Chapter 13. Memory, Learning, and Development

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 81 - 100 of 5595

Not much is definitively proven about consciousness, the awareness of one’s existence and surroundings, other than that it’s somehow linked to the brain. But theories as to how, exactly, grey matter generates consciousness are challenged when a fully-conscious man is found to be missing most of his brain. Several years ago, a 44-year-old Frenchman went to the hospital complaining of mild weakness in his left leg. It was discovered then that his skull was filled largely by fluid, leaving just a thin perimeter of actual brain tissue. And yet the man was a married father of two and a civil servant with an IQ of 75, below-average in his intelligence but not mentally disabled. Doctors believe the man’s brain slowly eroded over 30 years due to a build up of fluid in the brain’s ventricles, a condition known as “hydrocephalus.” His hydrocephalus was treated with a shunt, which drains the fluid into the bloodstream, when he was an infant. But it was removed when he was 14 years old. Over the following decades, the fluid accumulated, leaving less and less space for his brain. While this may seem medically miraculous, it also poses a major challenge for cognitive psychologists, says Axel Cleeremans of the Université Libre de Bruxelles.

Keyword: Intelligence; Consciousness
Link ID: 22430 - Posted: 07.13.2016

By Gretchen Reynolds To strengthen your mind, you may first want to exert your leg muscles, according to a sophisticated new experiment involving people, mice and monkeys. The study’s results suggest that long-term endurance exercise such as running can alter muscles in ways that then jump-start changes in the brain, helping to fortify learning and memory. I often have written about the benefits of exercise for the brain and, in particular, how, when lab rodents or other animals exercise, they create extra neurons in their brains, a process known as neurogenesis. These new cells then cluster in portions of the brain critical for thinking and recollection. Even more telling, other experiments have found that animals living in cages enlivened with colored toys, flavored varieties of water and other enrichments wind up showing greater neurogenesis than animals in drab, standard cages. But animals given access to running wheels, even if they don’t also have all of the toys and other party-cage extras, develop the most new brain cells of all. These experiments strongly suggest that while mental stimulation is important for brain health, physical stimulation is even more potent. But so far scientists have not teased out precisely how physical movement remakes the brain, although all agree that the process is bogglingly complex. Fascinated by that complexity, researchers at the National Institutes of Health recently began to wonder whether some of the necessary steps might be taking place far from the brain itself, and specifically, in the muscles, which are the body part most affected by exercise. Working muscles contract, burn fuel and pump out a wide variety of proteins and other substances. The N.I.H. researchers suspected that some of those substances migrated from the muscles into the bloodstream and then to the brain, where they most likely contributed to brain health. © 2016 The New York Times Company

Keyword: Learning & Memory
Link ID: 22429 - Posted: 07.13.2016

By Maggie Koerth-Baker When former Tennessee women’s basketball coach Pat Summitt died Tuesday morning, news outlets, including ESPN, reported the cause of her death as “early-onset dementia, Alzheimer’s type.” That’s more than just a long-winded way of saying “Alzheimer’s.” By using five words instead of one, journalists were trying to point a big, flashing neon arrow at the complex realities of dementia. Dementia is more of a symptom than a diagnosis, and it can be caused by a number of different diseases. Even Alzheimer’s, the most common type of dementia, doesn’t seem to have a single cause. Instead, what ties Summitt to millions of other Alzheimer’s patients all over the world is the physical damage it wrought in her brain. Worldwide, 47.5 million people are living with some kind of dementia. Alzheimer’s represents 60 percent to 70 percent of those cases. Imagine a map of a city — roads branching out, intersecting with other roads, creating a network that allows mail to be delivered, food to be sold and brought home, people to get to their jobs. What would happen to that town if random intersections were suddenly barricaded and impassible? That’s the dystopian chaos Alzheimer’s causes, as damaged proteins clog the neurons and inhibit the flow of information from one neuron to another. Cut off from food, as well as data, the cells die. The brain shrinks. Eventually, the person dies, too. Afterward, doctors can cut into their brain and see the barriers, which are called plaques.

