Chapter 16. None

Follow us on Facebook and Twitter, or subscribe to our mailing list, to receive news updates. Learn more.


Links 41 - 60 of 1185

By LISA SANDERS, M.D. On Thursday, we challenged Well readers to solve the mystery of a 23-year-old man with episodes of aggressive, manic behavior that couldn’t be controlled. Nearly 1,000 readers wrote in with their take on this terrifying case. More than 300 of you got the right class of disease, and 21 of you nailed the precise form of the disorder. Amazing! The correct diagnosis is … Variegate porphyria The first person with the correct answer was Francis Graziano, a 23-year-old recent graduate of the University of Michigan. His major in neuroscience really gave him a leg up on this case, he told me. He recalled a case he read of a young Vietnam veteran with symptoms of porphyria. He’s a surgical technician right now, waiting to hear where he’ll be going to medical school next year. Strong work, Dr.-to-be Graziano! The Diagnosis: The word porphyria comes from the ancient Greek word for purple, “porphyra,” because patients with this disease can have purplish-red urine, tears or saliva. The porphyrias are a group of rare genetic diseases that develop in patients born without the machinery to make certain essential body chemicals, including one of the most important parts of blood known as heme. This compound makes up the core of the blood component hemoglobin. (The presence of heme is why blood is red.) Patients who can’t make heme correctly end up with too much of its chemical precursors, known as porphyrins. The excess porphyrins injure tissues throughout the body, but especially in the nervous system. The disorder is characterized by frequent episodes of debilitating back or abdominal pain and is often accompanied by severe psychiatric symptoms. Patients with porphyria do not respond to most psychiatric medications. Indeed, many of these drugs make the symptoms of porphyria worse. © 2014 The New York Times Company

Keyword: Schizophrenia
Link ID: 19448 - Posted: 04.05.2014

Walking backward may seem a simple task, but researchers don’t know how the mind controls this behavior. A study published online today in Science provides the first glimpse of the brain circuit responsible—at least in fruit flies. Geneticists created 3500 strains of the insects, each with a temperature-controlled switch that turned random networks of neurons on when the flies entered an incubator. One mutant batch of fruit flies started strolling in reverse when exposed to warmth (video, right panel), which the team dubbed “moonwalkers,” in honor of Michael Jackson’s famous dance. Two neurons were responsible for the behavior. One lived in the brain and extended its connections to the end of the ventral nerve cord—the fly’s version of a spine, which runs along its belly. The other neuron had the opposite orientation—it started at the bottom of the nerve cord and sent its messaging cables—or axons—into the brain. The neuron in the brain acted like a reverse gear in a car; when turned on, it triggered reverse walking. The researchers say this neuron is possibly a command center that responds to environmental cues, such as, “Hey! I see a wall in front of me.” The second neuron functioned as the brakes for forward motion, but it couldn’t compel the fly to moonwalk. It may serve as a fail-safe that reflexively prevents moving ahead, such as when the fly accidentally steps onto a very cold floor. Using the two neurons as a starting point, the team will trace their links to sensory neurons for touch, sight, and smell, which feed into and control the moonwalking network. No word yet on the neurons responsible for the Macarena. © 2014 American Association for the Advancement of Science

Keyword: Movement Disorders
Link ID: 19445 - Posted: 04.05.2014

He was known in his many appearances in the scientific literature as simply K.C., an amnesiac who was unable to form new memories. But to the people who knew him, and the scientists who studied him for decades, he was Kent Cochrane, or just Kent. Cochrane, who suffered a traumatic brain injury in a motorcycle accident when he was 30 years old, helped to rewrite the understanding of how the brain forms new memories and whether learning can occur without that capacity. "From a scientific point of view, we've really learned a lot [from him], not just about memory itself but how memory contributes to other abilities," said Shayna Rosenbaum, a cognitive neuropsychologist at York University who started working with Cochrane in 1998 when she was a graduate student. Cochrane was 62 when he died late last week. The exact cause of death is unknown, but his sister, Karen Casswell, said it is believed he had a heart attack or stroke. He died in his room at an assisted living facility where he lived and the family opted not to authorize an autopsy. Few in the general public would know about Cochrane, though some may have seen or read media reports on the man whose life was like that of the lead character of the 2000 movie Memento. But anyone who works on the science of human memory would know K.C. Casswell and her mother, Ruth Cochrane, said the family was proud of the contribution Kent Cochrane made to science. Casswell noted her eldest daughter was in a psychology class at university when the professor started to lecture about the man the scientific literature knows as K.C. © CBC 2014

