an example in which 4-month-old babies are happily oblivious to the external world. The research focuses on a perceptual trick that suckers adults and 6-month-old babies alike. When the hands are crossed, people often mistake which hand feels a touch. Let’s say your left hand (now crossed over to the right side of your body) gets a tickle. Your eyes would see a hand on the right side of your body get touched — a place usually claimed by your right hand, but now occupied by your left. Those mismatches between sight, touch and expectation can thwart you from quickly and correctly saying which hand was touched. Here’s the twist: 4-month-old babies don’t fall for this trick, Andrew Bremner of Goldsmiths, University of London and his colleagues found. In the experiment, a researcher would hold infants’ legs in either a crossed position or straight, while one of two remote-controlled buzzers taped to their feet tickled one foot. The researchers then watched which foot or leg wiggled as a result. If the buzzed foot moved, that meant that the baby got it right. © Society for Science & the Public 2000 - 2015.

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 8: General Principles of Sensory Processing, Touch, and Pain
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 5: The Sensorimotor System
Link ID: 21613 - Posted: 11.07.2015

By Nicholas Bakalar Certain personality traits are often attributed to oldest, middle and youngest children. But a new study found that birth order itself had no effect on character, though it may slightly affect intelligence. Researchers analyzed three large ongoing collections of data including more than 20,000 people: a British study that follows the lives of people who were born in one particular week in 1958, a German study of private households started in 1984 and a continuing study of Americans born between 1980 and 1984. They searched for differences in extroversion, emotional stability, agreeableness, conscientiousness, self-reported intellect, IQ, imagination and openness to experience. They analyzed families with sisters and brothers, large and small age gaps and different numbers of siblings. They even looked to see if being a middle child correlated with any particular trait. But no matter how they spliced the data, they could find no association of birth order with any personality characteristic. The study, in Proceedings of the National Academy of Sciences, did find evidence that older children have a slight advantage in IQ scores, but the difference was apparent only in a large sample, with little significance for any individual. The lead author, Julia M. Rohrer, a graduate student at the University of Leipzig, said that birth order can have an effect — if your older brother bullied you, for example. “But these effects are highly idiosyncratic,” she said. “There is no such thing as a typical older, middle or younger sibling. It’s important to stop believing that you are the way you are because of birth order.” © 2015 The New York Times Company

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 21578 - Posted: 10.29.2015

By Dina Fine Maron Early-life exposure to anesthesia does not appear to lead to long-term cognitive problems, researchers announced today. New evidence from the first, randomized anesthesia trial in kids provides the strongest indication yet that exposing young children to anesthesia—at least for a brief time—will not saddle them with developmental deficits. The news comes just a couple of weeks after a medical advisory group reiterated its concerns about such exposures among children younger than four years. Previously, multiple animal and human studies have linked such exposure with cognitive impairment, but none of the information on humans came from a gold-standard, randomized study design that could help eliminate other reasons to explain such a connection. This is a “reassuring finding, but it is not the final answer,” says Dean Andropoulos, anesthesiologist in chief at Texas Children’s Hospital and an expert who was not involved in the work. The new study assesses only what happens to youngsters after a relatively brief bout with anesthetics, so it is possible that longer or repeated exposures to such chemicals may still cause neurodevelopmental issues. There may also be deficits in anesthesia-exposed children that are not measurable until later in life. The study followed more than 500 infants undergoing hernia repair across the U.S., Australia, the U.K., Canada, the Netherlands, New Zealand and Italy. The surgeries lasted an average of roughly an hour. About half of the children were randomly selected to be put under with general anesthesia, and the other half stayed awake during the surgery and received targeted anesthesic in a specific body region. The kids in the study were all younger than 60 weeks and were matched by where they had the surgery and whether they were born prematurely. © 2015 Scientific American

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 14: Biological Rhythms, Sleep, and Dreaming
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 10: Biological Rhythms and Sleep
Link ID: 21568 - Posted: 10.26.2015