Keyword: Alzheimers
Link ID: 22426 - Posted: 07.12.2016

By Edd Gent, The devastating neurodegenerative condition Alzheimer's disease is incurable, but with early detection, patients can seek treatments to slow the disease's progression, before some major symptoms appear. Now, by applying artificial intelligence algorithms to MRI brain scans, researchers have developed a way to automatically distinguish between patients with Alzheimer's and two early forms of dementia that can be precursors to the memory-robbing disease. The researchers, from the VU University Medical Center in Amsterdam, suggest the approach could eventually allow automated screening and assisted diagnosis of various forms of dementia, particularly in centers that lack experienced neuroradiologists. Additionally, the results, published online July 6 in the journal Radiology, show that the new system was able to classify the form of dementia that patients were suffering from, using previously unseen scans, with up to 90 percent accuracy. [10 Things You Didn't Know About the Brain] "The potential is the possibility of screening with these techniques so people at risk can be intercepted before the disease becomes apparent," said Alle Meije Wink, a senior investigator in the center's radiology and nuclear medicine department. "I think very few patients at the moment will trust an outcome predicted by a machine," Wink told Live Science. "What I envisage is a doctor getting a new scan, and as it is loaded, software would be able to say with a certain amount of confidence [that] this is going to be an Alzheimer's patient or [someone with] another form of dementia." © 2016 Scientific American

Keyword: Alzheimers
Link ID: 22425 - Posted: 07.12.2016

By Clare Wilson It is one of life’s great enigmas: why do we sleep? Now we have the best evidence yet of what sleep is for – allowing housekeeping processes to take place that stop our brains becoming overloaded with new memories. All animals studied so far have been found to sleep, but the reason for their slumber has eluded us. When lab rats are deprived of sleep, they die within a month, and when people go for a few days without sleeping, they start to hallucinate and may have epileptic seizures. One idea is that sleep helps us consolidate new memories, as people do better in tests if they get a chance to sleep after learning. We know that, while awake, fresh memories are recorded by reinforcing connections between brain cells, but the memory processes that take place while we sleep have remained unclear. Support is growing for a theory that sleep evolved so that connections in the brain can be pruned down during slumber, making room for fresh memories to form the next day. “Sleep is the price we pay for learning,” says Giulio Tononi of the University of Wisconsin-Madison, who developed the idea. Now we have the most direct evidence yet that he’s right. Tononi’s team measured the size of these connections or synapses in brain slices taken from mice. The synapses in samples taken at the end of a period of sleep were 18 per cent smaller than those in samples taken from before sleep, showing that the synapses between neurons are weakened during slumber. © Copyright Reed Business Information Ltd.

Keyword: Sleep; Learning & Memory
Link ID: 22424 - Posted: 07.12.2016

By David Dobbs It’s difficult to tell what Gina Pace wants unless you already know what she wants. But sometimes that’s easy, and this is one of those times: Gina wants pizza. “I-buh!” she says repeatedly—her version of “I want.” We all do. We are sitting at Abate’s in New Haven, Connecticut, a town famous for—among other things—pizza and science. Gina and her father, Bernardo, who live on Staten Island in New York City, have made the two-hour drive here for both. The pizza is in the oven. The science is already at the table, represented by Abha Gupta, a developmental pediatrician at Yale’s renowned Child Study Center. Gupta is one of the few scientific experts on a condition that Bernardo and Gina know through hard experience. Gina, now 24, was diagnosed 20 years ago with childhood disintegrative disorder, or CDD. CDD is the strangest and most unsettling developmental condition you have probably never heard of. Also known as Heller’s syndrome, for the Austrian special educator who first described it in 1908, it is a late-blooming, viciously regressive form of autism. It’s rare, striking about 1 or 2 in every 100,000 children. After developing typically for two to 10 years (the average is three or four), a child with CDD will suffer deep, sharp reversals along multiple lines of development, which may include language, social skills, play skills, motor skills, cognition, and bladder or bowel control. The speed and character of this reversal varies, but it often occurs in a horrifyingly short period—as short as a couple of months, says Gupta. In about 75 percent of cases, this loss of skills is preceded by days or weeks in which the child experiences intense anxiety and even terror: nightmares and waking nightmares and bouts of confused, jumpy disturbance that resemble psychosis.