Keyword: Learning & Memory
Link ID: 19442 - Posted: 04.03.2014

Dr Nicola Davis The electronic nose in an instrument that attempts to mimic the human olfactory system. Humans and animals don't identify specific chemicals within odours; what they do is to recognise a smell based on a response pattern. You, as a human, will smell a strawberry and say "that's a strawberry". If you gave this to a traditional analytical piece of equipment, it might tell you what the 60-odd chemicals in the odour were - but that wouldn't tell you that it was a strawberry. How does it work? A traditional electronic nose has an array of chemical sensors, designed either to detect gases or vapours. These sensors are not tuned to a single chemical, but detect families of chemicals - [for example] alcohols. Each one of these sensors is different, so when they are presented to a complex odour formed of many chemicals, each sensor responds differently to that odour. This creates a pattern of sensor responses, which the machine can be taught [to recognise]. Can't we just use dogs? A dog is very, very sensitive. Special research teams work on training dogs to detect cancers as you would do explosives. What you we are trying to do with the electronic nose is create an artificial means of replicating what the dog does. Such machines have the advantage that they don't get tired, will work all day and you only need to feed them electricity. © 2014 Guardian News and Media Limited

Keyword: Chemical Senses (Smell & Taste); Aggression
Link ID: 19441 - Posted: 04.03.2014

Erika Check Hayden Monkeys on a reduced-calorie diet live longer than those that can eat as much as they want, a new study suggests. The findings add to a thread of studies on how a restricted diet prolongs life in a range of species, but they complicate the debate over whether the research applies to animals closely related to humans. In the study, which has been running since 1989 at the Wisconsin National Primate Research Center in Madison, 38 rhesus macaques (Macaca mulatta) that were allowed to eat whatever they wanted were nearly twice as likely to die at any age than were 38 monkeys whose calorie intakes were cut by 30%1. The same study reported2 in 2009 that calorie-restricted monkeys were less likely to die of age-related causes than control monkeys, but had similar overall mortality rates at all ages. “We set out to test the hypothesis: would calorie restriction delay ageing? And I think we've shown that it does,” says Rozalyn Anderson, a biochemist at the University of Wisconsin who led the study, which is published today in Nature Communications. She said it is not surprising that the 2009 paper did not find that the calorie-restricted monkeys lived longer, because at the time too few monkeys had died to prove the point. Eating a very low-calorie diet has been shown3 to prolong the lives of mice, leading to speculation that such a diet triggers a biochemical pathway that promotes survival. But what that pathway might be — and whether humans have it — has been a matter of hot debate. Eat to live In 2012, a study at the US National Institute on Aging (NIA) in Bethesda, Maryland, cast doubt on the idea, reporting4 that monkeys on low-calorie diets did not live longer than those that ate more food. But Anderson says that the Wisconsin findings are good news. © 2014 Nature Publishing Group

Keyword: Obesity
Link ID: 19439 - Posted: 04.02.2014

Neandertals and modern Europeans had something in common: They were fatheads of the same ilk. A new genetic analysis reveals that our brawny cousins had a number of distinct genes involved in the buildup of certain types of fat in their brains and other tissues—a trait shared by today’s Europeans, but not Asians. Because two-thirds of our brains are built of fatty acids, or lipids, the differences in fat composition between Europeans and Asians might have functional consequences, perhaps in helping them adapt to colder climates or causing metabolic diseases. “This is the first time we have seen differences in lipid concentrations between populations,” says evolutionary biologist Philipp Khaitovich of the CAS-MPG Partner Institute for Computational Biology in Shanghai, China, and the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany, lead author of the new study. “How our brains are built differently of lipids might be due to Neandertal DNA.” Ever since researchers at the Max Planck sequenced the genome of Neandertals, including a super high-quality genome of a Neandertal from the Altai Mountains of Siberia in December, researchers have been comparing Neandertal DNA with that of living people. Neandertals, who went extinct 30,000 years ago, interbred with modern humans at least once in the past 60,000 years, probably somewhere in the Middle East. Because the interbreeding happened after moderns left Africa, today’s Africans did not inherit any Neandertal DNA. But living Europeans and Asians have inherited a small amount—1% to 4% on average. So far, scientists have found that different populations of living humans have inherited the Neandertal version of genes that cause diabetes, lupus, and Crohn’s disease; alter immune function; and affect the function of the protein keratin in skin, nails, and hair. © 2014 American Association for the Advancement of Science.

