Chapter 11. Emotions, Aggression, and Stress

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 2556

Vaughan Bell Marketing has discovered neuroscience and the shiny new product has plenty of style but very little substance. “Neuromarketing” is lighting up the eyes of advertising executives and lightening the wallets of public relations companies. It promises to target the unconscious desires of consumers, which are supposedly revealed by measuring the brain. The more successful agencies have some of the world’s biggest brands on their books and these mega-corporations are happy to trumpet their use of brain science in targeting their key markets. The holy grail of neuromarketing is to predict which ads will lead to most sales before they’ve been released but the reality is a mixture of bad science, bullshit and hope. First, it’s important to realise that the concept of neuroscience is used in different ways in marketing. Sometimes, it’s just an empty ploy aimed at consumers – the equivalent of putting a bikini-clad body next to your product for people who believe they’re above the bikini ploy. A recent Porsche advert apparently showed a neuroscience experiment suggesting that the brain reacts in a similar way to driving their car and flying a fighter jet, but it was all glitter and no gold. The images were computer-generated, the measurements impossible, and the scientist an actor. In complete contrast, neuromarketing is also a serious research area. This is a scientifically sound, genuinely interesting field in cognitive science, where the response to products and consumer decision-making is understood on the level of body and mind. This might involve looking at how familiar brand logos engage the memory systems in the brain, or examining whether the direction of eye gaze of people in ads affects how attention-grabbing they are, or testing whether the brain’s electrical activity varies when watching subtly different ads. Like most of cognitive neuroscience, the studies are abstract, ultra-focused and a long way from everyday experience. © 2015 Guardian News and Media Limited

Keyword: Emotions
Link ID: 21105 - Posted: 06.29.2015

By PETER ANDREY SMITH Eighteen vials were rocking back and forth on a squeaky mechanical device the shape of a butcher scale, and Mark Lyte was beside himself with excitement. ‘‘We actually got some fresh yesterday — freshly frozen,’’ Lyte said to a lab technician. Each vial contained a tiny nugget of monkey feces that were collected at the Harlow primate lab near Madison, Wis., the day before and shipped to Lyte’s lab on the Texas Tech University Health Sciences Center campus in Abilene, Tex. Lyte’s interest was not in the feces per se but in the hidden form of life they harbor. The digestive tube of a monkey, like that of all vertebrates, contains vast quantities of what biologists call gut microbiota. The genetic material of these trillions of microbes, as well as others living elsewhere in and on the body, is collectively known as the microbiome. Taken together, these bacteria can weigh as much as six pounds, and they make up a sort of organ whose functions have only begun to reveal themselves to science. Lyte has spent his career trying to prove that gut microbes communicate with the nervous system using some of the same neurochemicals that relay messages in the brain. Inside a closet-size room at his lab that afternoon, Lyte hunched over to inspect the vials, whose samples had been spun down in a centrifuge to a radiant, golden broth. Lyte, 60, spoke fast and emphatically. ‘‘You wouldn’t believe what we’re extracting out of poop,’’ he told me. ‘‘We found that the guys here in the gut make neurochemicals. We didn’t know that. Now, if they make this stuff here, does it have an influence there? Guess what? We make the same stuff. Maybe all this communication has an influence on our behavior.’’ Since 2007, when scientists announced plans for a Human Microbiome Project to catalog the micro-organisms living in our body, the profound appreciation for the influence of such organisms has grown rapidly with each passing year. Bacteria in the gut produce vitamins and break down our food; their presence or absence has been linked to obesity, inflammatory bowel disease and the toxic side effects of prescription drugs. Biologists now believe that much of what makes us human depends on microbial activity. © 2015 The New York Times Company