Keyword: Autism; Development of the Brain
Link ID: 22423 - Posted: 07.11.2016

By Jane E. Brody To stem the current epidemic of obesity, there’s no arguing with the adage that an ounce of prevention is worth a pound of cure. As every overweight adult knows too well, shedding excess pounds and keeping them off is far harder than putting them on in the first place. But assuring a leaner, healthier younger generation may often require starting even before a baby is born. The overwhelming majority of babies are lean at birth, but by the time they reach kindergarten, many have acquired excess body fat that sets the stage for a lifelong weight problem. Recent studies indicate that the reason so many American children become overweight is far more complicated than consuming more calories than they burn, although this is certainly an important factor. Rather, preventing children from acquiring excess body fat may have to start even before their mothers become pregnant. Researchers are tracing the origins of being overweight and obese as far back as the pre-pregnancy weight of a child’s mother and father, and their explanations go beyond simple genetic inheritance. Twenty-three genes are known to increase the risk of becoming obese. These genes can act very early in development to accelerate weight gain in infancy and during middle childhood. In the usual weight trajectory, children are born lean, get chubby during infancy, then become lean again as toddlers when they grow taller and become more active. Then, at or before age 10 or so, body fat increases in preparation for puberty – a phenomenon called adiposity rebound. In children with obesity genes, “adiposity rebound occurs earlier and higher,” said Dr. Daniel W. Belsky, an epidemiologist at Duke University School of Medicine. “They stop getting leaner sooner and start putting on fat earlier and put on more of it.” © 2016 The New York Times Company

Keyword: Obesity; Development of the Brain
Link ID: 22421 - Posted: 07.11.2016

By Aviva Rutkin At first glance, she was elderly and delicate – a woman in her 90s with a declining memory. But then she sat down at the piano to play. “Everybody in the room was totally startled,” says Eleanor Selfridge-Field, who researches music and symbols at Stanford University. “She looked so frail. Once she sat down at the piano, she just wasn’t frail at all. She was full of verve.” Selfridge-Field met this woman, referred to as ME to preserve her privacy, at a Christmas party around eight years ago. ME, who is now aged 101, has vascular dementia: she rarely knows where she is, and doesn’t recognise people she has met in the last few decades. But she can play nearly 400 songs by ear – a trick that depends on tapping into a memory of previously stored musical imprints – and continues to learn new songs just by listening to them. She has even composed an original piece of her own. ME’s musical talent, despite her cognitive impairments, inspired Selfridge-Field to spend the last six years observing her, and she presented her observations today at the International Conference on Music Perception and Cognition in San Francisco, California. ME experienced a stroke-like attack when she was in her 80s, and a few years later was diagnosed with vascular dementia. She struggles most to remember events and encounters that are recent, and her memory is selective, focusing on specific periods – such as her childhood between the ages of 3 and 8. She can recognise people that she met before the age of about 75 to 80. She is never quite sure of her surroundings. © Copyright Reed Business Information Ltd.