Keyword: Evolution; Aggression
Link ID: 19438 - Posted: 04.02.2014

By NATALIE ANGIER The “Iliad” may be a giant of Western literature, yet its plot hinges on a human impulse normally thought petty: spite. Achilles holds a festering grudge against Agamemnon (“He cheated me, wronged me ... He can go to hell...”) turning down gifts, homage, even the return of his stolen consort Briseis just to prolong the king’s suffering. Now, after decades of focusing on such staples of bad behavior as aggressiveness, selfishness, narcissism and greed, scientists have turned their attention to the subtler and often unsettling theme of spite — the urge to punish, hurt, humiliate or harass another, even when one gains no obvious benefit and may well pay a cost. Psychologists are exploring spitefulness in its customary role as a negative trait, a lapse that should be embarrassing but is often sublimated as righteousness, as when you take your own sour time pulling out of a parking space because you notice another car is waiting for it and you’ll show that vulture who’s boss here, even though you’re wasting your own time, too. Evolutionary theorists, by contrast, are studying what might be viewed as the brighter side of spite, and the role it may have played in the origin of admirable traits like a cooperative spirit and a sense of fair play. The new research on spite transcends older notions that we are savage, selfish brutes at heart, as well as more recent suggestions that humans are inherently affiliative creatures yearning to love and connect. Instead, it concludes that vice and virtue, like the two sides of a V, may be inextricably linked. “Spitefulness is such an intrinsically interesting subject, and it fits with so many people’s everyday experience, that I was surprised to see how little mention there was of it in the psychology literature,” said David K. Marcus, a psychologist at Washington State University. At the same time, he said, “I was thrilled to find something that people haven’t researched to exhaustion.” © 2014 The New York Times Company

Keyword: Emotions; Aggression
Link ID: 19436 - Posted: 04.01.2014

A new study has raised new questions about how MRI scanners work in the quest to understand the brain. The research, led by Professor Brian Trecox and a team of international researchers, used a brand new technique to assess fluctuations in the performance of brain scanners as they were being used during a series of basic experiments. The results are due to appear in the Journal of Knowledge in Neuroscience: General later today. “Most people think that we know a lot about how MRI scanners actually work. The truth is, we don’t,” says Trecox. “We’ve even been misleading the public about the name – we made up functional Magnetic Resonance Imaging in 1983 because it sounded scientific and technical. fMRI really stands for flashy, Magically Rendered Images. So we thought: why not put an MRI scanner in an MRI scanner, and figure out what’s going on inside?” To do this, Trecox and his team built a giant imaging machine – thought to be the world’s largest – using funds from a Kickstarter campaign and a local bake sale. They then took a series of scans of standard-sized MRI scanners while they were repeatedly switched on and off, in one of the largest and most robust neuroscience studies of its type. “We tested six different MRI scanners,” says Eric Salmon, a PhD student involved in the project. “We found activation in an area called insular cortex in four of the six machines when they were switched on,” he added. In humans, the insular cortex has previously been implicated in a wide range of functions, including consciousness and self-awareness. According to Trecox and his team, activation in this area has never been found in imaging machines before. While Salmon acknowledged that the results should be treated with caution – research assistants were found asleep in at least two of the machines – the results nevertheless provide a potentially huge step in our understanding of the tools we use to research the brain. © 2014 Guardian News and Media Limited