Keyword: Emotions; Obesity
Link ID: 21088 - Posted: 06.23.2015

Helen Shen Boosting activity in neurons that have stored happy memories might help to treat depression — at least according to results in mice. In a study published today (17 June) in Nature, neuroscientist Susumu Tonegawa and his colleagues at the Massachusetts Institute of Technology in Cambridge report how they reversed a depression-like state in rodents by using light to stimulate clusters of brain cells believed to have stored memories of a positive experience1. The findings are preliminary, but they hint that areas of the brain involved in storing memories could one day be a target to treat mental disorders in humans, says Tonegawa. “I want to be very careful not to give false expectations to patients. We are doing very basic science,” he adds. “This is exactly the type of work that psychiatry needs right now,” says Robert Malenka, a behavioural scientist at Stanford University in California. “This is an elegant paper.” The work has grown out of studies by Tonegawa’s lab and others that aimed to locate the memory ‘engram’ — the physical trace of a memory, thought to be encoded in an ensemble of neurons2–6. In 2012, Tonegawa and his team provided one of the clearest demonstrations of an engram. They engineered mice with light-sensitive proteins that were expressed when neurons fired. As a result, they could track any neurons that activated while the mice were given a fearful memory by being trained with repeated electric shocks to be scared of a cage3. The researchers later used blue flashes of light to make the same neurons fire again — a technique known as optogenetics — and found that they could make the animals freeze up, presumably because the fearful memory had been reawoken. © 2015 Nature Publishing Group

Keyword: Learning & Memory; Depression
Link ID: 21073 - Posted: 06.18.2015

By Greg Toppo On the morning of August 12, 2013, nearly eight months after 20-year-old Adam Lanza shot his way into Sandy Hook Elementary School in Newtown, Conn., and killed 26 people, Michael Mudry, an investigator with the Connecticut State Police, drove to nearby Danbury to try to solve a little mystery. Police had found a Garmin GPS unit in Lanza's house, and its records showed that the gunman had driven to the same spot nine times in April, May and June 2012, arriving around midnight each time and staying for hours. The GPS readout took Mudry to the vast parking lot of a suburban shopping center, about 14 miles west of Lanza's home. Workers at a movie theater there immediately recognized Lanza from a photograph. He was at the theater constantly, they told Mudry, but never to see movies. He came to the lobby to play an arcade game, the same one, over and over again, sometimes for eight to 10 hours a night. Witnesses said he would whip himself into a frenzy, and on occasion the theater manager had to unplug the game to get him to leave. Police had been scouring Lanza's home since the shootings, and on his computer hard drive they found information on weapons magazine capacities, images of Columbine killers Eric Harris and Dylan Klebold, copies of the violent movies Bloody Wednesday and Rampage, and a list of ingredients for TNT. And like many teenaged boys, Lanza owned the typical first-person shooter, fighting and action games: Call of Duty, Dead or Alive, Grand Theft Auto. © 2015 Scientific American,

Keyword: Aggression
Link ID: 21068 - Posted: 06.18.2015

By Tori Rodriguez Joint flexibility is an oft-coveted trait that provides a special advantage to dancers and athletes, but there can be too much of this good thing. A growing body of research suggests a surprising link between high levels of flexibility and anxiety. A study published last year in the journal Frontiers in Psychology is among the most recent to confirm the association, finding that people with hypermobile joints have heightened brain activity in anxiety regions. Joint hypermobility, which affects approximately 20 percent of the population, confers an unusually large range of motion. Hypermobile people can often, for instance, touch their thumb to their inner forearm or place their hands flat on the floor without bending their knees. The trait appears to be genetic and is a result of variation in collagen, the main structural protein of connective tissue. Being double-jointed has long been linked with an increased risk for asthma and irritable bowel syndrome, among other physical disorders. “Joint hypermobility has an impact on the whole body and not just joints,” says Jessica Eccles, a psychiatrist and researcher at the University of Sussex in England. It was only a matter of time before scientists also looked at whether joint hypermobility was linked to mental disorders. The investigation began in 1993 and heated up in 1998 when researcher Rocío Martín-Santos, now at the Hospital Clinic of the University of Barcelona, and her colleagues discovered that patients with anxiety were 16 times more likely to have lax joints. Their findings have since been replicated numerous times in large populations. © 2015 Scientific American