Keyword: Alzheimers
Link ID: 22420 - Posted: 07.11.2016

Beatrice Alexandra Golomb, Statins can indeed produce neurological effects. These drugs are typically prescribed to lower cholesterol and thereby reduce the risk of heart attack and stroke. Between 2003 and 2012 roughly one in four Americans aged 40 and older were taking a cholesterol-lowering medication, according to the Centers for Disease Control and Prevention. But studies show that statins can influence our sleep and behavior—and perhaps even change the course of neurodegenerative conditions, including dementia. The most common adverse effects include muscle symptoms, fatigue and cognitive problems. A smaller proportion of patients report peripheral neuropathy—burning, numbness or tingling in their extremities—poor sleep, and greater irritability and aggression. Interestingly, statins can produce very different outcomes in different patients, depending on an individual's medical history, the statin and the dose. Studies show, for instance, that statins generally reduce the risk of ischemic strokes—which arise when a blocked artery or blood clot cuts off oxygen to a brain region—but can also increase the risk of hemorrhagic strokes, or bleeding into the brain. Statins also appear to increase or decrease aggression. In 2015 my colleagues and I observed that women taking statins, on average, showed increased aggression; men typically showed less, possibly because of reduced testosterone levels. Some men in our study did experience a marked increase in aggression, which was correlated with worsening sleep. © 2016 Scientific American

Keyword: ALS-Lou Gehrig's Disease ; Alzheimers
Link ID: 22419 - Posted: 07.11.2016

by Adriana Heguy, molecular biologist and genomics researcher: Interestingly, tongue-curling ability is not solely genetic, and the genetic component may be very small. Monozygotic (identical) twins are not always concordant for tongue-curling ability, so if there is a genetic component, it’s clearly not Mendelian. In other words, it’s not a trait coded by one single gene, and it’s clearly influenced by the environment—in this case, practice. But for some reason this is one of the “myths” about genetics that gets spread around in high school, where it is used as an example of a simple Mendelian trait with a simple dominant-recessive nature. It’s hard to comment on the evolutionary purpose of an ability so heavily influenced by the environment, and not obviously useful. There are many traits for which we do not have the faintest idea why they exist or what purpose they serve. In the case of tongue-curling, it’s possible that it’s a case of fine motor control of the tongue. We need to be able to move our tongues to not bite them when we eat, for example, and for swirling food around. For unknown reasons, some individuals are better than others at controlling tongue movement. And since the ability can be acquired by practicing (though not everybody apparently succeeds), it does seem likely that it is indeed a question of motor control. Most people are able to do it. It’s quite common. But it could be that evolution had nothing to do with it. Or it could be a spandrel; in other words, a side effect of evolution. Maybe the evolution of dexterity or finer motor control of other muscles resulted in tongue “dexterity.” It’s possible that it is an atavism, something that increased tongue muscle control was once useful for tasting or eating certain kinds of foods millions of years ago, and it has not disappeared because the developmental program for fine muscle control is still there.

Keyword: Genes & Behavior; Evolution
Link ID: 22415 - Posted: 07.09.2016

By Andy Coghlan It could be that romantic restaurant, or your favourite park bench. A specific part of the brain seems to be responsible for learning and remembering the precise locations of places that are special to us, research in mice has shown for the first time. Place cells are neurons that help us map our surroundings, and both mice and humans have such cells in the hippocampus – a brain region vital for learning, memory and navigation. Nathan Danielson at Columbia University in New York and his colleagues focused on a part of the hippocampus that feeds signals to the rest of the brain, called CA1. They found that in mice, the CA1 layer where general environment maps are learned and stored is different to the one for locations that have an important meaning. Treadmill test They discovered this by recording brain activity in the two distinct layers of CA1, using mice placed on a treadmill. The treadmill rotated between six distinctive surface materials – including silky ribbons, green pom-pom fabric and silver glitter masking tape. At all times, the mice were able to lick a sensor to try to trigger the release of drinking water. During the first phase of the experiment, however, the sensor only worked at random times. The mice formed generalised maps of their experience on the multi-surfaced treadmill, and the team found that these were stored in the superficial layer of CA1. © Copyright Reed Business Information Ltd.

