Chapter 15. Language and Our Divided Brain

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 1 - 20 of 1999

By KEN BELSON A federal district court judge on Wednesday gave her final approval to the settlement of a lawsuit brought by more than 5,000 former players who accused the N.F.L. of hiding from them the dangers of concussions, a major step toward ending one of the most contentious legal battles in league history. The settlement provides payments of up to $5 million to players who have one of a handful of severe neurological disorders, medical monitoring for all players to determine if they qualify for a payment and $10 million for education about concussions. The landmark deal, which many players criticized, was originally reached in August 2013, but Judge Anita B. Brody twice asked the two sides to revise their agreement, first to uncap the total amount of damages that could be paid for the conditions covered, and then to remove the limit on how much could be spent on medical monitoring. As part of the deal, the N.F.L. insisted that all retired players — not just the 5,000 or so who sued the league — be covered by the settlement as a way to fend off lawsuits in the future. But about 200 players, including Junior Seau, who committed suicide and was later found to have a degenerative brain disease, opted out of the settlement to preserve their right to continue fighting the league. Critics of the settlement said that even after the revisions, the number and variety of diseases covered by the deal were too small and that many players would receive only a small fraction of the multimillion-dollar payouts promised by the league after their age and years in the N.F.L. were considered. Critics also contended that the settlement needed to acknowledge more classes of plaintiffs, not only those with diagnosable diseases and those without them. © 2015 The New York Times Company

Keyword: Brain Injury/Concussion
Link ID: 20837 - Posted: 04.23.2015

by Clare Wilson I WAS prepared for the blood but the most shocking thing about watching brain surgery was seeing the surgical drapes being stapled to the patient's face. But surgeon Peter Hutchinson dismisses my concern that the tiny holes might bother the patient when she wakes up: "That's nothing compared with the massive hole we're about to make in her head." I am at Addenbrooke's Hospital in Cambridge, UK, to learn about craniectomy, a procedure that involves removing a large part of someone's skull, to relieve the pressure inside. There are no official tallies but it's thought that several hundred surgeries take place in the UK every year on people with head injuries or who have had a stroke. Once the brain is given room to swell, the pressure drops and the scalp is sewn back into place. The skull fragment can be stored in a freezer or kept sterile inside the patient's abdomen for weeks or months before it is reattached. The operation I'm witnessing is part of a randomised trial to compare the effectiveness of craniectomy with that of drugs alone to bring the pressure down. It will involve 400 people with head injuries, half of whom will get the surgery. This is needed as craniectomy has a long and chequered history. Human remains suggest it was done with stone tools in Peru a thousand years ago, a practise known as trepanning, perhaps for similar reasons as today. As a modern surgical procedure, though, it has fallen in and out of favour over the last few decades. Whether you would be sent for surgery today depends on how safe your surgeon thinks it is. © Copyright Reed Business Information Ltd.

Keyword: Brain Injury/Concussion
Link ID: 20836 - Posted: 04.23.2015

|By Rebecca Harrington It's best to treat the good with the bad, new medical insights into brain attacks suggest. Doctors are beginning to think the side of the brain opposite to a clot in stroke patients is just as important a target for treatment as the damaged tissue when it comes to a faster recovery. Only in the past few years have researchers discovered that the uninjured side of the brain becomes more active after a stroke to help its fallen neighbor. In some instances, it pumps out proteins that induce damaged neurons to begin repairs and others that trigger new blood vessels to form. It can even extend its own neurons across hemispheres to restore function. Current stroke treatments largely target the damaged tissue. “I think everyone thought, ‘The other side of the brain is working pretty well,’” says Stanford University neurologist Gary Steinberg. “‘Why don't we leave that alone?’” In light of the growing evidence that the healthy hemisphere provides aid naturally, however, doctors are now investigating how to boost its healing actions. One such drug, shepherded by Adviye Ergul of Georgia Regents University and Susan Fagan of the University of Georgia, activates receptors on uninjured tissue that trigger pathways to reduce harmful inflammation and support the growth of neurons and blood vessels on the side of the brain with the clot. The drug increases repair rates in rats that have experienced stroke—results described recently in the Journal of Hypertension—and Ergul and Fagan say the therapy could become available to humans in the next five years. © 2015 Scientific American