Keyword: Emotions; Stress
Link ID: 21063 - Posted: 06.17.2015

Sara Reardon Traumatic experiences, such as those encountered during warfare, can cause long-lasting stress. Tweaking the immune system could be key to treating, or even preventing, post-traumatic stress disorder (PTSD). Research in rodents suggests that immunizing animals can lessen fear if they are later exposed to stress. Researchers have known for some time that depression and immune-system health are linked and can affect each other. Early clinical trials have shown that anti-inflammatory drugs can reduce symptoms of depression1, raising hopes that such treatments might be useful in other types of mental illness, such as PTSD. “I think there’s kind of a frenzy about inflammation in psychiatry right now,” says Christopher Lowry, a neuroscientist at the University of Colorado Boulder. He presented results of experiments probing the link between fearful behaviour and immune response at a meeting in Victoria, Canada, last week of the International Behavioral Neuroscience Society. Studies of military personnel suggest that immune function can influence the development of PTSD. Soldiers whose blood contains high levels of the inflammatory protein CRP before they are deployed2, or who have a genetic mutation that makes CRP more active3, are more likely to develop the disorder. To directly test whether altering the immune system affects fear and anxiety, Lowry and colleagues injected mice with a common bacterium, Mycobacterium vaccae, three times over three weeks to modulate their immune systems. The scientists then placed these mice, and a control group of unimmunized mice, in cages with larger, more aggressive animals. © 2015 Nature Publishing Group

Keyword: Stress; Neuroimmunology
Link ID: 21046 - Posted: 06.13.2015

Dogs do not like people who are mean to their owners and will refuse food offered by people who have snubbed their master, Japanese researchers have said. The findings reveal that canines have the capacity to cooperate socially – a characteristic found in a relatively small number of species, including humans and some other primates. Researchers led by Kazuo Fujita, a professor of comparative cognition at Kyoto University, tested three groups of 18 dogs using role plays in which their owners needed to open a box. In all three groups, the owner was accompanied by two people whom the dog did not know. In the first group, the owner sought assistance from one of the other people, who actively refused to help. In the second group, the owner asked for, and received, help from one person. In both groups, the third person was neutral and not involved in either helping or refusing to help. Neither person interacted with the dog’s owner in the control – third – group. After watching the box-opening scene, the dog was offered food by the two unfamiliar people in the room. Dogs that saw their owner being rebuffed were far more likely to choose food from the neutral observer, and to ignore the offer from the person who had refused to help, Fujita said on Friday. Dogs whose owners were helped and dogs whose owners did not interact with either person showed no marked preference for accepting snacks from the strangers. “We discovered for the first time that dogs make social and emotional evaluations of people regardless of their direct interest,” Fujita said. If the dogs were acting solely out of self-interest, there would be no differences among the groups, and a roughly equal number of animals would have accepted food from each person. © 2015 Guardian News and Media Limited

Keyword: Emotions; Evolution
Link ID: 21039 - Posted: 06.13.2015

By Lisa Sanders On Thursday, we challenged Well readers to figure out why a previously healthy 31-year-old woman suddenly began having strokes. I thought this was a particularly tough case – all the more so since I had never heard of the disease she was ultimately diagnosed with. Apparently I was not alone. Only a few dozen of the 400 plus readers who wrote in were able to make this difficult diagnosis. The correct diagnosis is: Susac’s syndrome The first person to identify this rare neurological disorder was Errol Levine, a retired radiologist from South Africa, now living in Santa Fe, N.M. The location of the stroke shown — in a part of the brain known as the corpus callosum — was a subtle clue, and Dr. Levine recalled reading of an autoimmune disease characterized by strokes in this unusual area of the brain. This is Dr. Levine’s second win. Well done, sir! Susac’s syndrome is a rare disorder first described in 1979 by Dr. John Susac, a neurologist in Winter Haven, Fla. Dr. Susac described two women, one 26 years old, the other 40, who he encountered within weeks of one another. Both had the same unusual triad of psychiatric symptoms suggestive of some type of brain inflammation, hearing loss, and patchy vision loss caused by blockages of the tiniest vessels of the retina known as branch retinal arteries. A few years later, Dr. Susac encountered two more cases and presented one of these at a meeting as a mystery diagnosis. The doctor who figured it out called the disorder Susac’s syndrome, and the name stuck. Seen primarily in young women, Susac’s is thought to be an autoimmune disorder in which antibodies, the foot soldiers of the immune system, mistakenly attack tissues in some of the smallest arteries in the brain. The inflammation of these small vessels blocks the flow of blood, causing tiny strokes. © 2015 The New York Times Company