As we get older, most of us will experience some kind of brain degeneration. Typically, we lose the ability to make new neurons. Another problem is chronic, low-grade inflammation in the brain, which is implicated in many age-related brain disorders. To tackle both problems in one go, Ludwig Aigner at Paracelsus Medical University Salzburg in Austria and his colleagues targeted a set of receptors in the brain that, when activated, trigger inflammation. High numbers of these receptors are found in areas of the brain where neurons are born, suggesting they might also be involved in this process, too. A drug called montelukast (Singulair), regularly prescribed for asthma and allergic rhinitis, blocks these receptors, so Aigner and his colleagues tried it on young and old rats. The team used oral doses equivalent to those taken by people with asthma. The older animals were 20 months old – roughly equivalent to between 65 and 75 in human years. The younger rats were 4 months old – about 17 in human years. The animals were fed the drug daily for six weeks, while another set of young and old rats were left untreated. There were 20 young and 14 old rats in total. The rats took part in a range of learning and memory tests. One of these, for example, involved the rats being placed in a pool of water with a hidden escape platform. At the start of the study, untreated young rats learned to recognise landmarks and quickly find their way to the platform, while the untreated older animals struggled at the task. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 21562 - Posted: 10.24.2015

Claire Cain Miller Boys are falling behind. They graduate from high school and attend college at lower rates than girls and are more likely to get in trouble, which can hurt them when they enter the job market. This gender gap exists across the United States, but it is far bigger for poor people and for black people. As society becomes more unequal, it seems, it hurts boys more. New research from social scientists offers one explanation: Boys are more sensitive than girls to disadvantage. Any disadvantage, like growing up in poverty, in a bad neighborhood or without a father, takes more of a toll on boys than on their sisters. That realization could be a starting point for educators, parents and policy makers who are trying to figure out how to help boys — particularly those from black, Latino and immigrant families. “It’s something about family disadvantage itself,” said David Figlio, a Northwestern University economist and co-author of a new paper, presented publicly for the first time on Thursday. “Black people in America are more disadvantaged than white people in America, and if we were to reduce the disadvantage, we may see a reduction in the relative gender gap as well.” Marianne Bertrand, an economist at University of Chicago who with Jessica Pan has studied the gender gap, also found that boys fare worse than girls in disadvantaged homes, and are more responsive than girls to parental time and resources. “Their findings were very consistent: Families that invest more in children are protective for boys,” she said. The reasons that boys react more negatively to disadvantage are varied and hard to pinpoint. Even in utero, boys are more sensitive to extreme stress than girls, and tend to have more unruly temperaments. Society discourages boys from showing vulnerability. Low-income families are often led by single mothers, which has been found to affect boys differently than girls. © 2015 The New York Times Company

Related chapters from BP7e: Chapter 17: Learning and Memory; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 8: Hormones and Sex
Link ID: 21559 - Posted: 10.24.2015

Jon Hamilton Babies born prematurely are much more likely than other children to develop autism, ADHD and emotional disorders. Now researchers think they may have an idea about how that could happen. There's evidence that preemies are born with weak connections in some critical brain networks, including those involved in focus, social interactions, and emotional processing, researchers reported at the Society for Neuroscience meeting in Chicago. A study comparing MRI scans of the brains of 58 full-term babies with those of 76 babies born at least 10 weeks early found that "preterm infants indeed have abnormal structural brain connections," says Cynthia Rogers, an assistant professor of psychiatry at Washington University School of Medicine in St. Louis. "We were really interested that the tracts that we know connect areas that are involved in attention and emotional networks were heavily affected," Rogers says. That would make it harder for these brain areas to work together to focus on a goal or read social cues or regulate emotions, she says. The team used two different types of MRI to study the nerve fibers that carry signals from one part of the brain to another and measure how well different areas of the brain are communicating. Full-term infants were scanned shortly after they were born, while premature infants were scanned near their expected due date. The researchers are continuing to monitor the brains of the children in their study to see which ones actually develop disorders. © 2015 NPR

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 2: Functional Neuroanatomy: The Nervous System and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 2: Cells and Structures: The Anatomy of the Nervous System
Link ID: 21539 - Posted: 10.21.2015

By Kimberly G. Noble What if we could draw a line from key areas of a low-income child’s brain to a policy intervention that would dramatically reduce his or her chances of staying in poverty, dropping out of school and entering the criminal justice or social welfare system? Wouldn’t we want to make that policy prescription as widely available as any vaccination against childhood disease? Thanks to remarkable advances in neuroscience and the social sciences, we are closing in on this possibility. In a study published this year in Nature Neuroscience, several co-authors and I found that family income is significantly correlated with children’s brain size — specifically, the surface area of the cerebral cortex, which is the outer layer of the brain that does most of the cognitive heavy lifting. Further, we found that increases in income were associated with the greatest increases in brain surface area among the poorest children. Not surprisingly, our findings made many people uncomfortable. Some feared the study would be used to reinforce the notion that people remain in poverty because they are less capable than those with higher incomes. As neuroscientists, we interpret the results very differently. We know that the brain is most malleable in the early years of life and that experiences during that time have lifelong effects on the mind. Work by social scientists such as Sendhil Mullainathan at Harvard University and Eldar Shafir at Princeton University has shown that poverty depletes parents’ cognitive resources, leaving less capacity for making everyday decisions about parenting. These parents are also at far greater risk for depression and anxiety — poverty’s “mental tax.” All of this has important implications for children.