Keyword: Stroke
Link ID: 20835 - Posted: 04.23.2015

By Virginia Morell Baby common marmosets, small primates found in the forests of northeastern Brazil, must learn to take turns when calling, just as human infants learn not to interrupt. Even though the marmosets (Callithrix jacchus) don’t have language, they do exchange calls. And the discovery that a young marmoset (as in the photo above) learns to wait for another marmoset to finish its call before uttering its own sound may help us better understand the origins of human language, say scientists online today in the Proceedings of the Royal Society B. No primate, other than humans, is a vocal learner, with the ability to hear a sound and imitate it—a talent considered essential to speech. But the marmoset researchers say that primates still exchange calls in a manner reminiscent of having a conversation because they wait for another to finish calling before vocalizing—and that this ability is often overlooked in discussions about the evolution of language. If this skill is learned, it would be even more similar to that of humans, because human babies learn to do this while babbling with their mothers. In a lab, the researchers recorded the calls of a marmoset youngster from age 4 months to 12 months and those of its mother or father while they were separated by a dark curtain. In adult exchanges, a marmoset makes a high-pitched contact call (listen to a recording here), and its fellow responds within 10 seconds. The study showed that the youngster’s responses varied depending on who was calling to them. They were less likely to interrupt their mothers, but not their dads—and both mothers and fathers would give the kids the “silent treatment” if they were interrupted. Thus, the youngster learns the first rule of polite conversation: Don’t interrupt! © 2015 American Association for the Advancement of Science.

Keyword: Language; Evolution
Link ID: 20828 - Posted: 04.22.2015

By Sandra G. Boodman A Braced by her partner, Suzanne Tobin shuffled back to her car parked in the cavernous garage at Johns Hopkins Hospital late on the evening of Oct. 22, 2013, distraught about what might happen next. Tobin, then 60, had been driven by her partner, James Rapp, from their Germantown home to the Hopkins ER in hopes that doctors there could determine what was causing her relentless deterioration. Three months earlier, Tobin had held a full-time job as a copy editor at AARP in the District. She spent an hour before work striding around the Mall for exercise. Now she could no longer walk unassisted, her speech was nearly unintelligible and her left hand was so weak she could no longer hold a book. Doctors in suburban Maryland had diagnosed a stroke — or possibly a series of strokes — but were unable to explain why Tobin kept getting worse by the week. Her neurologist counseled patience and offered to prescribe antidepressants, drugs that Tobin had told him she had taken for years. An occupational therapist she’d been seeing had expressed alarm; stroke patients tended to plateau or even improve over time, not to experience a steady downward spiral. “You need to get a new neurologist,” she advised Tobin. Tobin and Rapp decided their best bet was to head to Hopkins in Baltimore. But after 12 hours and a battery of tests, including a CT, MRI and other scans, emergency physicians sent Tobin home. They found no new stroke — an earlier MRI that Rapp had brought along appeared to show an old one — nor any other problem that would require immediate hospitalization. They advised her to follow up with her regular doctors.

Keyword: Stroke; Neuroimmunology
Link ID: 20823 - Posted: 04.21.2015

Fred Powledge I think I knew what was happening even before my head bounced off the hard kitchen counter on its way to the even harder stone floor. I was rapidly losing my connection with reality. My wife, Tabitha, later estimated that I was out for 10 minutes. When I emerged from unconsciousness I heard the sirens on the street in front of the house. It seemed as if half of Tucson's fire department was streaming through the front door. I was scared. At my age, which is old, you laugh at any childlike faith in your immortality. In this case, what brought on the unconsciousness was apparently a quick turn of my head while reaching for an onion to peel for the night's dinner, followed by the knockout blow from hitting the floor. I was scared. At my age, which is old, you laugh at any childlike faith in your immortality. An enormous hook and ladder and an ambulance were drawn up in front of the house, sirens winding down. The commotion was embarrassing, but it was comforting to know that my wife was in the next room, had called for help, and that 911 had responded to her call as it was supposed to. The emergency room doctor said I had a concussion — a blow to the head that our new and improved language calls a MTBI. This scared me as much as the ambulance ride itself, since it stands for "Mild Traumatic Brain Injury." © 2015 NPR