Keyword: Stroke; Neuroimmunology
Link ID: 21023 - Posted: 06.06.2015

By Tori Rodriguez Heart disease and depression often go hand in hand. Long-term studies have found that people with depression have a significantly higher risk of subsequent heart disease, and vice versa. Recent research has revealed that the link begins at an early age and is probably caused by chronic inflammation. A new study in the November 2014 issue of Psychosomatic Medicine by researchers in the U.S., Australia and China examined data from an ongoing study of health among Australians. The researchers looked at the scores of 865 young adults on a questionnaire that assesses depression symptoms and other measures of mental health. They also examined measurements of the internal diameter of the blood vessels of the retina, a possible marker of early cardiovascular disease. After controlling for sex, age, smoking status and body mass index, the investigators found that participants with more symptoms of depression and anxiety had wider retinal arterioles than others, which could reflect the quality of blood vessels in their heart and brain. “We don't know if the association is causal,” explains study co-author Madeline Meier, a psychology professor at Arizona State University. “But our findings suggest that symptoms of depression and anxiety may identify youth at risk for cardiovascular disease.” Other research shows that people with depression have more inflammation throughout their body and nervous system. “One theory is that stress and inflammation could play a causal role in depression,” Meier says. Such chronic inflammation is also a risk factor for cardiovascular disease. The relationship is complex: in some people, inflammation seems to precede depression and heart disease; in others, the disorders seem to cause or exacerbate the inflammation. © 2015 Scientific American

Keyword: Depression; Stress
Link ID: 21004 - Posted: 06.01.2015

by Jessica Hamzelou IF YOU knew you were about to go through a stressful experience, would you pop a pill to protect yourself from its knock-on effects? It's an idea that has been mooted after a drug seemed to make mice immune to the negative impacts of stressful events. But could we rationalise prescribing such a drug? We all experience stress during our lives, whether it be a one-off event, such as a loved one dying, or chronic, low-level stress that results from struggling to make ends meet, for example. While most people find ways to cope, for some a particularly stressful event can trigger depression. What if there was a way to boost our stress resilience and thus shield us from depression? Rebecca Brachman at Columbia University in New York stumbled across the idea while she was giving ketamine to mice with the symptoms of depression. Even though the ketamine-taking mice had been chronically stressed, when they were dropped in a pool of water – a one-off stressful event – they were unperturbed and swam to an exit. Mice not given the drug made no attempt to escape, a classic sign of depression in rodents. There was also no change in the ketamine-taking animals' cognitive abilities or metabolism – both of which are altered in human depression. "It's really remarkable," says Brachman. "They basically look like mice that haven't been stressed." A single dose of ketamine protected mice from developing the symptoms of depression after stressful events for four weeks. But the drug only seemed to stop the symptoms of depression – some of the animals still exhibited anxiety behaviours. "It seems to protect against depression rather than anxiety," says Brachman, who controversially describes it as a depression "vaccine". The work will be published in Biological Psychiatry. © Copyright Reed Business Information Ltd

Keyword: Stress; Drug Abuse
Link ID: 20994 - Posted: 05.28.2015

By Neuroskeptic | Neuroscientists might need to rethink much of what’s known about the amygdala, a small brain region that’s been the focus of a lot of research. That’s according to a new paper just published in Scientific Reports: fMRI measurements of amygdala activation are confounded by stimulus correlated signal fluctuation in nearby veins draining distant brain regions. The amygdala is believed to be involved in emotion, especially negative emotions such as fear. Much of the evidence for this comes from fMRI studies showing that the amygdala activates in response to stimuli such as images of scared faces. However, according to the authors of the new paper, Austrian neuroscientists Roland N. Boubela and colleagues, there’s a flaw in these fMRI studies. The problem, they say, is that the amygdala happens to be located next to a large vein, called the basal vein of Rosenthal (BVR). fMRI works by detecting blood oxygenation, so changes in the oxygen level in the blood within the BVR could produce signal changes that could be mistaken for activation in the amygdala. Because the BVR drains blood from several brain regions, some of which are themselves involved in emotion processing, the BVR could act as a proxy for emotion-related neural activation elsewhere in the brain, which is then projected onto the amygdala. Neuroscientists have long been aware of potential large vein contributions to the fMRI signal, but it hasn’t generally been seen as a serious concern. According to Boubela et al., however, the problem is serious, when it comes to the amygdala.