Keyword: Brain imaging
Link ID: 19435 - Posted: 04.01.2014

by Aviva Rutkin Don't blame baby for trying to eat that Lego piece. Humans may have a brain circuit dedicated to grabbing stuff and putting it in our mouths, and it probably develops in the womb. Researchers and parents alike have long known that babies stick all manner of things in their mouths from very early on. Some fetuses even suck their thumbs. As putting something in the mouth seems advanced compared to the other, limited actions of newborns, Angela Sirigu of the Institute of Cognitive Sciences in Bron, France, and colleagues wondered whether the behaviour is encoded in the brain from birth. To investigate, they studied 26 people of different ages while they were undergoing brain surgery. The researchers found that they were able to make nine of the unconscious patients bring their hands up and open their mouths, just by stimulating a part of the brain we know is linked to those actions in non-human primates. Brain pudding Because this behaviour is encoded in the same region as in other primates, it may be there from birth or earlier, the researchers say. If it was learned, you would expect it to involve multiple brain areas, and those could vary between individuals. Newborn kangaroos are able to climb into their mother's pouch and baby wildebeests can run away from lions, but our babies appear helpless and have to learn most complex actions. The new work suggests that the way our brain develops is more like what happens in other animals than previously thought. © Copyright Reed Business Information Ltd.

Keyword: Development of the Brain
Link ID: 19431 - Posted: 04.01.2014

by Meghan Rosen Human faces just got a lot more emotional. People can broadcast more than three times as many different feelings on their faces as scientists once suspected. For years, scientists have thought that people could convey only happiness, surprise, sadness, anger, fear and disgust. “I thought it was very odd to have only one positive emotion,” says cognitive scientist Aleix Martinez of Ohio State University in Columbus. So he and colleagues came up with 16 combined ones, such as “happily disgusted” and “happily surprised.” Then the researchers asked volunteers to imagine situations that would provoke these emotions, such as listening to a gross joke, or getting unexpected good news. When the team compared pictures of the volunteers making different faces and analyzed every eyebrow wrinkle, mouth stretch and tightened chin, “what we found was beyond belief,” Martinez says. For each compound emotion, almost everyone used the same facial muscles, the team reports March 31 in the Proceedings of the National Academy of Sciences. Martinez’s team’s findings could one day help computer engineers improve facial recognition software and help scientists better understand emotion-perception disorders such as schizophrenia. Citations S Du, Y. Tao and A. M. Martinez Compound facial expressions of emotion. Proceedings of the National Academy of Sciences. Published online March 30, 2014. Doi: 10.1073/pnas.1322355111. © Society for Science & the Public 2000 - 2013

Keyword: Emotions
Link ID: 19430 - Posted: 04.01.2014

By SAM WANG A STUDY published last week found that the brains of autistic children show abnormalities that are likely to have arisen before birth, which is consistent with a large body of previous evidence. Yet most media coverage focuses on vaccines, which do not cause autism and are given after birth. How can we help people separate real risks from false rumors? Over the last few years, we’ve seen an explosion of studies linking autism to a wide variety of genetic and environmental factors. Putting these studies in perspective is an enormous challenge. In a database search of more than 34,000 scientific publications mentioning autism since its first description in 1943, over half have come since 2008. As a statistically minded neuroscientist, I suggest a different approach that relies on a concept we are familiar with: relative odds. As a single common measuring stick to compare odds, I have chosen the “risk ratio,” a measure that allows the bigger picture to come into focus. For a variety of studies I asked the same question: How large is the increased risk for autism? My standard for comparison was the likelihood in the general population of autism spectrum disorder. Here’s an example. Start from the fact that the recorded rate of autism is now 1 in 68, according to a report released last week by the Centers for Disease Control and Prevention. If babies born in purple farmhouses have a rate of autism of 2 in 68, this doubling means that the purple farmhouse carries a risk ratio of 2. However, correlation is not causation, and there is no need to repaint that farmhouse just yet. © 2014 The New York Times Company