Keyword: Brain Injury/Concussion
Link ID: 20795 - Posted: 04.14.2015

By KEN BELSON The developers of a new drug aimed at diagnosing chronic traumatic encephalopathy, a degenerative brain disease linked to repeated head trauma, are under scrutiny by the Food and Drug Administration. In February, the F.D.A.’s Office of Prescription Drug Promotion sent a letter to two researchers at U.C.L.A. warning them that they had improperly marketed their drug on the Internet and had made overstated claims about the drug’s potential efficacy. The researchers at U.C.L.A. have been developing a biomarker called FDDNP, which aims to identify tau protein deposits in the brain (a signature of C.T.E.) when patients are given a PET scan. To date, researchers have been able to detect C.T.E. only in brain tissue obtained posthumously. The demand for a technique that can diagnose the disease in living patients is potentially large, given growing concerns about the impact of head trauma in athletes, soldiers and others. In its letter, the F.D.A. warned that the researchers, who are partners with the company Taumark, were not allowed to market the drug and make claims about its safety or effectiveness. “Thus, these claims and presentations suggest in a promotional context that FDDNP, an investigational new drug, is safe or effective for such uses, when F.D.A. has not approved FDDNP for any use,” the letter said. The Los Angeles Times first reported the details of the F.D.A.’s letter to the researchers, Dr. Gary Small and Dr. Jorge Barrio. The researchers were told to adjust the language on Taumark’s website, which is now disabled. © 2015 The New York Times Company

Keyword: Brain imaging; Brain Injury/Concussion
Link ID: 20788 - Posted: 04.13.2015

By Ariana Eunjung Cha Autism has always been a tricky disorder to diagnose. There’s no such thing as a blood test, cheek swap or other accepted biological marker so specialists must depend on parent and teacher reports, observations and play assessments. Figuring out a child's trajectory once he or she is diagnosed is just as challenging. The spectrum is wide and some are destined to be on the mild end and be very talkative, sometimes almost indistinguishable from those without the disorder in some settings, while others will suffer from a more severe form and have trouble being able to speak basic words. Now scientists believe that they have a way to distinguish between those paths, at least in terms of language ability, in the toddler years using brain imaging. In an article published Thursday in the journal Neuron, scientists at the University of California-San Diego have found that children with autism spectrum disorder, or ASD, with good language outcomes have strikingly distinct patterns of brain activation as compared to those with poor language outcomes and typically developing toddlers. "Why some toddlers with ASD get better and develop good language and others do not has been a mystery that is of the utmost importance to solve," Eric Courchesne, one of the study’s authors and co-director of the University of California-San Diego's Autism Center, said in a statement. The images of the children in the study -- MRIs of the brain -- were taken at 12 to 29 months while their language was assessed one to two years later at 30 to 48 months.

Keyword: Autism; Language
Link ID: 20776 - Posted: 04.10.2015

Jordan Gaines Lewis Hodor hodor hodor. Hodor hodor? Hodor. Hodor-hodor. Hodor! Oh, um, excuse me. Did you catch what I said? Fans of the hit HBO show Game of Thrones, the fifth season of which premieres this Sunday, know what I’m referencing, anyway. Hodor is the brawny, simple-minded stableboy of the Stark family in Winterfell. His defining characteristic, of course, is that he only speaks a single word: “Hodor.” But those who read the A Song of Ice and Fire book series by George R R Martin may know something that the TV fans don’t: his name isn’t actually Hodor. According to his great-grandmother Old Nan, his real name is Walder. “No one knew where ‘Hodor’ had come from,” she says, “but when he started saying it, they started calling him by it. It was the only word he had.” Whether he intended it or not, Martin created a character who is a textbook example of someone with a neurological condition called expressive aphasia. In 1861, French physician Paul Broca was introduced to a man named Louis-Victor Leborgne. While his comprehension and mental functioning remained relatively normal, Leborgne progressively lost the ability to produce meaningful speech over a period of 20 years. Like Hodor, the man was nicknamed Tan because he only spoke a single word: “Tan.”