Keyword: Brain imaging; Emotions
Link ID: 20986 - Posted: 05.27.2015

Michael C. Corbalis In the quest to identify what might be unique to the human mind, one might well ask whether non-human animals have a theory of mind. In fiction, perhaps, they do. Eeyore, the morose donkey in Winnie-the-Pooh, at one point complains: ‘A little consideration, a little thought for others, makes all the difference.’ In real life, some animals do seem to show empathy toward others in distress. The primatologist Frans de Waal photographed a juvenile chimpanzee placing a consoling arm around an adult chimpanzee in distress after losing a fight, but suggests that monkeys do not do this. However, one study shows that monkeys won’t pull a chain to receive food if doing so causes a painful stimulus to be delivered to another monkey, evidently understanding that it will cause distress. Even mice, according to another study, react more intensely to pain if they perceive other mice in pain. It is often claimed that dogs show empathy toward their human owners, whereas cats do not. Cats don’t empathise—they exploit. Understanding what others are thinking, or what they believe, can be complicated, but perceiving emotion in others is much more basic to survival, and no doubt has ancient roots in evolution. Different emotions usually give different outward signs. In Shakespeare’s “Henry V,” the King recognises the signs of rage, urging his troops to . . . imitate the action of the tiger; Stiffen the sinews, summon up the blood, Disguise fair nature with hard-favour’d rage; Then lend the eye a terrible aspect . . . The human enemy will read the emotion of Henry’s troops, just as the antelope will read the emotion of the marauding tiger. Perhaps the best treatise on the outward signs of emotion is Charles Darwin’s “The Expression of the Emotions in Man and Animals,” which details the way fear and anger are expressed in cats and dogs, although he does not neglect the positive emotions: © 2015 Salon Media Group, Inc.

Keyword: Emotions; Evolution
Link ID: 20978 - Posted: 05.25.2015

Richard Harris American medicine is heading into new terrain, a place where a year's supply of drugs can come with a price tag that exceeds what an average family earns. Pharmacy benefit manager Express Scripts says last year more than half a million Americans racked up prescription drug bills exceeding $50,000. Barbara Haedtke of Portland, Ore., knows this all too well. When she was diagnosed with multiple sclerosis in 2001 at the age of 35, she was prescribed Avonex, at a cost of around $10,000 a year. Her health insurance paid most of that until she and her husband found themselves without jobs during an economic downturn. "We were in the hole, and so $10,000 was a lot of money," she says. "Under the best circumstances it's a lot of money, but then particularly it was really difficult." Barbara Haedtke says she's grateful for a drug-company program that helps cover copays, but doesn't know how long she'll get that benefit. The drug company gave her the medication at no charge until she once again had a job with insurance, and for that, she says, she's really grateful. But the story doesn't end there. Haedtke used Avonex for about a decade and watched with disbelief as the price more than tripled. She's now taking a new drug, Tecfidera, that's priced even higher — $66,000 a year, according to her pharmacy receipt. The drug is supposed to help reduce the number of episodes that characterize multiple sclerosis, a disease in which nerve fibers gradually degenerate, causing muscle weakness, numbness, loss of balance and even paralysis. © 2015 NPR

Keyword: Multiple Sclerosis; Stress
Link ID: 20973 - Posted: 05.25.2015

Dan Sung A 10-year study has revealed a startling link between high levels of anxiety and an increased risk of death from liver disease. The research, carried out by scientists at the University of Edinburgh, took account for obvious sociological and physiological factors such as alcohol consumption, obesity, diabetes and class, but still the data pointed to a clear relationship between the psychological conditions of stress and depression and the physical health of the hepatic system. There were over 165,000 participants surveyed for mental distress. They were each tracked for over a decade during which time the causes of death for those who passed on were recorded and categorised. What was found was that those who’d scored highly for signs of depression and stress were far more likely to suffer fatal liver disease. “This study provides further evidence for the important links between mind and body, and of the damaging effects psychological distress can have on physical wellbeing,” said Dr Tom Russ of the Centre for Clinical Brain Sciences. The work did not uncover any reasons for direct cause and effect but is the first to identify such a link between mental states and liver damage. Previous research has described how psychological conditions can lead to increased risk of cardiovascular disease which, in turn, may develop into obesity, raised blood pressure and then eventually to liver failure but, with this methodology controlling for such factors, it appears that the link is more direct than was previously thought.