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 13: Memory, Learning, and Development
Link ID: 21477 - Posted: 10.05.2015

By Steve Mirsky Harvard neuroscientist Beth Stevens, talking about glia cells, which make up more than half the human brain. This week Stevens got a MacArthur Fellowship, the so-called genius grant, for her studies of glia. “These cells are incredibly responsive to damage or injury. They can protect our brain by, for example, clearing bacteria or debris in the brain in the case of injury and disease… “Until about 10 years ago, almost all of the research devoted to these cells was in these contexts. We discovered that there was another role for these cells in the normal healthy brain, in particular during development… “So a synapse is the junction of communication between two neurons, it’s how neurons talk to each other…we’re actually born with an excess of synaptic connections…and through this normal developmental process called pruning, a large number of these extra synapses get permanently removed or eliminated while others get strengthened and maintained. These microglial cells were in fact engulfing or eating these extra synapses. So these cells are necessary to do this and now of course we’re trying to better understand how it is that they know which synapse to prune and which synapse to leave alone. “A hallmark of many neurodegenerative diseases, including Alzheimer’s disease, is the early loss of synaptic connections or synapses…And what’s most striking about this is, it’s thought that the synapse loss happens years before you see signs of cognitive impairment or pathology. © 2015 Scientific American

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 21470 - Posted: 10.03.2015

By Nicholas Bakalar Breast-feeding has many benefits, but a new study suggests that it has no effect on a child’s IQ from toddlerhood through adolescence. The idea that breast-feeding might have an effect on cognition is plausible, since long-chain polyunsaturated fatty acids, which are important in neurological development, are more plentiful in breast-fed babies. British researchers studied 11,582 children born between 1994 and 1996. About two-thirds were breast-fed, for an average of four months. They followed them through age 16 and administered nine intelligence tests at regular intervals over the years. The study is in PLOS One. After controlling for parental education, maternal age, socioeconomic status and other variables, they found that girls who had been breast-fed had a weak but statistically insignificant advantage in early life over those who had not been, but the effect was not apparent in boys. Breast-feeding was not associated with gains in IQ through adolescence for either girls or boys. The lead author, Sophie von Stumm, a senior lecturer in psychology at Goldsmiths University of London, said that mothers who do not breast-feed are sometimes criticized. “It’s almost an accusation these days,” she said, “that you’re purposely harming your child. That’s not the case, and it’s not helpful for new mothers. Kids do lots of things that have an influence on IQ. Breast-feeding has no effect that can be distinguished from family background or socioeconomic status.” © 2015 The New York Times Company

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 12: Sex: Evolutionary, Hormonal, and Neural Bases
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 8: Hormones and Sex
Link ID: 21462 - Posted: 10.01.2015

By John Pavlus The “brain in a vat” has long been a staple of philosophical thought experiments and science fiction. Now scientists are one step closer to creating the real thing, which could enable groundbreaking experiments of a much more empirical kind. Research teams at Stanford University and the RIKEN Center for Developmental Biology in Japan have each discovered methods for coaxing human stem cells to form three-dimensional neural structures that display activity associated with that of an adult brain. By applying a variety of chemical growth factors, the RIKEN researchers transformed human embryonic stem cells into neurons that self-organized in patterns unique to the cerebellum, a region of the brain that coordinates movement. The Stanford team worked with induced pluripotent stem cells derived from skin cells and chemically nudged them to become neurons that spontaneously wired up into networks of 3-D circuits, much like the ones found in the cerebral cortex—the wrinkled gray matter of the brain that supports attention, memory and self-awareness in humans. “For years people have used mouse embryonic stem cells to generate teratomas—things that look like they could be organs,” says David Panchision, a neuroscientist at the National Institutes of Health, which supported the Stanford research. “But it's not organized and systematic, the way a developing brain needs to be to function.” In contrast, the Stanford team's neural structures not only self-assembled as cortexlike tissue, the neurons also sent signals to one another in coordinated patterns—just as they would in a brain. The cerebellar tissue generated by the Japanese scientists did, too. © 2015 Scientific American