Keyword: Autism
Link ID: 19429 - Posted: 03.31.2014

by Catherine de Lange Why wait for the doctor to see you? A smart patch attached to your skin could diagnose health problems automatically – and even administer drugs. Monitoring movement disorders such as Parkinson's disease or epilepsy relies on video recordings of symptoms and personal surveys, says Dae-Hyeong Kim at the Seoul National University in South Korea. And although using wearable devices to monitor the vital signs of patients is theoretically possible, the wearable pads, straps and wrist bands that can do this are often cumbersome and inflexible. To track the progression of symptoms and the response to medication more accurately would require devices that monitor cues from the body, store recorded data for pattern analysis and deliver therapeutic agents through the human skin in a controlled way, Kim says. So Kim and his team have developed an adhesive patch that is flexible and can be worn on the wrist like a second skin. The patch is 1 millimetre thick and made of a hydrocolloid dressing – a type of thin flexible bandage. Into it they embedded a layer of silicon nanoparticles. These silicon nanomembranes are often used for flexible electronics, and can pick up the bend and stretch of human skin and convert these into small electronic signals. The signals are stored as data in separate memory cells made from layers of gold nanoparticles. The device could be used to detect and treat tremors in people who have Parkinson's disease, or epileptic seizures, says Kim. If these movements are detected, small heaters in the patch trigger the release of drugs from silicon nanoparticles. The patch also contains temperature sensors to make sure the skin doesn't burn during the process. © Copyright Reed Business Information Ltd.

Keyword: Parkinsons; Aggression
Link ID: 19428 - Posted: 03.31.2014

By ABIGAIL ZUGER, M.D. One legend says it all began when a North African herder saw his goats eat some wild berries, then frolic with unusual verve. Another story cites a few small leaves blown off a nearby bush into the Chinese emperor’s mug of hot water. Either way, whether caffeine entered the life of man by coffee bean or tea leaf, happiness ensued. Happiness, that is, for all but the poor souls charged with saving us from our drugs, for no regulatory challenge trumps the one posed by caffeine, molecule of elegant enjoyment and increasing abuse, man’s best friend and occasional killer. As Murray Carpenter makes clear in his methodical review, our society’s metrics are no match for this substance’s nuances, whether among athletes, teenagers, experimental subjects or the average dependent Joe. (Read an excerpt of “Caffeinated.”) Pure caffeine is a bitter white powder. In the body it blocks the effects of the molecule adenosine, a crucial brake on many physiologic processes. With just enough caffeine in the system, the body’s organs become a little more themselves: the brain a little brainier, the muscles a little springier, the blood vessels a little tighter, the digestion a little more efficient. With too much caffeine, all can accelerate into cardiac arrest. It takes only about 30 milligrams of caffeine (less than a cup of coffee or can of cola) for stimulative effects to be noticeable. A hundred milligrams a day will hook most people: They feel immensely unhappy without their daily fix, and the organs all whine in protest for a few days. It takes more than 10 grams to kill you — a dose impossible to achieve with traditional beverages alone. However, the new caffeine-rich energy shots make it alarmingly easy for party-minded people to achieve the zone between enough and much too much. © 2014 The New York Times Company

Keyword: Drug Abuse
Link ID: 19427 - Posted: 03.31.2014

By BRAYDEN KING and JERRY KIM THIS season Major League Baseball is allowing its officiating crews to use instant replay to review certain critical calls, including home runs, force plays and foul balls. But the calling of the strike zone — determining whether a pitch that is not swung at is a ball or a strike — will still be left completely to the discretion of the officials. This might seem an odd exception, since calling the strike zone may be the type of officiating decision most subject to human foible. In research soon to be published in the journal Management Science, we studied umpires’ strike-zone calls using pitch-location data compiled by the high-speed cameras introduced by Major League Baseball several years ago in an effort to measure, monitor and reward umpires’ accuracy. After analyzing more than 700,000 pitches thrown during the 2008 and 2009 seasons, we found that umpires frequently made errors behind the plate — about 14 percent of non-swinging pitches were called erroneously. Some of those errors occurred in fairly predictable ways. We found, for example, that umpires tended to favor the home team by expanding the strike zone, calling a strike when the pitch was actually a ball 13.3 percent of the time for home team pitchers versus 12.7 percent of the time for visitors. Other errors were more surprising. Contrary to the expectation (or hope) that umpires would be more accurate in important situations, we found that they were, in fact, more likely to make mistakes when the game was on the line. For example, our analyses suggest that umpires were 13 percent more likely to miss an actual strike in the bottom of the ninth inning of a tie game than in the top of the first inning, on the first pitch. © 2014 The New York Times Company