Keyword: Depression; Stress
Link ID: 20960 - Posted: 05.20.2015

By Will Lippincott In January 2012, two weeks after my discharge from a psychiatric hospital in Connecticut, I made a plan to die. My week in an acute care unit that had me on a suicide watch had not diminished my pain. Back in New York, I stormed out of my therapist’s office and declared I wouldn’t return to the treatment I’d dutifully followed for three decades. Nothing was working, so what was the point? I fit the demographic profile of the American suicide — white, male and entering middle age with a history of depression. Suicide runs in families, research tells us, and it ran in mine. My father killed himself at age 49 in April 1990. A generation before, an aunt of his took her life; before her, there were others. Shame runs in families, too, and no one in mine talked much about mental illness. The first time I was hospitalized for wanting to kill myself, as a teenager, my dad visited me a few days in. I made an effort to greet him with a firm handshake; he shared a few jokes with me. Dad was visibly concerned and told me he loved me. Only after his suicide a few years later did I learn that he, too, had been hospitalized, for depression, when he was in his early 20s. Setting out to start my own life after college, I felt that suicide was a clear and present opportunity, one that glowed more brightly during my depressive episodes. But I had an ambitious plan to beat it. I’d be a performer: work hard, keep my goals in the line of sight at all times, and make as much money as I could. Professional success would be my first line of defense to keep hopelessness at bay. In parallel, I’d find excellent doctors and be a compliant patient, take my meds and show up for talk therapy. And for a long time, through my 20s and 30s, that plan worked. © 2015 The New York Times Company

Keyword: Depression
Link ID: 20949 - Posted: 05.19.2015

by Andy Coghlan When a fly escapes being swatted, what is going on in its head? Is it as terrified as we would be after a close shave with death? Or is buzzing away from assailantsMovie Camera a momentary inconvenience that flies shrug off? It now seems that flies do become rattled. "In humans, fear is something that persists on a longer timescale than a simple escape reflex," says William Gibson of the California Institute of Technology in Pasadena, California. "Our observations suggest flies have a persistent state of defensive arousal, which is not necessarily fear, but which has some similarities to it." This doesn't mean that flies share the same emotional responses to fear as humans, but they do seem to have the same behavioural building blocks of fear as us. Evasive action Gibson and his colleagues exposed fruit flies to overhead shadows resembling aerial predators, such as birds. The more shadows they were exposed to, the more the flies resorted to evasive behaviour, such as hopping, jumping or freezing. When the shadow passed over once per second, by the time the shadow had fallen 10 times, the average running speed of the flies had doubled, for example. Their average number of hops trebled after just two passes. They also offered starved flies food, and part way through the meal threatened them with shadows. The more often the meal was interrupted, the longer the flies took to return to their meal after flying away. © Copyright Reed Business Information Ltd.

Keyword: Emotions; Evolution
Link ID: 20940 - Posted: 05.16.2015

By Virginia Morell Hyenas long ago mastered one of the keys to Facebook success: becoming the friend of a friend. The most common large carnivore in Africa, spotted hyenas (Crocuta crocuta), are known for their socially sophisticated behaviors. They live in large, stable clans (as pictured above), which can include as many as 100 individuals. They can tell clan members apart, discriminating among their maternal and paternal kin. They’re also choosy about their pals and form tight bonds only with specific members—the friends of their friends, researchers report in the current issue of Ecology Letters. And it’s this ability to form lasting friendships—or “cohesive clusters,” as the scientists describe a triad of friends—that is most important in maintaining the animals’ social structure. To reach this conclusion, the scientists analyzed more than 50,000 observations of social interactions among spotted hyenas in Kenya’s Maasai Mara National Reserve over 20 years. They found that individual traits, including the hyena’s sex and social rank, as well as environmental factors such as the amount of rainfall and prey abundance, all play a role in the animals’ social dynamics. But the most consistently influential factor was the ability of individual hyenas to form and maintain those tight friendships. The study used a new modeling method, which the researchers say can help other scientists better understand the sociality of other species. And that includes the human animal, who, the scientists note, are also prone to “cohesive clusters,” whether living as hunter-gatherers or as users of social media. © 2015 American Association for the Advancement of Science.