Keyword: Language
Link ID: 20773 - Posted: 04.10.2015

Tom Bawden Scientists have deciphered the secrets of gibbon “speech” – discovering that the apes are sophisticated communicators employing a range of more than 450 different calls to talk to their companions. The research is so significant that it could provide clues on the evolution of human speech and also suggests that other animal species could speak a more precise language than has been previously thought, according to lead author Dr Esther Clarke of Durham University. Her study found that gibbons produce different categories of “hoo” calls – relatively quiet sounds that are distinct from their more melodic “song” calls. These categories of call allow the animals to distinguish when their fellow gibbons are foraging for food, alerting them to distant noises or warning others about the presence of predators. In addition, Dr Clarke found that each category of “hoo” call can be broken down further, allowing gibbons to be even more specific in their communication. A warning about lurking raptor birds, for example, sounds different to one about pythons or clouded leopards – being pitched at a particularly low frequency to ensure it is too deep for the birds of prey to hear. The warning call denoting the presence of tigers and leopards is the same because they belong to the same class of big cats, the research found. © independent.co.uk

Keyword: Language; Evolution
Link ID: 20768 - Posted: 04.08.2015

By KEN BELSON One of the limitations of studying chronic traumatic encephalopathy, or C.T.E., the degenerative brain disease linked to repeated head trauma, has been that researchers have been able to detect it only in tissue obtained posthumously. A study published Monday by Proceedings of the National Academy of Sciences, though, suggests that researchers trying to develop a test that will detect the disease in living patients have taken a small step forward. The study, conducted at U.C.L.A., included 14 retired N.F.L. players who suffered from mood swings, depression and cognitive problems associated with C.T.E. The players were given PET, or positron emission tomography, scans that revealed tau protein deposits in their brains, a signature of C.T.E. Although the results were not conclusive, the distribution of tau in their brains was consistent with those found in the autopsies of players who had C.T.E. The 14 players were compared with 24 patients with Alzheimer’s disease and 28 patients in a control group with no significant cognitive problems. The scans showed that the tau deposits in the 14 players were “distinctly different” from those in the patients with Alzheimer’s disease. “There seems to be an emerging new pattern we haven’t seen in any known forms of dementia, and it is definitely not normal,” said Dr. Julian Bailes, a coauthor of the study and the chairman of neurosurgery at NorthShore Neurological Institute in Evanston, Ill. © 2015 The New York Times Company

Keyword: Brain Injury/Concussion; Brain imaging
Link ID: 20762 - Posted: 04.07.2015

By LAWRENCE K. ALTMAN, M.D WASHINGTON — Even before Ronald Reagan became the oldest elected president, his mental state was a political issue. His adversaries often suggested his penchant for contradictory statements, forgetting names and seeming absent-mindedness could be linked to dementia. In 1980, Mr. Reagan told me that he would resign the presidency if White House doctors found him mentally unfit. Years later, those doctors and key aides told me they had not detected any changes in his mental abilities while in office. Now a clever new analysis has found that during his two terms in office, subtle changes in Mr. Reagan’s speaking patterns linked to the onset of dementia were apparent years before doctors diagnosed his Alzheimer’s disease in 1994. The findings, published in The Journal of Alzheimer’s Disease by researchers at Arizona State University, do not prove that Mr. Reagan exhibited signs of dementia that would have adversely affected his judgment and ability to make decisions in office. But the research does suggest that alterations in speech one day might be used to predict development of Alzheimer’s and other neurological conditions years before symptoms are clinically perceptible. Detection of dementia at the earliest stages has become a high priority. Many experts now believe that yet-to-be-developed treatments are likely to be effective at preventing or slowing progression of dementia only if it is found before it significantly damages the brain. The “highly innovative” methods used by the researchers may eventually help “to further clarify the extent to which spoken-word changes are associated with normal aging or predictive of subsequent progression to the clinical stages of Alzheimer’s disease,” said Dr. Eric Reiman, the director of the Banner Alzheimer’s Institute in Phoenix, who was not involved in the new study. © 2015 The New York Times Company