Keyword: Attention
Link ID: 19426 - Posted: 03.31.2014

by Laura Sanders Ever-increasing numbers of autism diagnoses have parents worried about a skyrocketing epidemic, and this week’s news may only drive alarm higher. Perhaps it shouldn’t. In 2010, 1 in 68 (or 14.7 per 1,000) 8-year-olds had an autism spectrum disorder, the Centers for Disease Control and Prevention now estimates. That number is a substantial increase from 2008, which had an estimate of 1 in 88 (or 11.3 per 1,000). But the numbers might not reflect a spike in actual cases. Instead, the rise might be driven, at least in part, by an increase in diagnoses. The estimates are drawn from a collection of organizations that provide services to children with autism, including doctors, schools and social service agencies. As awareness builds and more people look for signs of autism, these numbers will keep going up. Regional spottiness suggests that better autism detection is feeding the increase. The autism rate in Alabama is just one in 175, while the rate in New Jersey is one in 45, the CDC reports. It would be surprising, and scientifically really important, if children in Alabama were truly much more protected from the disorder. Instead, differences in diagnosis rates are probably at play. If these alarmingly high numbers are driven by professionals and parents better spotting autism, that’s nothing to be alarmed at. On the contrary: This is good news. The earlier therapies begin, the better kids with autism do. That’s the idea behind CDC’s “Learn the Signs: Act Early” program to educate people about signs that something might be amiss with a child. So our best move is to find the kids who need help, and find them when they’re young. Most kids, including the ones in the new CDC survey, aren’t diagnosed with autism until about age 4 1/2. But whatever goes wrong happens long before then. © Society for Science & the Public 2000 - 2013.

Keyword: Autism
Link ID: 19424 - Posted: 03.29.2014

By Lenny Bernstein After 60 years of refusing, the people who run the Golden Gate Bridge are moving toward installing a suicide barrier, the New York Times reports. As soon as May, the Golden Gate Bridge, Highway and Transportation District is expected to approve construction of a steel mesh net 20 feet below the California landmark’s sidewalk. A record 46 people jumped to their deaths from the span in 2013, and another 118 were stopped before they could. According to the Times, they have tended to be younger than in the past. Experts have long known, and good research shows, that barriers are highly effective at halting suicides, the 10th-leading cause of death in the United States at 38,364 fatalities in 2010. This is true not just of bridges or other high places: locking up firearms and individually bubble-wrapping pills both limit suicides by those methods, said Jill Harkavy-Friedman, vice president of research for the American Foundation for Suicide Prevention. The key is the characteristics of a person on the verge of committing suicide, even someone who has been contemplating it for a while. Suicides are impulsive acts, and the people who commit them are not thinking clearly, have trouble solving problems, have difficulty shifting gears and weigh risks differently. If thwarted in that first, impulsive attempt, they often do not adjust and seek another way to take their lives, Harkavy-Friedman said. “In a suicidal crisis, it’s all about time,” she said. “They’re going to grab whatever is available. They don’t change gears if that is thwarted, because they have rigid thinking in that moment. They’re not thinking about dying. They’re thinking about ending the pain. © 1996-2014 The Washington Post

Keyword: Depression
Link ID: 19423 - Posted: 03.29.2014

By SINDYA N. BHANOO Monogamy is rare in animals. Even among species that pair off, there is often philandering. But a new genetic analysis adds to the evidence that the South American primates called Azara’s owl monkeys are remarkably faithful to their partners. The study confirms what one of its authors, Eduardo Fernandez-Duque, an evolutionary anthropologist at the University of Pennsylvania who leads the Owl Monkey Project, had long suspected. For 18 years, he and other Penn researchers have been observing the Azara’s owl monkey in the Chaco region of Argentina. Not only have they never witnessed a philanderer, but they have also found that infant owl monkeys get an unusual amount of care from their fathers. “The male plays with the infant and the male shares food with the infant even more than the mother,” Dr. Fernandez-Duque said. “The males care because these are their offspring, and this has a direct benefit in terms of reproductive success.” In the new study, published in the Proceedings of the Royal Society B, the researchers performed genetic analysis on 35 offspring born to 17 owl monkey pairs and confirmed that the parents were monogamous for the mating season. The monkey is the first primate and only the fifth mammal for which monogamy has been verified through genetics. Because paternal care is also seen in other species of owl monkeys, the scientists suspect that they, too, are serially monogamous. © 2014 The New York Times Company