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 21427 - Posted: 09.21.2015

Mo Costandi The human brain is often said to be the most complex object in the known universe, and there’s good reason to believe that this old cliché is true. Even the apparently simple task of compiling a census of the different types of cells it contains has proven to be extremely difficult. Researchers still can’t agree on the best way to classify the numerous sub-types of neurons, and different methods produce different results, so estimates range from several hundred to over a thousand. Basket cells illustrate this neuronal identity crisis perfectly. They are currently sub-divided into multiple different types, according to their shape, electrical properties, and molecular profiles. After nearly ten years of detective work, researchers at King’s College London now reveal them to be masters of disguise. In a surprising new study, they show that these cells can dynamically switch from one identity to another in response to neuronal network activity. Basket cells are a type of interneuron, which are found scattered throughout the cerebral cortex, hippocampus, and cerebellum, and make up about 5% of the total number of cells in these brain regions. They form local circuits with each other and with pyramidal neurons, the much larger and more numerous cells that transmit information to distant parts of the brain, and synthesize the inhibitory neurotransmitter GABA, which dampens pyramidal cell activity when released. These enigmatic cells are thought to exist in more than twenty different types, the best known being the fast-spiking ones, which respond rapidly to incoming signals, and slower ones, which respond after a delay. During brain development, immature forms of all types of basket cells are created in a structure called the medial ganglionic eminence, along with various other types of brain cells. They then migrate into the developing cerebral cortex, before going on to form synaptic connections with other cells. © 2015 Guardian News and Media Limited

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 21423 - Posted: 09.20.2015

By Melinda Wenner Moyer A worrisome new study caught my eye last week as I perused the website of the journal Pediatrics. It was titled “Cognition and Brain Structure Following Early Childhood Surgery With Anesthesia.” Considering that my now 4-year-old underwent general anesthesia for a minor procedure when he was 2 and that my 14-month-old may be a candidate for ear tube surgery, my interest was immediately piqued. I clicked through and came face to face with a whole lot of yuck. The first sentence alone made me gasp: “Anesthetics induce widespread cell death, permanent neuronal deletion, and neurocognitive impairment in immature animals, raising substantial concerns about similar effects occurring in young children.” Wait, so anesthesia causes brain damage? Why didn’t anyone tell me? I thought. Obviously, I needed to know more. Considering that 6 million American children—including 1.5 million babies under the age of 1—undergo general anesthesia each year, this seemed like a pretty serious issue to delve into. Twenty studies and several phone calls later, I’m feeling a lot better about my kids’ brains. There are still many things scientists don’t know about how anesthesia affects the nervous system, in part because they can’t ethically do the types of experiments that would provide clear answers, like unnecessarily exposing kids to anesthesia. But based on the research that does exist, there’s really no need for parents to freak out. If “going under” has an effect on the developing brain, it’s likely to be very small. Even Andreas Loepke, the pediatric anesthesiologist at Cincinnati Children’s Hospital Medical Center who co-authored the Pediatrics paper, was reassuring to me over the phone. “These are theoretical concerns,” he said. © 2015 The Slate Group LLC.

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 14: Biological Rhythms, Sleep, and Dreaming
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 10: Biological Rhythms and Sleep
Link ID: 21383 - Posted: 09.08.2015

Aftab Ali People who were born prematurely are less intelligent later on in life and earn less money as a result, according to a new study by the University of Warwick. Researchers at the Coventry-based institution said they found a link which connects pre-term birth with low reading and, in particular, maths skills which affect the amount of wealth accumulated as adults. Funded by the Nuffield Foundation, the researchers examined data from two other large studies, following children born more than a decade apart, with one group from 1958 and the other from 1970. In total, more than 15,000 individuals were surveyed – which recruited all children born in a single week in England, Scotland, and Wales. Data were examined for all individuals who were born at between 28 and 42 weeks gestational age, and who had available wealth information at the age of 42. Those participants who were born pre-term – at less than 37 weeks – were compared with those who were born full-term to find both groups’ mathematical ability in childhood had a direct effect on how much they earned as an adult, regardless of later educational qualifications. In order to measure adult wealth, the researchers looked at factors including: family income and social class, housing and employment status, and their own perceptions of their financial situation. In regards to academic abilities, they examined: validated measures for mathematics, reading, and intelligence, along with ratings from teachers and parents. © independent.co.uk

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 17: Learning and Memory
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 13: Memory, Learning, and Development
Link ID: 21375 - Posted: 09.02.2015