Keyword: Alzheimers; Language
Link ID: 20743 - Posted: 04.01.2015

By Nicholas Bakalar Air pollution — even for just one day — significantly increases the risk of stroke, a large review of studies has found. Researchers pooled data from 103 studies involving 6.2 million stroke hospitalizations and deaths in 28 countries. The analysis, published online in BMJ, found that all types of pollution except ozone were associated with increased risk for stroke, and the higher the level of pollution, the more strokes there were. Daily increases in pollution from nitrogen dioxide, sulfur dioxide, carbon monoxide and particulate matter were associated with corresponding increases in strokes and hospital admissions. The strongest associations were apparent on the day of exposure, but increases in particulate matter had longer-lasting effects. The exact reason for the effect is unclear, but studies have shown that air pollution can constrict blood vessels, increase blood pressure and increase the risk for blood clots. Other research has tied air pollution to a higher risk of heart attacks, stroke and other ills. The lead author, Dr. Anoop Shah, a lecturer in cardiology at the University of Edinburgh, said that there was little an individual can do when air pollution spikes. “If you’re elderly, or have co-morbid conditions, you should stay inside,” he said. But policies leading to cleaner air would have the greatest impact, he said. “It’s a question of getting cities and countries to change.” © 2015 The New York Times Company

Keyword: Stroke; Neurotoxins
Link ID: 20727 - Posted: 03.28.2015

Alice Park We start to talk before we can read, so hearing words, and getting familiar with their sounds, is obviously a critical part of learning a language. But in order to read, and especially in order to read quickly, our brains have to “see” words as well. At least that’s what Maximilian Riesenhuber, a neuroscientist at Georgetown University Medical Center, and his colleagues found in an intriguing brain-mapping study published in the Journal of Neuroscience. The scientists recruited a small group of college students to learn a set of 150 nonsense words, and they imaged their brains before and after the training. Before they learned the words, their brains registered them as a jumble of symbols. But after they were trained to give them a meaning, the words looked more like familiar words they used every day, like car, cat or apple. The difference in way the brain treated the words involved “seeing” them rather than sounding them out. The closest analogy would be for adults learning a foreign language based on a completely different alphabet system. Students would have to first learn the new alphabet, assigning sounds to each symbol, and in order to read, they would have to sound out each letter to put words together. In a person’s native language, such reading occurs in an entirely different way.

Keyword: Language
Link ID: 20719 - Posted: 03.25.2015

By NICHOLAS BAKALAR Concussions are not as common in Major League Baseball as they are in professional football, but they happen often enough, with players getting hit by pitches, running into walls or catching a knee in the head sliding into a base. Catchers are particularly at risk — a foul tip off the mask will snap the neck back and give the brain a solid rattle. Collisions at the plate take a toll, too. Now, a study published in the American Journal of Sports Medicine suggests that position players in the majors who sustain concussions do not hit as effectively in their first weeks back after their injury. Under Major League Baseball rules, players can return after a concussion if they pass the concussion protocol — a series of interviews and tests of physical and mental functioning. But the new study found that even after passing the tests and having no apparent symptoms, hitters showed an initial decline when they returned to action. The study identified 66 position players who had concussions between 2007 and 2013, including some who never went on the disabled list. The study then compared their performance in the weeks before and after the injury. The gap was noticeable. In the two weeks before their injuries, the players hit .249 with a .315 on base percentage and a .393 slugging average. For the two weeks after the injury, their line was .227/.287/.347. Baseball instituted a seven-day disabled list in 2011, specifically to let players recover from concussions while allowing the team to maintain a full roster. But there is no set time that a player must stay out after a concussion. If he passes the protocol, he is cleared to play. © 2015 The New York Times Company