Keyword: Emotions
Link ID: 20934 - Posted: 05.16.2015

Robinson Meyer Brett Redding felt like he was out of options. “It started with little things—having trouble making eye contact,” he told me. Soon it got worse. Redding, a 28-year-old salesman in Seattle, found himself freaking out during normal, everyday conversations. He worried any time his boss wanted to talk. He would dread his regular sales calls, and the city’s booming housing market—he works in construction—seemed to make his ever-increasing meetings all the more crushing. He was suffering social anxiety, a common but debilitating mental illness. “I was afraid of losing my job because I couldn’t do it,” he says. His meetings with a therapist weren’t working, and he didn’t “want to mess with antidepressants.” “I’ve always been so social—I’ve never had issues with looking people in the eye and talking with people,” he says. That’s when Redding’s girlfriend saw an ad on Craigslist that promised an online program could help treat Redding’s social anxiety through methods proven by science. “I had nothing to lose,” he says—so he signed up. That service is now called Joyable. I first saw Joyable when an ad for it appeared in Facebook on my phone. “90 percent of our clients see their anxiety decline,” said the ad, next to a sun-glinted, bokeh-heavy photo of a blonde woman. I clicked on. Joyable’s website, full of affable sans serifs and cheery salmon rectangles, looks Pinterest-esque, at least in its design. Except its text didn’t discuss eye glasses or home decor but “evidence-based” methods shown to reduce social anxiety. I knew those phrases: “Evidence-based” is the watchword of cognitive behavioral therapy, or CBT, the treatment now considered most effective for certain anxiety disorders. Joyable dresses a psychologists’s pitch in a Bay Area startup’s clothes. © 2015 by The Atlantic Monthly Group.

Keyword: Stress
Link ID: 20929 - Posted: 05.14.2015

By Emily Underwood We’ve all heard how rats will abandon a sinking ship. But will the rodents attempt to save their companions in the process? A new study shows that rats will, indeed, rescue their distressed pals from the drink—even when they’re offered chocolate instead. They’re also more likely to help when they’ve had an unpleasant swimming experience of their own, adding to growing evidence that the rodents feel empathy. Previous studies have shown that rats will lend distressed companions a helping paw, says Peggy Mason, a neurobiologist at the University of Chicago in Illinois who was not involved in the work. In a 2011 study, for example, Mason and colleagues showed that if a rat is trapped in a narrow plastic tube, its unrestrained cagemate will work on the latch until it figures out how to spring the trap. Skeptics, however, have suggested that the rodents help because they crave companionship—not because their fellow rodents were suffering. The new study, by researchers at the Kwansei Gakuin University in Japan, puts those doubts to rest, Mason says. For their test of altruistic behavior, the team devised an experimental box with two compartments divided by a transparent partition. On one side of the box, a rat was forced to swim in a pool of water, which it strongly disliked. Although not at risk of drowning—the animal could cling to a ledge—it did have to tread water for up to 5 minutes. The only way the rodent could escape its watery predicament was if a second rat—sitting safe and dry on a platform—pushed open a small round door separating the two sides, letting it climb onto dry land. © 2015 American Association for the Advancement of Science

Keyword: Emotions; Learning & Memory
Link ID: 20923 - Posted: 05.13.2015

Rob Stein The seasons appear to influence when certain genes are active, with those associated with inflammation being more active in the winter, according to new research released Tuesday. A study involving more than 16,000 people found that the activity of about 4,000 of those genes appears to be affected by the season, researchers reported in the journal Nature Communications. The findings could help explain why certain diseases are more likely than others to strike for the first time during certain seasons, the researchers say. "Certain chronic diseases are very seasonal — like seasonal affective disorder or cardiovascular disease or Type 1 diabetes or multiple sclerosis or rheumatoid arthritis," says John Todd, a geneticist at the University of Cambridge who led the research. "But people have been wondering for decades what the explanation for that is." Todd and his colleagues decided to try to find out. They analyzed the genes in cells from more than 16,000 people in five countries, including the United States and European countries in the Northern Hemisphere, and Australia in the Southern Hemisphere. And they spotted the same trend — in both hemispheres, and among men as well as women. "It's one of those observations where ... the first time you see it, you go, 'Wow, somebody must have seen this before,' " Todd says. Not all young girls avoid dirt. Hannah Rose Akerley, 7, plays in a gigantic lake of mud at the annual Mud Day event in Westland, Mich., last July. © 2015 NPR

Keyword: Biological Rhythms; Neuroimmunology
Link ID: 20922 - Posted: 05.13.2015