By Elizabeth Kolbert C57BL/6J mice are black, with pink ears and long pink tails. Inbred for the purposes of experimentation, they exhibit a number of infelicitous traits, including a susceptibility to obesity, a taste for morphine, and a tendency to nibble off their cage mates’ hair. They’re also tipplers. Given access to ethanol, C57BL/6J mice routinely suck away until the point that, were they to get behind the wheel of a Stuart Little-size roadster, they’d get pulled over for D.U.I. Not long ago, a team of researchers at Temple University decided to take advantage of C57BL/6Js’ bad habits to test a hunch. They gathered eighty-six mice and placed them in Plexiglas cages, either singly or in groups of three. Then they spiked the water with ethanol and videotaped the results. Half of the test mice were four weeks old, which, in murine terms, qualifies them as adolescents. The other half were twelve-week-old adults. When the researchers watched the videos, they found that the youngsters had, on average, outdrunk their elders. More striking still was the pattern of consumption. Young male C57BL/6Js who were alone drank roughly the same amount as adult males. But adolescent males with cage mates went on a bender; they spent, on average, twice as much time drinking as solo boy mice and about thirty per cent more time than solo girls. The researchers published the results in the journal Developmental Science. In their paper, they noted that it was “not possible” to conduct a similar study on human adolescents, owing to the obvious ethical concerns. But, of course, similar experiments are performed all the time, under far less controlled circumstances. Just ask any college dean. Or ask a teen-ager.

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior; Chapter 18: Attention and Higher Cognition
Related chapters from MM:Chapter 13: Memory, Learning, and Development; Chapter 14: Attention and Consciousness
Link ID: 21345 - Posted: 08.27.2015

Almost fully-formed brain grown in a lab. Woah: Scientists grow first nearly fully-formed human brain. Boffins raise five-week-old fetal human brain in the lab for experimentation. On Tuesday, all the above appeared as headlines for one particular story. What was it all about? Mini-brains 3 to 4 millimetres across have been grown in the lab before, but if a larger brain had been created – and the press release publicising the claim said it was the size of a pencil eraser – that would be a major breakthrough. New Scientist investigated the claims. The announcement was made by Rene Anand, a neuroscientist at Ohio State University in Columbus, at a military health research meeting in Florida. Anand says he has grown a brain – complete with a cortex, midbrain and brainstem – in a dish, comparable in maturity to that of a fetus aged 5 weeks. Anand and his colleague Susan McKay started with human skin cells, which they turned into induced pluripotent stem cells (iPSCs) using a tried-and-tested method. By applying an undisclosed technique, one that a patent has been applied for, the pair say they were able to encourage these stem cells to form a brain. “We are replicating normal development,” says Anand. He says they hope to be able to create miniature models of brains experiencing a range of diseases, such as Parkinson’s and Alzheimer’s. Inconclusive evidence But not everyone is convinced, especially as Anand hasn’t published his results. Scientists we sent Anand’s poster presentation to said that although the team has indeed grown some kind of miniature collection of cells, or “organoid”, in a dish, the structure isn’t much like a fetal brain. © Copyright Reed Business Information Ltd.

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 21322 - Posted: 08.22.2015

Helen Thomson An almost fully-formed human brain has been grown in a lab for the first time, claim scientists from Ohio State University. The team behind the feat hope the brain could transform our understanding of neurological disease. Though not conscious the miniature brain, which resembles that of a five-week-old foetus, could potentially be useful for scientists who want to study the progression of developmental diseases. It could also be used to test drugs for conditions such as Alzheimer’s and Parkinson’s, since the regions they affect are in place during an early stage of brain development. The brain, which is about the size of a pencil eraser, is engineered from adult human skin cells and is the most complete human brain model yet developed, claimed Rene Anand of Ohio State University, Columbus, who presented the work today at the Military Health System Research Symposium in Fort Lauderdale, Florida. Previous attempts at growing whole brains have at best achieved mini-organs that resemble those of nine-week-old foetuses, although these “cerebral organoids” were not complete and only contained certain aspects of the brain. “We have grown the entire brain from the get-go,” said Anand. Anand and his colleagues claim to have reproduced 99% of the brain’s diverse cell types and genes. They say their brain also contains a spinal cord, signalling circuitry and even a retina. The ethical concerns were non-existent, said Anand. “We don’t have any sensory stimuli entering the brain. This brain is not thinking in any way.” © 2015 Guardian News and Media Limited

Related chapters from BP7e: Chapter 7: Life-Span Development of the Brain and Behavior
Related chapters from MM:Chapter 13: Memory, Learning, and Development
Link ID: 21316 - Posted: 08.19.2015