Keyword: Brain Injury/Concussion
Link ID: 20715 - Posted: 03.24.2015

By Nicholas Weiler Where did the thief go? You might get a more accurate answer if you ask the question in German. How did she get away? Now you might want to switch to English. Speakers of the two languages put different emphasis on actions and their consequences, influencing the way they think about the world, according to a new study. The work also finds that bilinguals may get the best of both worldviews, as their thinking can be more flexible. Cognitive scientists have debated whether your native language shapes how you think since the 1940s. The idea has seen a revival in recent decades, as a growing number of studies suggested that language can prompt speakers to pay attention to certain features of the world. Russian speakers are faster to distinguish shades of blue than English speakers, for example. And Japanese speakers tend to group objects by material rather than shape, whereas Koreans focus on how tightly objects fit together. Still, skeptics argue that such results are laboratory artifacts, or at best reflect cultural differences between speakers that are unrelated to language. In the new study, researchers turned to people who speak multiple languages. By studying bilinguals, “we’re taking that classic debate and turning it on its head,” says psycholinguist Panos Athanasopoulos of Lancaster University in the United Kingdom. Rather than ask whether speakers of different languages have different minds, he says, “we ask, ‘Can two different minds exist within one person?’ ” Athanasopoulos and colleagues were interested in a particular difference in how English and German speakers treat events. © 2015 American Association for the Advancement of Science

Keyword: Language; Attention
Link ID: 20700 - Posted: 03.19.2015

By Matthew J.X. Malady One hour and seven minutes into the decidedly hit-or-miss 1996 comedy Black Sheep, the wiseass sidekick character played by David Spade finds himself at an unusually pronounced loss for words. While riding in a car driven by Chris Farley’s character, he glances at a fold-up map and realizes he somehow has become unfamiliar with the name for paved driving surfaces. “Robes? Rouges? Rudes?” Nothing seems right. Even when informed by Farley that the word he’s looking for is roads, Spade’s character continues to struggle: “Rowds. Row-ads.” By this point, he’s become transfixed. “That’s a total weird word,” he says, “isn’t it?” Now, it’s perhaps necessary to mention that, in the context of the film, Spade’s character is high off nitrous oxide that has leaked from the car’s engine boosters. But never mind that. Row-ad-type word wig outs similar to the one portrayed in that movie are things that actually happen, in real life, to people with full and total control over their mental capacities. These wordnesias sneak up on us at odd times when we’re writing or reading text. I was in a full-on wordnesiac state. On one of my spelling attempts, I think I even threw a K into the mix. It was bad. Here’s how they work: Every now and again, for no good or apparent reason, you peer at a standard, uncomplicated word in a section of text and, well, go all row-ads on it. If you’re typing, that means inexplicably blanking on how to spell something easy like cake or design. The reading version of wordnesia occurs when a common, correctly spelled word either seems as though it can’t possibly be spelled correctly, or like it’s some bizarre combination of letters you’ve never before seen—a grouping that, in some cases, you can’t even imagine being the proper way to compose the relevant term. © 2014 The Slate Group LLC.