Keyword: Learning & Memory
Link ID: 22414 - Posted: 07.09.2016

By Louise Whiteley It’s an appealing idea: the notion that understanding the learning brain will tell us how to maximise children’s potential, bypassing the knotty complexities of education research. But promises to replace sociological complexity with biological certainty should always be treated with caution. Hilary and Steven Rose are deeply sceptical of claims that neuroscience can inform education and early intervention policy, and deeply concerned about the use of such claims to support neoliberal agendas. They argue that focusing on the brain encourages a focus on the individual divorced from their social context, and that this is easily aligned with a view of poor achievement as a personal moral failing, rather than a practical consequence of poverty and inequality. Whether or not you end up cheerleading for the book’s political agenda, its deconstruction of faulty claims about how neuroscience translates into the classroom is relevant to anyone interested in education. The authors tear apart the scientific logic of policy documents, interrogate brain-based interventions and dismantle prevalent neuro-myths. One of the book’s meatiest chapters deals with government reports advocating early intervention to increase “mental capital”, and thus reduce the future economic burden of deprived, underachieving brains. As we discover, the neuroscientific foundations of these reports are shaky. For instance, they tend to assume that the more synaptic connections between brain cells the better, and that poor environment in a critical early period permanently reduces the number of synapses. This makes early intervention focusing on the individual child and “poor parenting” seem like the obvious solution. But pruning of synapses is just as important to brain development, and learning involves the continual forming and reforming of synaptic connections. More is not necessarily better. And while an initial explosion in synapses can be irreversibly disrupted by extreme neglect, the evidence just isn’t there yet for extrapolating this to the more common kinds of childhood deprivation that such reports address.

Keyword: Development of the Brain; Learning & Memory
Link ID: 22409 - Posted: 07.08.2016

By Jessica Hamzelou TEENAGE pregnancies have hit record lows in the Western world, largely thanks to increased use of contraceptives of all kinds. But strangely, we don’t really know what hormonal contraceptives – pills, patches and injections that contain synthetic sex hormones – are doing to the developing bodies and brains of teenage girls. You’d be forgiven for assuming that we do. After all, the pill has been around for more than 50 years. It has been through many large trials assessing its effectiveness and safety, as have the more recent patches and rings, and the longer-lasting implants and injections. But those studies were done in adult women – very few have been in teenage girls. And biologically, there is a big difference. At puberty, our bodies undergo an upheaval as our hormones go haywire. It isn’t until our 20s that things settle down and our brains and bones reach maturity. “If a drug is going to be given to 11 and 12-year-olds, it needs to be tested in 11 and 12-year-olds,” says Joe Brierley of the clinical ethics committee at Great Ormond Street Hospital in London. Legislation introduced in the US in 2003 and in Europe in 2007 was intended to make this happen but a New Scientist investigation can reveal that there is still scant data on what contraceptives actually do to developing girls. The few studies that have been done suggest that tipping the balance of oestrogen and progesterone during this time may have far-reaching effects, although there is not yet enough data to say whether we should be alarmed. © Copyright Reed Business Information Ltd.

Keyword: Hormones & Behavior; Development of the Brain
Link ID: 22407 - Posted: 07.08.2016

By ERICA GOODE Irving Gottesman, a pioneer in the field of behavioral genetics whose work on the role of heredity in schizophrenia helped transform the way people thought about the origins of serious mental illness, died on June 29 at his home in Edina, Minn., a suburb of Minneapolis. He was 85. His wife, Carol, said he died while taking an afternoon nap. Although Dr. Gottesman had some health problems, she said, his death was unexpected, and several of his colleagues said they received emails from him earlier that day. Dr. Gottesman was perhaps best known for a study of schizophrenia in British twins he conducted with another researcher, James Shields, at the Maudsley Hospital in London in the 1960s. The study, which found that identical twins were more likely than fraternal twins to share a diagnosis of schizophrenia, provided strong evidence for a genetic component to the illness and challenged the notion that it was caused by bad mothering, the prevailing view at the time. But the findings also underscored the contribution of a patient’s environment: If genes alone were responsible for schizophrenia, the disorder should afflict both members of every identical pair; instead, it appeared in both twins in only about half of the identical pairs in the study. This interaction between nature and nurture, Dr. Gottesman believed, was critical to understanding human behavior, and he warned against tilting too far in one direction or the other in explaining mental illness or in accounting for differences in personality or I.Q. © 2016 The New York Times Company