Keyword: Sexual Behavior; Aggression
Link ID: 19422 - Posted: 03.29.2014

Nicola Davis The moment when 40-year old Joanne Milne, who has been deaf since birth, first hears sound is heart-wrenching scene. Amateur footage showing her emotional reaction has taken social media by storm and touched viewers across the world, reinforcing the technological triumph of cochlear implants. It’s a story I have touched on before. Earlier this month I wrote about how cochlear implants changed the lives of the Campbells whose children Alice and Oliver were born with the condition auditory neuropathy spectrum disorder (ANSD). Implants, together with auditory verbal therapy, have allowed them to embrace the hearing world. It was incredibly moving to glimpse the long and difficult journey this family had experienced, and the joy that hearing - a sense so many of us take for granted - can bring. Cochlear implants are not a ‘cure’ for deafness. They make use of electrodes to directly stimulate auditory nerve fibres in the cochlea of the inner ear, creating a sense of sound that is not the same as that which hearing people experience, but nevertheless allows users to perceive speech, develop language and often enjoy music. As an adult Milne, who was born with the rare condition Usher syndrome, is unusual in receiving cochlear implants on both sides. Such bilateral implantation enables users to work out where sounds are coming from, enhances speech perception in bustling environments and means that should something go wrong with one device, the user isn’t cut off from the hearing world. © 2014 Guardian News

Keyword: Hearing; Aggression
Link ID: 19421 - Posted: 03.29.2014

By Helen Briggs BBC News When it comes to detecting lies, you should trust your instinct, research suggests. We are better at identifying liars when we rely on initial responses rather than thinking about it, say psychologists. Generally we are poor at spotting liars - managing only slightly better than flipping a coin. But our success rate rises when we harness the unconscious mind, according to a report in Psychological Science. "What interested us about the unconscious mind is that it just might really be the seat of where accurate lie detection lives," said Dr Leanne ten Brinke of the University of California, Berkeley. "So if our ability to detect lies is not conscious - we simply can't do this when we're thinking hard about it - then maybe it lives somewhere else, and so we thought one possible explanation was the unconscious mind." When trying to find out if someone is lying, most people rely on cues like someone averting their gaze or appearing nervous. However, research suggests this is not accurate - people perform at only about 50% accuracy in traditional lie detection tasks. Psychologists at the University of California were puzzled by this, as some primates, such as chimps, are able to detect deceit - and evolutionary theory supposes that it maximises survival and reproductive success. Dr Ten Brinke and colleagues devised experiments to test the ability of the unconscious mind to spot a liar, to see if they could do better than the conscious mind. BBC © 2014

Keyword: Emotions
Link ID: 19420 - Posted: 03.29.2014

by Hal Hodson Software has performed the first real-time translation of a dolphin whistle – and better data tools are giving fresh insights into primate communication too IT was late August 2013 and Denise Herzing was swimming in the Caribbean. The dolphin pod she had been tracking for the past 25 years was playing around her boat. Suddenly, she heard one of them say, "Sargassum". "I was like whoa! We have a match. I was stunned," says Herzing, who is the director of the Wild Dolphin Project. She was wearing a prototype dolphin translator called Cetacean Hearing and Telemetry (CHAT) and it had just translated a live dolphin whistle for the first time. It detected a whistle for sargassum, or seaweed, which she and her team had invented to use when playing with the dolphin pod. They hoped the dolphins would adopt the whistles, which are easy to distinguish from their own natural whistles – and they were not disappointed. When the computer picked up the sargassum whistle, Herzing heard her own recorded voice saying the word into her ear. As well as boosting our understanding of animal behaviour, the moment hints at the potential for using algorithms to analyse any activity where information is transmitted – including our daily activities (see "Scripts for life"). "It sounds like a fabulous observation, one you almost have to resist speculating on. It's provocative," says Michael Coen, a biostatistician at the University of Wisconsin-Madison. © Copyright Reed Business Information Ltd.

Keyword: Animal Communication; Aggression
Link ID: 19418 - Posted: 03.27.2014