Keyword: Language
Link ID: 20688 - Posted: 03.14.2015

By Gretchen Reynolds An easy, two-minute vision test administered on the sidelines after a young athlete has hit his or her head can help to reliably determine whether the athlete has sustained a concussion, according to a new study of student athletes, some as young as 5. The test is so simple and inexpensive that any coach or parent potentially could administer it, the study’s authors believe, and any league afford to provide it as a way to help evaluate and safeguard players. Those of us who coach or care for young athletes know by now that an athlete who falls or collides with something during play or seems dazed, dizzy, loses consciousness or complains of head pain should be tested for a concussion, which occurs when the brain is physically jostled within the skull. But most of us are clueless about how to test young athletes. The most commonly recommended sideline test is the Standardized Assessment of Concussion, a multipart examination during which athletes are asked to name the date, describe how they feel, memorize and recall lists of words, and do jumping jacks and other tests of coordination. Ideally, this assessment should be administered and evaluated by a medical professional. But while the sidelines of college and professional games are crowded with doctors and certified athletic trainers, few high schools and youth leagues have those resources. Most of the time, concussion testing in youth sports falls to volunteer coaches or parents with little if any medical experience. That situation prompted researchers at New York University’s Langone Concussion Center to begin wondering recently whether there might be other, easier diagnostic tools to check young players for concussions. Their thoughts soon turned to vision. “About 50 percent of the brain’s pathways are tied in some to way to vision and visual processing,” said Dr. Steven Galetta, chairman of neurology at N.Y.U. Langone Medical Center and senior author of the study, which was published in The Journal of Neuro-Ophthalmology. © 2015 The New York Times Company

Keyword: Brain Injury/Concussion
Link ID: 20680 - Posted: 03.12.2015

By Nicholas Bakalar Sleeping more than eight hours a day is associated with a higher risk for stroke, a new study has found. Researchers studied 9,692 people, ages 42 to 81, who had never had a stroke. The study tracked how many hours a night the people slept at the beginning of the study and how much nightly sleep they were getting four years later. Over the 10-year study, 346 of the study subjects suffered strokes. After controlling for more than a dozen other health and behavioral variables, the researchers found that people who slept more than eight hours a day were 46 percent more likely to have had a stroke than those who slept six to eight hours. The study, published online last week in Neurology, also found that the risk of stroke was higher among people who reported that their need for sleep had increased over the study period. The authors caution that the data on sleep duration depended on self-reports, which can be unreliable. In addition, the study identified an association between sleep and stroke risk, rather than cause and effect. Sleeping more may be an early symptom of disease that leads to stroke, rather than a cause. “It could be that there’s already something happening in the brain that precedes the stroke risk and of which excessive sleep is an early sign,” said the lead author, Yue Leng, a doctoral candidate at the University of Cambridge. In any case, she added, “we don’t have enough evidence to apply this in clinical settings. We don’t want people to think if they sleep longer it will necessarily lead to stroke.” © 2015 The New York Times Company

Keyword: Sleep; Stroke
Link ID: 20641 - Posted: 03.03.2015

Helen Shen Repeated head injuries in American football have been linked to a degenerative brain disorder later in life. Dave Duerson suspected that something was wrong with his brain. By 2011, 18 years after the former American football player had retired from the Phoenix Cardinals, he experienced frequent headaches, memory problems and an increasingly short temper. Before he killed himself, he asked that his brain be donated for study. Researchers who examined it found signs of chronic traumatic encephalopathy (CTE), a degenerative condition linked to repeated head injuries. At least 69 cases have been reported in the literature since 2000, many in former boxers and American football players (P. H. Montenigro et al. Alz. Res. Ther. 6, 68; 2014) — heightening public concern about concussions during contact sports. Yet much about CTE is unknown, from its frequency to its precise risk factors and even whether its pathology is unique. Researchers now hope to take a major step towards answering those questions. At Boston University in Massachusetts on 25–27 February, neuroscientists will convene to examine the characteristics of CTE in brain tissue from post-mortem examinations. They hope to agree on a set of diagnostic criteria for the disease, and to assess whether it is distinct from other brain disorders, such as Alzheimer’s disease. The effort is sorely needed, says Walter Koroshetz, acting director of the US National Institute of Neurological Disorders and Stroke in Bethesda, Maryland, which is organizing the meeting. “The definition is the important piece that lets you do the rest of the research,” he says. And the stakes are high. CTE is associated with memory loss, irritability, depression and explosive anger, which are thought to appear and worsen years after repeated head trauma. © 2015 Nature Publishing Group

Keyword: Brain Injury/Concussion
Link ID: 20613 - Posted: 02.25.2015