Keyword: Schizophrenia; Genes & Behavior
Link ID: 22405 - Posted: 07.07.2016

By David Shultz Making eye contact for an appropriate length of time is a delicate social balancing act: too short, and we look shifty and untrustworthy; too long, and we seem awkward and overly intimate. To make this Goldilocks-like dilemma even trickier, it turns out that different people prefer to lock eyes for different amounts of time. So what’s too long or too short for one person might be just right for another. In a new study, published today in Royal Society Open Science, researchers asked a group of 498 volunteers to watch a video of an actor staring out from a screen and press a button if their gazes met for an uncomfortably long or short amount of time (above). During the test, the movement of their eyes and the size of their pupils were recorded with eye-tracking technology. On average, participants had a “preferred gaze duration” of 3.3 seconds, give or take 0.7 seconds. That’s a pretty narrow band for someone on their first date! Making things even harder, individual preferences can also be measured: Researchers found that how quickly people’s pupils dilated—an automatic reflex whenever someone looks into the eyes of another—was a good indicator of how long they wanted to gaze. The longer their preferred gaze, the faster their pupils expanded. The differences are so subtle, though, that they can only be seen with the eye-tracking software—making any attempts to game the system is likely to end up awkward rather than informative. © 2016 American Association for the Advancement of Science.

Keyword: Autism; Emotions
Link ID: 22398 - Posted: 07.06.2016

Laura Sanders Feeling good may help the body fight germs, experiments on mice suggest. When activated, nerve cells that help signal reward also boost the mice’s immune systems, scientists report July 4 in Nature Medicine. The study links positive feelings to a supercharged immune system, results that may partially explain the placebo effect. Scientists artificially dialed up the activity of nerve cells in the ventral tegmental area — a part of the brain thought to help dole out rewarding feelings. This activation had a big effect on the mice’s immune systems, Tamar Ben-Shaanan of Technion-Israel Institute of Technology in Haifa and colleagues found. A day after the nerve cells in the ventral tegmental area were activated, mice were infected with E. coli bacteria. Later tests revealed that mice with artificially activated nerve cells had less E. coli in their bodies than mice without the nerve cell activation. Certain immune cells seemed to be ramped up, too. Monocytes and macrophages were more powerful E. coli killers after the nerve cell activation. If a similar effect is found in people, the results may offer a biological explanation for how positive thinking can influence health. |© Society for Science & the Public 2000 - 2016

Keyword: Neuroimmunology; Emotions
Link ID: 22395 - Posted: 07.05.2016

Carl Zimmer Our genes are not just naked stretches of DNA. They’re coiled into intricate three-dimensional tangles, their lengths decorated with tiny molecular “caps.” These so-called epigenetic marks are crucial to the workings of the genome: They can silence some genes and activate others. Epigenetic marks are crucial for our development. Among other functions, they direct a single egg to produce the many cell types, including blood and brain cells, in our bodies. But some high-profile studies have recently suggested something more: that the environment can change your epigenetic marks later in life, and that those changes can have long-lasting effects on health. In May, Duke University researchers claimed that epigenetics could explain why people who grow up poor are at greater risk of depression as adults. Even more provocative studies suggest that when epigenetic marks change, people can pass them to their children, reprogramming their genes. But criticism of these studies has been growing. Some researchers argue that the experiments have been weakly designed: Very often, they say, it’s impossible for scientists to confirm that epigenetics is responsible for the effects they see. Three prominent researchers recently outlined their skepticism in detail in the journal PLoS Genetics. The field, they say, needs an overhaul. “We need to get drunk, go home, have a bit of a cry, and then do something about it tomorrow,” said John M. Greally, one of the authors and an epigenetics expert at the Albert Einstein College of Medicine in New York. © 2016 The New York Times Company

Keyword: Epigenetics; Genes & Behavior
Link ID: 22391 - Posted: 07.02.2016

By Tara Parker-Pope About one in eight women take an antidepressant at some time during pregnancy, reports Roni Rabin in today’s Science Times. But is it safe? Some new research shows that antidepressant use during pregnancy may be linked to certain problems in newborns. A new review of the medical literature concludes that treatment decisions for depression during pregnancy must be made on a case-by-case basis. “There’s not a one-size-fits-all answer,” said Dr. Kimberly Yonkers, a professor of psychiatry and obstetrics and gynecology at Yale School of Medicine who was the report’s lead author, and who acknowledged receiving research support from antidepressant manufacturers. “You can’t say, ‘Stop medication for all women because it’s harmful,’ and you can’t put all women on medication either.” To learn more, read the full story, “Depression Is a Dilemma for Women in Pregnancy,” and then please join the discussion below. Did you experience depression during pregnancy? Did you take medication to treat it? © 2016 The New York Times Company

Keyword: Depression; Development of the Brain
Link ID: 22386 - Posted: 07.01.2016

By Amina Zafar, CBC News The Zika virus can cause devastating brain defects in newborns with microcephaly, but also in babies with normal-sized heads and those born to women infected late in pregnancy, Brazilian doctors say. In Wednesday's issue of the journal The Lancet, researchers said that of 602 babies born in Brazil with definite or probable Zika cases one in five had head circumferences in the normal range. Dr. Cesar Victora of the Federal University of Pelotas in Rio Grande do Sul, Brazil, and his team say the current focus on screening for microcephaly or small head circumference alone is too narrow. "We should not equate Zika congenital infection with microcephaly," Victora said in an interview from Washington. "We could well have many babies with normal head size who are affected. We will need to think about other exams to screen these babies, such as improving the diagnostic test we have for Zika and also possibly in areas that are undergoing an epidemic, doing ultrasound of the brains of these babies as soon as they are born." The epidemic in the worst-hit northeastern regions of the country peaked in November 2015. While the current season is cooler and mosquitoes aren't reproducing in Brazil, public health authorities continue to advise pregnant women to avoid travel to countries with Zika outbreaks. Countries in South Asia, the Western Pacific Islands, and South and Central America also have outbreaks. ©2016 CBC/Radio-Canada.

Keyword: Development of the Brain
Link ID: 22384 - Posted: 07.01.2016

By Rachel Rabkin Peachman It began with a simple roller-skating accident three years ago. Taylor Aschenbrenner, then 8 years old, lost her balance amid a jumble of classmates, tumbled to the floor and felt someone else’s skate roll over her left foot. The searing pain hit her immediately. The diagnosis, however, would take much longer. An X-ray, M.R.I.s, a CT scan and blood tests over several months revealed no evidence of a break, sprain or other significant problem. Taylor’s primary symptom was pain — so severe that she could not put weight on the foot. “Our family doctor first told us to give it some time,” said Taylor’s mother, Jodi Aschenbrenner, of Hudson, Wis. But time didn’t heal the pain. After about a month, an orthopedist recommended physical therapy. That didn’t end the problem, either. “I couldn’t walk or play outside or do anything,” Taylor said. After she had spent a year and a half on crutches, her orthopedist suggested she see Dr. Stefan Friedrichsdorf, the medical director ofpain medicine, palliative care and integrative medicine at Children’s Hospitals and Clinics of Minnesota. He and his team promptly recognized Taylor’s condition as complex regional pain syndrome, a misfiring within the peripheral and central nervous systems that causes pain signals to go into overdrive and stay turned on even after an initial injury or trauma has healed. He came up with a treatment plan for Taylor that included cognitive behavioral therapy, physical therapy, mind-body techniques, stress-reduction strategies, topical pain-relief patches and a focus on returning to her normal life and sleep routine, among other things. © 2016 The New York Times Company

Keyword: Pain & Touch; Development of the Brain
Link ID: 22368 - Posted: 06.28.2016